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Abstract The vesicular amine transporters (VATs) are
expressed as integral proteins of the lipid bilayer mem-
brane of secretory vesicles in neuronal and endocrine
cells. Their function is to allow the transport of acetyl-
choline (by the vesicular acetylcholine transporter
VAChT; SLC18A3) and biogenic amines (by the vesic-
ular monoamine transporters VMAT1 and VMAT2;
SLC18A1 and SLC18A2) into secretory vesicles, which
then discharge them into the extracellular space by
exocytosis. Transport of positively charged amines by
members of the SLC18 family in all cases utilizes an
electrochemical gradient across the vesicular membrane
established by proton pumping into the vesicle via a
vacuolar ATPase; the amine is accumulated in the vesicle
at the expense of the proton gradient, at a ratio of one
translocated amine per two translocated protons. The
members of the SLC18 family have become important
histochemical markers for chemical coding in neuroen-
docrine tissues and cells. The structural basis of their
remarkable ability to transport positively charged amines
against a very large concentration gradient, as well as
potential disease association with impaired transporter
function and expression, are under intense investigation.
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Serotoninergic · Histaminergic · Autonomic nervous
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Basophil cells · Dendritic (Langerhans) cells · Endocrine
tumor · Pancreatic beta cell (insulin cell) · Platelet/
thrombocyte

Discovery of the vesicular amine
transporters (VATs)

That specific protein transporters must be responsible for
the vesicular uptake of acetylcholine and biogenic amines
required for neurotransmission was first appreciated when
specific inhibitors for amine uptake into storage vesicles
were found that also depleted the corresponding amines
from neuroendocrine tissues, and interfered with cholin-
ergic and monoaminergic neurotransmission (see [7, 29,
30, 44] and references therein). Rodent VMAT1
(SLC18A1) and VMAT2 (SLC18A2) were identified
structurally by cloning cDNAs encoding proteins that
conferred the ability to sequester the neurotoxin 1-methyl-
4-phenylpyridinium (MPP+) [24] or biogenic amines
[11], on non-amine accumulating recipient cells. The
human VMATs, hVMAT1/SLC18A1 and hVMAT2/
SLC18A2 were cloned from human cDNA libraries using
the rat homologs as probes, and their transport properties
verified functionally in heterologous-cell amine uptake
assays [10, 15]. hVAChT/SLC18A3 was cloned from a
human cDNA library [13] following homology cloning of
rodent VAChT/slc18a3 [13] using a Caenorhabditis
elegans putative vesicular acetylcholine transporter
(unc-17) cDNA as probe [1], coupled with functional
demonstration of proton- and ATP-dependent, and
vesamicol-sensitive, acetylcholine transport in CV-1
fibroblasts expressing the heterologous VAChT cDNA.
The structure, function, and role in neuronal and endo-
crine cell function of the VATs/SLC18 s have been
recently and comprehensively reviewed [5, 7, 12, 29, 33,
42, 44]. Recently, VMAT expression in non-neuroendo-
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crine amine-storing tissues has been documented, and the
potential contribution of altered VAT structure and
expression to human neuropsychiatric and movement
disorders examined (Table 1).

Functional characteristics and structural information

VATs accumulate singly positively-charged amines into
the relatively proton-impermeable acidic secretory ves-
icles at the expense of proton antiport through the
transporter protein (protons are first accumulated in
secretory vesicles via a vacuolar ATPase not physically
associated with the transporter) with a two proton:one
amine stoichiometry, and to a final substrate concentra-
tion of up to 500 mM, exceeding that found in the
cytosol by 100-fold (ACh) to 10,000-fold (biogenic
amines)[29].

The VATs (SLC18 s) are members of a larger solute
carrier family, the TEXANs (toxin extruding antiporters).
This class of transporter is found in many microorganisms
and confers resistance to antibiotics and antiseptics in
bacteria and yeast [17, 31]. NorA, a quinolone resistance
protein from Staphylococcus aureus, and Bmr, a multiple
drug resistance protein from Bacillus subtilis, are the
closest relatives of the mammalian proteins, with the
highest degree of homology detected in the six N-terminal

putative transmembrane domains (i.e. 28% identity be-
tween VMAT1/SCL181A and Bmr) [36, 37]. Recently, a
family of small, multi-drug resistance proteins that also
function as TEXANs has been characterized and employed
by Schuldiner and colleagues as a model system for VAT
transport function, in which the role of transmembrane
domain-resident negatively charged amino acids in sub-
strate transport can be examined in detail [18, 28].

As far as is known, all metazoans that have acetyl-
choline- and biogenic amine-containing secretory vesicles
have VATs that are structurally well-conserved [33].
Mammalian VMAT1s generally show greater than 80%
overall sequence identity, as do mammalian VMAT2s,
while hVMAT1 (SLC18A1) has only 60% sequence
identity with hVMAT2 (SLC18A2), and hVMAT1 and
hVMAT2 have about 40% sequence identity with
hVAChT (SLC18A3). The hVATs are 12-transmembrane
domain (TMD) proteins based on Kyte-Doolittle hydrop-
athy analysis of their primary sequences [10, 13, 15], and
10-transmembrane domain proteins based on MAXHOM
alignment using the “profile-fed neural network systems
from Heidelberg” (PHD) program (http://dodo.cpmc.co-
lumbia.edu/predictprotein/) [8, 34, 35]. The 10-TMD
model for VAT differs principally from the 12-TMD
model in failing to assign TMDs II and IV to the
membrane, and placing these residues instead in the
vesicle lumen (TMD II containing the LFASKA motif) or

Table 1 SLC18—the vesicular monoamine/acetylcholine transporter (VMAT/VAChT) family (5HT 5-OH-tryptamine, SIF cell small,
intensely fluorescent cell, GI gastrointestinal,EC enterochromaffin, ECL enterochromaffin-like,ChATcholine acetyltransferase)

Human
gene
name

Protein
name

Aliases Predominant
substrates

Transport
type/
coupling
ions*

Tissue distribution
and cellular/
subcellular
expression

Link to
disease

Human
gene
locus

Sequence
accession
ID

Splice
variants and
their specific
features

SLC18A1 VMAT1 CGAT,
VAT1

5HT, dopamine,
adrenaline,
noradrenaline,
histamine

E/H+ Adrenal gland (medulla),
sympathetic ganglia
(SIF-cells), carotid body,
skin (Merkel cells),
GI tract (EC cells),
Subcellular: large
dense-core vesicles

8p21.3 NM,
_003053

SLC18A2 VMAT2 SVAT.
SVMT,
VAT2
(MAT)

5HT, dopamine,
adrenaline,
noradrenaline,
histamine

E/H+ Brain (neurons), adrenal
gland (medulla),
sympathetic ganglia
(neurons, SIF cells),
carotid body, small and
large intestine (neurons),
stomach (neurons and
ECL-cells), endocrine
pancreas, basophils, mast
cells, dendritic cells and
platelets, Subcellular:
large dense-core vesicles,
small, dense-core
vesicles, tuberovesicular
structures and small
synaptic (dopaminergic)
vesicles

Cardio-
vascular,
drug
addiction
[42]

10q24.-
3-q25.1

NM,
_003054

SLC18A3 VAChT Acetylcholine E/H+ Brain (neurons),
peripheral nervous
system (neurons),
intestine (neurons),
Subcellular: small
synaptic vesicles

Myas-
thenic
syn-
dromes
(ChAT
only) [9]

10q11.2 NM,
_003055

R-type,
(minor
variant),
V-type,
(major
variant)

* E Exchanger
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in the cytoplasm (TMD IV containing the conserved
LQGxGS motif). Physical evidence to distinguish be-
tween these two models is lacking. The brief physical
description of the VATs below assumes that they have 12
TMDs, following the current literature.

The N- and C-termini of the VATs are cytoplasmic,
based on the observed cytoplasmic localization of the C-
terminus, and the assumption that VATs have an even
number of TMDs. All hVATs (SLC18As) exhibit
greatest sequence identity within the putative trans-
membrane domains, and least within the putative
glycosylated loop between TMDs I and II. All VATs
contain the LFASKA motif in the putative TMD II, and
the LQGxGS motif in putative TMD IV. Although the
functions of these two motifs are undefined, they
provide convenient “bookmarks” for discussion of the
10-TMD and 12-TMD models for VAT structure
(Fig. 1). The conservation of these two sequences
may, itself, lend indirect support to the 12-TMD model,
since membrane-resident sequences tend to be more
highly conserved across species and VAT isoforms than
non-membrane-resident sequences. A second element in
support of the 12-TMD model is a proposed “salt
bridge” between charged residues in putative TMD II
and XI in the 12-TMD model [27]: interactions between
K139 and D427 would be more likely if both were
membrane-resident. A cysteine bridge between luminal
loops 1/2 and 7/8 (in the 12 TMD model), postulated by
Ruoho and colleagues, could exist in either the 12- or
the 10-TMD model for the VATs [41]. Finally, more
primitive TEXANs investigated by Schuldiner and
colleagues appear to function as trimers of 4-TMD
protein monomers (see above): conservation of this
overall structure-function logic in mammalian VATs
would suggest that the 12-TMD arrangement is the
correct one. Despite the preponderance of evidence in
favor of the 12-TMD model, additional direct experi-

mental evidence is required for final structural assign-
ments (see Fig. 1).

All VATs contain aspartate (D) residues in TMDs I,
VI, X, and XI. The VMAT aspartate residues in TMDs I,
X, and XI are thought to be critical for substrate
recognition [26] and transport [27, 39]. The aspartates in
TMD X and XI of VAChT appear to be equally
important for acetylcholine recognition and transport,
while those in TMD IV (conserved among all known
metazoan VAChTs) and TMD X are critical for vesam-
icol binding [20]. The cytoplasmic C-terminus of all
VATs contains sequences required for (potentially
phosphorylation-dependent) trafficking to the correct
vesicle type (small synaptic vesicles for VAChT and
large dense-core vesicles for VMATs), for recycling via
endocytosis, and for phosphorylation that may control
other aspects of transporter function (see [22] for review
and references).

Pharmacology and imaging

Pharmacologically and clinically important drugs that
interact with the VATs include vesamicol (VAChT/
SLC18A3) [30], tetrabenazine (VMAT2/SLC18A2) and
reserpine (VMAT2 and VMAT1/SLC18A1) [19, 23].
These drugs block amine uptake by VAChT and
VMATs, respectively, and have pharmacological effects
consistent with abrogation of amine storage and neuro-
transmission. Importantly, labeled vesamicol and tetra-
benazine analogs exist that have been used successfully
in brain imaging of vesicular transporter protein density
in diseases such as Parkinson’s, schizophrenia, and
Alzheimer’s disease (see [5] for review and references).
The human isoforms of VMAT1 (SLC18A1) and
VMAT2 (SLC18A2) transport catecholamines and sero-
tonin, and are inhibited by reserpine, equally well, but
hVMAT2 transports histamine, and is blocked by
tetrabenazine, much better than hVMAT1, and rodent
VMAT isoforms (slc18a1 and slc18a2) also exhibit these
differences [14, 15, 25].

Expression patterns

VAChT is co-expressed invariably with the biosynthetic
enzyme for generating acetylcholine, choline acetyl-
transferase (ChAT), in neurons, and from the same gene
locus as ChAT [6]. In humans, ChAT, but not VAChT
(SLC18A3), however, is found in the placenta [3].
VAChT is a unique marker for cholinergic synapses and
neuroeffector junctions, usually far easier to visualize
than ChAT (Fig. 2E,F). In rodents, VMAT1 is expressed
predominantly in neuroendocrine cells, and VMAT2 in
neurons (Fig. 2A–D) [32, 45]. In humans, VMAT1 and
VMAT2 are expressed at equivalent levels in neuroen-
docrine cells [e.g. adrenal medulla, small, intensely
fluorescent (SIF) cells]. VMAT2 is the only VMAT
isoform expressed in human and rodent neurons, plate-

Fig. 1 Putative topologies of human vesicular amine transporters
(VATs). In the 12-transmembrane domain (TMD) model the
LFASKA motif (light-blue box) and the LQGxGS motif (dark-
blue box) reside within TMDs II and IV, respectively. In the 10-
TMD model, TMDs II and IV do not assign to the membrane,
placing these motifs in the vesicle lumen and the cytoplasm,
respectively. Blue triangles mark potential glycosylation sites. D
indicates aspartate residues potentially critical for substrate recog-
nition, substrate transport and antagonist binding. The cytoplasmic
C-terminus (red) is important for trafficking to the correct vesicle
type, for recycling, and for phosphorylation. The loop sizes do not
reflect their natural sizes
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lets, basophils, mast cells, and dendritic cells*1 [8, 15,
46]. Whether a neuron is func- tionally noradrenergic,
serotonergic, dopaminergic, or histaminergic depends on
the co-expression of biosynthetic enzymes and plasma
membrane transporters for each biogenic amine, and the
expression of VMAT2 in all catecholamine-, serotonin-
or histamine-synthesizing neurons. There are some
interesting exceptions. VMAT2 is expressed transiently
during development, along with the plasma membrane 5-
HT transporter (5-HTT, also known as the NaCl-
dependent serotonin transporter, SERT), in rodent thal-
amocortical neurons that do not appear to express

biosynthetic enzymes for biogenic amines [21, 38].
Neurons of the primate nucleus tractus solitarius and
olfactory cortex express tyrosine hydroxylase (TH), but
lack VMAT2 (see [44] and references therein). The
functional significance of neurons expressing various
aminergic traits without VMAT expression is unclear.
Ugrumov and colleagues have noted that some hypo-
thalamic neurons possess TH, lack aromatic l-amino
acid decarboxylase (AADC) and can synthesize DOPA,
while others lack TH, possess AADC, and can synthe-
size dopamine from exogenously supplied DOPA. They
have suggested that these two individually deficient
monoaminergic trait-expressing neuronal populations
might complement each other in trans, the TH+/AADC�
neurons synthesizing DOPA and secreting it to be taken
up and synthesized into dopamine by the TH�/AADC+
neurons [2].

Transgenic/knockout studies

Homozygous knock-out of VAChT leads to failure of
cholinergic neurotransmission in C. elegans, and homo-
zygous knock-out of VMAT (there is only one isoform in
worms) leads to an egg-laying- and locomotion-defective
phenotype similar to treatment with reserpine [1, 4].
Homozygous knock-out of VMAT2 in mice is lethal, but
partially rescuable with amphetamine, which can release
biogenic amines from nerve terminals via a non-exocy-
totic mechanism [16]. Heterozygous knock-out of
VMAT2 in mice shows a clear gene dosage effect, with
a halving of dopamine, norepinephrine, and serotonin
content in brain [16, 40, 43].
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