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ABSTRACT

The time-dependent analysis of an earlier work is extended to the equilibrium case of the Pella­
Tomlinson system, and the relationships between the equilibrium and nonequilibrium versions of the
restructured system are developed. The dual formulations of the conventional analysis are avoided and
maximum sustainable yield is separated from the indeterminacy of the system. All arbitrary
coefficients are eliminated and the management components incorporated directly into the system
equations. The source ofthe statistical degeneracy in the model is revealed and explicitly formulated,
and in the companion article by D. Rivard and L. J. Bledsoe (this issue of the Fishery Bulletin) the
restructured model is treated by a new statistical method that subdues the estimation failures
associated with past treatments of the Pella-Tomlinson system.

Because the equilibrium versions of all stock­
production models follow from steady-state inte­
grations, the strategy of fishery regulation be­
comes a strategy ofaccommodation, so to speak, as
determined by a pattern of balanced model states
where removals just equal the productivities
otherwise surplus to the maintenance needs of the
stock. Population status usually enters the process
in the simple, robust form of integrated numbers
or biomass, and the removals of fishing constitute
direct fractions ofthe whole fishable stock without
reference to age or weight distributions. Since the
appearance ofSchaefer's work (Schaefer 1954) the
strategy has been applied to the management of
many fisheries. Schaefer devised a rational,
linearized method for estimating the parameters
of Graham's equilibrium model (Graham 1935)
from the actual nonequilibrium yields and effort
expenditures of a fishery, a contribution that is
often misunderstood. In applying Schaefer's
method or like schemes of synthesis, it is not so
much that one hopes to observe a pattern of
equilibrium levels in a fishery or even expects
them to come about, but rather, by knowing the
response history of a stock to various exploitation
pressures, one might then be guided by the model
in bringing a stock, through a sequence of man­
agement actions, into a state where some desired
level of sustainable yield most likely abides. The
philosophy is widely accepted in fisheries man­
agement but its application is often censured,
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either on economic or biological grounds (see, for
example, Larkin 1977),

The exploitation model of Pella and Tomlinson
(1969), as it is customarily thought of, extends the
more "basic" model of Graham from a system of
second degree in nonlinearity to a flexible or more
"general" system of indeterminate degree. The in­
creased flexibility comes into the Pella-Tomlinson
model through the addition ofa single exponential
parameter, but the anaiytical peculiarities that
accompany the improvement often lead to
paradoxical ends since the equations of the system
then permit the simultaneous generation of good
data fits and poor parameter estimates (see the
commentary of Ricker 1975:323-326 and the
treatments of Fox 1971, 1975). This disturbing
trait of the statistical model arises from the
conflict between the variable (or parametric) cur­
vature of the analytical model and the coupling of
that curvature, in the conventional formulations,
with all the coefficients of the system. As shown in
a prior work (Fletcher 1978), those effects may be
separated in the time-dependent analysis by re­
structuring the system equations so as to accom­
modate directly the critical-point coordinates of
the system graphs. In this paper we extend the
analysis to the equilibrium version of the Pella­
Tomlinson system, and we show the relationships
between the equilibrium model and the (restruc­
tured) time-dependent equations.

For a stock of mixed age classes, the most
difficult problem in applying any equilibrium
model will lie, essentially, in the interpretation of
time-dependent transitions between idealized
states <however momentary, long-enduring, or
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way on the numerical value assigned to exponent
n. That is, root Be", is given by

_ (a)1 /1-nB - -00 b '

m = ± b(1 - n) (an)l/l-n
n \) ,

_ (an)1 /1-n
p- -

b

(2)P = rm (:00) - rm (:~Y

the plus sign applying to Equation (1a) and the
minus sign to Equation (1b).

Although exponent n controls the graph curva­
tures of Equations (1a) and (1b), the nonzero roots
and extrema are controlled by B x and the coordi­
nate pair (p, m). As shown by Fletcher (19751,
coordinate m has no essential dependence on ex­
ponent n, and with the appropriate transforma­
tions the dual formulation (Equations (1a, b)) may
be suppressed. In consequence, either of the
parametric sets {m, p,B x }or{m, n,Bx }will consti­
tute a complete set of independent governing
parameters for latent productivity in the Pella­
Tomlinson system, and the dual formulation
(Equations (1a, b)) converts to the single differen­
tial equation for latent productivity

the critical ordinate p (which corresponds to the
stock level where maximum productivity occurs)
is determined by

while extremum coordinate m (which corresponds
to productivity Pmax ) must be determined from
the formula

unobserved such states may be), since the stock
will include simultaneously the young and the old,
the older having accumulated a probabilistic his­
tory of mortality, fecundity, and growth which
may differ considerably from the current schedule
that affects both. Various tactics for adjusting the
parametric mechanics of stock-production models
to such long-term, delayed influences are given by
Gulland (1969), Fox (1975), Walter,2 and others,
but in the case of the Pella-Tomlinson system the
difficulties have been compounded by artifacts of
the conventional analysis and by an instability
inherent to the mathematical indeterminacy of
the system itself. With the critical-point analysis,
most of those impediments will convert to tracta­
ble relationships or vanish altogether. We can
suppress the troublesome dual formulations as­
sociated with the conventional casting of the sys­
tem, we can uncouple the indeterminate exponent
and the coefficients of the governing equations,
and we can make explicit the relationships be­
tween parametric graph curvature and the man­
agement components of the system.

THE REFORMULATED
GOVERNING EQUATIONS

Stock-production models, as they are usually
defined, arise from the common premise that a fish
stock, when reduced by exploitation to a level
below some prior abundance, will always strive to
recover its former size in accord with some latent,
self-regulating mechanism of restoration. Irre­
spective of the compensatory details, any such re­
covery must accrue directly from the productivity
of the stock, and in the conventional representa­
tion of the Pella-Tomlinson system, the latent
capacity for biomass production in a stock offishes
is given the dual formulation

'Walter, G. G. 1975. Non-equilibrium regulation of fisheries.
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.
P{B) being the production rate of the stock at stock
sizeB. Equation (1a) applies when exponent n falls
on the range 0<n<1, and Equation (lb) applies
when n >1. In either case, all the critical compo­
nents of the system-maximum stock size,
maximum productivity, the stock level where
maximum productivity occurs-depend in some

with ya purely numerical factor wholly prescribed
by n as

With the coefficients so cast, the sign reversals at
turning point n = 1 become automatic, and the
consolidated interval of definition for n becomes
0<11 <x (the point n = 1 being a removable singu­
larity). With parameter m thus separated from n
in Equation (2), the undetermined exponent n
can be defined solely by the ratio plB x in the
relationship

(3)
nnln-l
n-1'r =

(1a)
(1b)hE) = ±aBn

=+= b B,
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p _ l/l-nB - n
00

(4)
With initial time to set at zero, the integration
constant C in Equation (8) becomes

we interpret Bas being the resultant productivity
that nets to the stock for its growth. When removal
rate Y exceeds latent productivity P, then net pro­
ductivity B<0 and the stock declines; when P ex­
ceeds Y, thenB >0 and the stock increases. Should
Y= P, then B = 0 and biomass trajectory B(t)

exhibits an extremum, which is the necessary
condition for equilibrium fishing. Yield rate Y cus­
tomarily takes the form

When 11 takes any value between zero and unity,
coordinate p falls on the range between zero and
Bx/e; when 11 takes any value greater than unity,
coordinate p falls on the range between B x/e and
B x . Wherefore, with {m,p,B oo } as the parametric
set for Equation (2), p and Boo determine n; with
{Ill, 11, B x} as the parametric set, 11 and B x deter­
minep. In the complete exploitation model, maxi­
mum productivity m becomes maximum sustain­
able yield (MSY) and biomass level p becomes the
equilibrium level (the "B opt ") where MSY occurs.

For any stock-production system, we may enter
exploitation into the productivity formulation by
the direct difference P - Y, with Y signifying the
rate ofbiomass removal attributed to exploitation.
Therefore, in writing

B I-n - B I-n
o *

THE RESTRUCTURED
EQUILIBRIUM SYSTEM

(9)F == (n -1) "(m
MSY n Boo'

mF
MSY

=-
p

Figure 1 gives a summary of the general con­
straints on the time-dependent system; for a more
detailed treatment of system behavior, see Flet­
cher (1978).

The quantity B*, when positive in Equation (8),
becomes the adjustment level such thatB(t) -+ B*
over time. When, for certain ranges of nand F,
quantity B*<O, then the zero root of Equation (7)
applies and B(t) -+ O. When mortality F takes
the value

irrespective of the value of parameter n, then
B(t) -+P and Y -+ m (which are the conditions, in
the equilibrium limit, for maximum sustainable
yield). In terms of the parameter set {m, p, Boo },
Equation (9) becomes, simply,

(5)B = P-Y,

and over any time interval, however brief, that
mortality F might be presumed to have a fixed
value, biomass variableB in Equations (6) and (7)
has the general time-dependent solution

with the assumption that all fish of the fishable
stock share equal probabilities of capture. By ad­
mitting Equations (2) and (6) into Equation (5),
the differential equation that governs net produc­
tivity in the restructured system becomes

Y(t) = F(t) • B(t) (6) By Equations (2) and (5), the time-varying rate
of yield in the reformulated Pella-Tomlinson sys­
tem takes the form

Y = 1m (~cx:) - 1m (~ooY - B, (10)

and when, for givenF and n, governing Equation
(7) exhibits a positive root, then B(t) -+ B* and
B-+ 0 in Equation (10), and yield rate Y, over
sufficient time, approaches a constant value. In
the steady-state (or "equilibrium") limit, yield
then accumulates as

(8)
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FIGURE l.-Time-dependent response of the Pella-Tomlinson system to parametric variations of exponent n and mortality F. The
upper diagram summarizes system response when n falls on the range 0 < II < 1, The adjustment level ofbiomass is never zero for this
range ofn however great the value ofF, and mortality F MSY has no absolute constraints; such a stock cannot be fished to extinction.
The lower diagram summarizes system behavior when II falls on the range II > 1. Mortality F MSY is then constrained to the interval
indicated by the diagram, When F exceeds the critical value ym/Boo , then the stock, over sufficient time, trends to extinction.

and for any such equilibrium interval 7, the inte­
grated yield rate (Y* IT) takes on the parametric
formulation

~ = r m (B*) _ r m (~)n (11)
T \Boo \Boo

with maximum latent productivity m of the time­
dependent system becoming the maximum sus­
tainable yield rate (the MSY) of the equilibrium
system. With B* as the parametric variable in
Equation (11), a zero left endpoint exists for Y* IT
when n > 1 and F = ym/Boo . Should F exceed the
critical value ym/Boo when exponent n>l, no
equilibrium state exists; such conditions in the
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time-dependent system correspond to extinction
trends. But when n has any value on the range
O<n<l, no left endpoint of Equation (11) exists; a
positive equilibrium level of biomass and a non­
zero yield rate may be defined for any value ofF,
however great,

The equilibrium biomass levelp where MSY (or
m) occurs can be regulated in Equation (11) by
relationship (4). And once designated in (4), the
corresponding value of n determines the value of
coefficient y, as given by Equation (3), Either of
the parametric sets {m, p, Boo} or {m, n, Boo }
(augmented by the auxiliary parametersF andB*
or F and Bo) will constitute a complete, indepen­
dent set of controls for equilibrium yield in the
Pella-Tomlinson system. Collectively, the
parameters control the behavior of equilibrium
model Equation (11) but the influence of anyone
parameter remains independent ofthe remaining
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and the fishing mortality that maximizes Equa­
tion (13) is given by Equation (9). That is, with the
substitution of P MSY into Equation (13) then
Y*/T = m.

Under the equilibrium conditions, the conven­
tional quantity U (which signifies accumulated
catch per unit of fishing effort as a function of
fishing intensity fIT) can be cast into the restruc­
tured form

When exponent n of the system takes any value on
O<n <1 then y<O, in which case we can see by Equa­
tion (12) thatB*>0 no matter how great the value
ofF. That is, when O<n<1 there exist equilibrium
adjustment levels of stock biomass for all mag­
nitudes of fishing mortality large and small; such
a stock defies annihilation. Should exponent n>l,
however, the corresponding stock can have non­
zero adjustment levels B* only when F<ymIBoo.
That is, when n > 1 and when fishing mortality ex­
ceeds the critical value ymlBoo ' the "adjustment"
level corresponds to extinction and Equation (12)
does not apply.

Upon the substitution of Equation (12) into
Equation (11), the direct relationship between
equilibrium yield and equilibrium fishing mortal­
ity becomes

(14)

1

_ Uoo" 1.\"-1
rm r -; ,

o -Boo--+-
800: Uruzxploited. :>tock. level

1

B = IB ,,-1 _ Boon p\ n-1. (12)
* \1 00 r m )

two. Figure 2 illustrates the individual effects of
set {m, p, Boo} on the graph of Equation (11).

In equilibrium model (11), biomass levelB* var­
ies parametrically as a function of equilibrium
fishing mortality F. In terms of parameters m, n,
Boo, the relationship becomes

o +--p-
p: The bicrnt.CLs~ level for N5 y

t
mt----+---:....._~

~

m: N ax.i.m.u.m su.stxJ.tu:..ble y Uz.-ld

FIGURE 2.-The graph of Equation (11), equilibrium yield VB.

equilibrium stock size in the Pella-Tomlinson system, as control­
led by independent parameters m, p, B",.

which eliminates the explicit appearance of catch­
ability coefficient q, permitting instead the direct
quantification of maximum sustainable yield m.
Quantities U and U 00 have the customary mean­
ings

Y
U == f (Y* being the yield accumulated over

time interval T as a consequence of ef­
fort n.

Uoo == qBoo (q being the individual probability of
capture per unit of fishing effort fJ.

Should the accumulation interval T be a year, the
variable U becomes annual CPUE (catch per unit
of effort) and the variable fir becomes effort per
annum. With exponentn >1 in the Pella-Tomlinson
system, no steady-state CPUE exists for a fishing
intensity in excess ofcritical value ymlUoo' But ifn
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has any value on the interval O<n<l, then
steady-state CPUE will exist for all magnitudes of
effort (save f = 00). Trajectories ofEquation (14) are
similar to those of Equation (12), and any graph of
(12) will represent the corresponding graph of(14)
(CPUE as a function of fishing intensity) with the
substitution of U for B*, fIT for F, and the ratio
ymlUoo for ymlBoo.

DISCUSSION

For all its adaptability, the Pella-Tomlinson
system has serious, inherent limitations and it
cannot be viewed as a perfectly generalized model
of exploitation-productivity relationships. It is,
instead, a nonlinear, first-order, wholly empirical
system of open degree that admits of a convenient
flexibility in a minimum number of terms. Prop­
erly regarded, a particularization of the system
will accommodate an arbitrary prototype to the
extent that the system graphs might be geometri­
cally accommodating to the data.

Experience with the model has shown that un­
realistic estimates of coefficients are likely to
occur when the data lie in confined or badly scat­
tered patterns over ranges of effort and yield. The
tendency to unrealistic estimates arises from the
conflict between graph curvature, as controlled by
exponent n, and the coupling of n with the
coefficients of the system. Heretofore, the exact
relationships between exponent n and the man­
agement components have been obscured by the
conventional casting of the system. But with the
independent parameters and the restructured
equations, much of the parametric uncertainty as-

sociated with previous statistical treatments can
be circumvented. As we have seen, maximum sus­
tainable yield m bears no essential relationship to
exponentn, and m may be wholly separated from n
in all the system equations. And despite the fact
that parameters m, p, Boo share no interdepen­
dence (anyone may be varied without change in
the value of the others), the parametric ratioplBoo
determines n in the relationship (4). But n in turn
prescribes the curvature (hence the fit) of every
graph of the system. As indicated by Figure 3,
exponent n exhibits a dismaying sensitivity to
perturbations in ratio plBx ' The variational re­
sponse in n, for a perturbation of 10-1 inplBoo, is of
the order of n near n = 1, and the instability
increases as plB 00 --. 1. Therefore, when an esti­
mation procedure depends solely on a general
curve-fitting statistic, poor parameter estimates
are likely to follow, owing to stochastic displace­
ment of datum points at biomass levels remote
from locationsp and Boo. In the article that follows,
Rivard and Bledsoe (1978) address such problems
directly and their work illustrates certain advan­
tages of the restructuring treated here.
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