The Mystery of (the) Unknown

Alejandro A. Schéaffer

Rice University

This document is meant to accompany FASTLINK, version 2.2 and beyond.
It describes some aspects of the UNKNOWN program that is one of the aux-
iliary programs distributed with LINKAGE and FASTLINK. This material
is a significant expansion of the discussion on pages 25-26 of Handbook of
Human Genetic Linkage by Joseph Douglas Terwilliger and Jurg Ott. The
emphasis there is on usage of UNKNOWN and all algorithmic aspects are
suppressed. Here we focus on the algorithmic aspects after a briefl excur-
sion into usage. As with the documents on traversals and loops that first
accompanied FASTLINK 2.1, this document is very informal and directed
at those who may wish to modify the code.

Thanks to Jerry Halpern (Stanford) for suggesting that I prepare this
document. Thanks to Joe Terwilliger (Columbia and Oxford) for straighten-
ing out my confusion about lots of LINKAGE things, including the different
versions of UNKNOWN.

UNKNOWN from a User’s Perspective

The purpose of UNKNOWN is to rapidly identify which genotypes are pos-
sible for individuals typed as unknowns in the input pedigree. It is a good
idea to run UNKNOWN just before running any of the main programs (i.e.
LODSCORE, ILINK, LINKMAP, or MLINK) in LINKAGE/FASTLINK.
Most versions in circulation of the main programs actually require that UN-
KNOWN be run due to file name conventions, in the sense that they expect
to find the output files that UNKNOWN produces available as input files.
The shell scripts produced by LCP for ILINK, LINKMAP, and MLINK will
call UNKNOWN by default.

More details on UNKNOWN Specifications

We make one terminology convention. For the rest of this document, the
term joint genotype refers to the multilocus joint genotype at the loci speci-
fied for the analysis; in particular, the genetic information for loci specified
in pedin.dat, but ignored in the analysis is not incorporated. The term
genotype when not preceded by “joint” refers to the genotype at a single



locus. This convention is used for this document only and is actually rather
inconvenient for discussing other aspects of LINKAGE/FASTLINK.

UNKNOWN produces two files: speedfile.dat and ipedfile.dat.
On systems that limit file names to 8 characters, speedfile.dat is called
speedfil.dat. On many systems, the default shell scripts produced by
LCP delete the files speedfile.dat and ipedfile.dat before the run is
completed.

Unknown expects that for each pedigree in pedin.dat, the individu-
als in that pedigree are numbered 1,2, 3, in increasing order with no num-
bers skipped. This assumption is plausible because it will always hold if
pedin.dat is prepared with the LINKAGE auxiliary program MAKEPED.
Attempts to cook pedin.dat by hand often lead to errors when it is fed to
UNKNOWN.

ipedfile.dat is a pedigree file that looks very much like pedin.dat,
which is the initial input pedigree file. There are at least four notable
differences between pedin.dat and ipedfile.dat.

1. Genotype information in ipedfile.dat is restricted to those loci be-
ing used in the current analysis, while pedin.dat may have genotype
information for lots of loci.

2. Some genotypes may be filled in.
3. Text comments in pedin.dat are not copied into ipedfile.dat

4. Spacing and indentation may differ even in the case where all the loci
in pedin.dat are used for the analysis.

Although this is not enforced syntactically between programs, the same
conventions should be used to identify unknown genotypes in pedin.dat
and ipedfile.dat. In particular,

1. For loci specified by affection status, the constant missaff specifies
the value used for unknown. By convention, missaff is defined to 0.

2. Forloci specified by quantitative measures, the constant missval spec-
ifies the value use for unknown. By convention, missval is set to 0.0.

3. For loci specified by binary factors, any combination of binary factors,
which is not one of the possibilities listed in datain.dat for that locus
will be treated as unknown.



Changing the definitions of missaff or missval in any of the source code
files is likely to lead to computational disasters.

We define a person to be speedfile-unknown if that person’s joint geno-
type is not completely specified in pedin.dat and cannot be inferred from
the genotype information of relatives. Otherwise a person is speedfile-known.

For all speedfile-known individuals the complete joint genotype appears
in ipedfile.dat and no information appears in speedfile.dat.

For all speedfile-unknown individuals that have at least one child in the
pedigree, information about their possible genotypes at each locus is given
in speedfile.dat. In speedfile.dat individuals are numbered from 1 to
the number of individuals in all pedigrees together; no pedigree numbers are
shown. For each speedfile-unknown individual a list of triples is displayed. In
a triple, the first number is a locus number. The second and third numbers
are possible alleles at that locus. For example, the triple

3 1 3

means that at locus 3, the genotype 1 3 is possible. The possible triples are
written out to speedfile.dat in the routine writespeed.

It is important to clarify several subtle points about the triple represen-
tation.

First, the loci are numbered 1 to number of loci in the analysis, and are
not numbered with respect to pedin.dat.

Second, all loci are encoded by allele numbers in the guts of the com-
putations in UNKNOWN and all the LINKAGE programs, regardless of
which format is used to enter the data. Hence allele numbers are used for
speedfile.dat output. In contrast, ipedfile.dat preserves whatever for-
mat is used in pedin.dat for each locus.

Third, unlike many places in the LINKAGE programs, UNKNOWN
treats genotypes as ordered pairs. Thus if the genotype 1 3 is possible,
then the genotype 3 1 is also possible and will be listed in a separate triple.

Fourth, if a person’s genotype can be inferred at some loci, but not at
other’s, the possible genotypes at all loci will be listed. For those loci where
the genotype is known, speedfile.dat will contain 1 or 2 triples depending
on whether the known genotype is homozygous or heterozygous.

Fifth, if a person’s genotype can be partially, but incompletely inferred
to the extent that one allele is known, the known allele does not show up
in ipedfile.dat. Only when the full genotype at a locus is know does the
information appear in ipedfile.dat.



Versions of UNKNOWN

There seem to be a variety of versions of UNKNOWN in circulation. Joe
Terwilliger has kindly pointed out to me that many of these versions are
buggy. Some of the problems are discussed at length in the recently issued
Handbook of Human Genetic Linkage by Terwilliger and Ott. They strongly
recommend using versions prepared at Columbia after July 1993.

Part of the FASTLINK distribution is a C version of UNKNOWN. This
is not really intended to be part of FASTLINK, but is distributed as a
courtesy to FASTLINK users who want to completely avoid the need for a
PASCAL compiler. Starting with version 2.2 of FASTLINK, the C version
of UNKNOWN is based on the OS/2 PASCAL version from Columbia (fol-
lowing the above recommendation). I made it by using the p2c program to
translate the PASCAL version to C and then applying some simple syntactic
transformations to remove the need for the p2c library.

The newer versions of UNKNOWN have added some nice user-interface
features. A diagnostic is now printed after each pedigree has been processed.
More error checking has been added. When an error in the data is detected,
the user is asked if the program should continue or not. Because of this need
for user input, it is slightly dangerous to do your LINKAGE/FASTLINK
runs in the bckground if you are not sure whether your input will pass
through UNKNOWN without errors.

It is possible to apply some of the algorithmic improvements that make
FASTLINK faster than LINKAGE in the UNKNOWN program, but this
has not been done to keep version control simple. The speed benefits would
be limited because the the preprocessing with UNKNOWN usually takes a
tiny fraction of the time taken by the main program on long runs.

UNKNOWN from an Algorithmicist’s Perspective

The significance of identifying possible genotypes for unknown individuals,
is that in many cases the list of possible genotypes is quite small compared
to the list of all genotypes. From the point of view of running time, mak-
ing the list of possible genotypes as small as possible is crucial because it
makes the essential arrays that encode the conditional probability of each
genotype sparse. Even in cases where the genotype cannot be completely
inferred (and it appears as unknown in ipedfile.dat), the list of possible
genotypes in speedfile.dat can be extremely helpful in reducing compu-
tation in the main program. The algorithmic improvements in FASTLINK



have redoubled the significance of sparsity for the impatient linkage analyst
(see paperl.ps).

The UNKNOWN program tries to infer as much as possible for each un-
known genotype of each individual. To do this it does a pedigree traversal
with that individual as proband very much like the traversals in the main
programs. See the FASTLINK document traverse.ps for more information
on pedigree traversals. The traversals are orchestrated by a routine called
iterpeds. To be similar to the main programs, each traversal for a (per-
son, unknown genotype) pair is done by a routine called 1ikelihood, even
though no likelihood of anything is computed in the 1ikelihood routine in
UNKNOWN.

The main differences between the traversal in UNKNOWN and the reg-
ular traversals are that:

e Only one locus is considered at a time, hence the effects of recombina-
tion can be ignored, and the number of possible genotypes is usually
small.

¢ Boolean logic is used to indicate which genotypes are possible rather
than actually computing their conditional probabilities. That is, UN-
KNOWN makes no distinction between genotypes that could have dif-
ferent nonzero conditional probabilities in a traversal as done by the
main programs.

The two points above account for why UNKNOWN can examine the
same pedigrees much more quickly than LINKAGE/FASTLINK. The signif-
icance of using Boolean arithmetic instead of regular arithmetic is discussed
at some length in paperl.ps.

UNKNOWN uses routines collapsedown, collapseup, seg, segdown
and segup much like those in the original main LINKAGE programs. How-
ever, these segup and segdown routines are algorithmically much simpler
because of the two points above.

One other distinction is that in UNKNOWN (unlike LINKAGE/FASTLINK),
the same routines are used to handle both autosomal and sexlinked data.

When the traversal is done, the array of genotypes for proband is ex-
amined, to find which genotypes are possible. These are then stored in an
array called possible to be printed later in the writespeed routine.



Error Detection in UNKNOWN

There are two standard routines called inputerror and inputwarning that
list most of the errors that can be detected. These routines are standard in
the sense that they are shared by all the LINKAGE/FASTLINK programs.
Even though inputerror lists over 40 different possible errors, only about
15 of these can occur in UNKNOWN.

There is one type of error which is specific to UNKNOWN and is not
listed in inputerror. This is an incompatibility error. A true incompat-
ibility error occurs precisely when the specified genotypes are not consis-
tent with Mendel’s rules of inheritance. [Pedantic aside: I carefully wrote
“Mendel’s rules of inheritance” rather than “Mendelian inheritance” to em-
phasize that UNKNOWN looks at one locus at a time, and therefore, the
effects of recombination, a phenomenon UNKNOWN to Mendel, are irrele-
vant.] However, I have found that misformatted input can sometimes cause
UNKNOWN to generate incompatibility errors, rather than reporting a for-
matting error. In particular, when UNKNOWN reports incompatibility er-
rors for most of the individuals in a pedigree, this is usually a formatting
error in pedin.dat.

In the new version of UNKNOWN, the routine respond is called when-
ever an error is detected to ask the user if the run of UNKNOWN should
continue. If the user wishes to continue, the user should press the ENTER
key. Otherwise CTRL-C or whatever kills a process can be used to stop the
run.



