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Abstract

We describe a second parallel implementation of the ILINK program from the
LINKAGE package that improves on our previous implementation [Human Hered-
ity 44(1994), pp. 127-141]. To improve running time we integrated the strategy
of parallel estimation of the gradient at a candidate recombination fraction vector
with a previously implemented strategy for evaluating in parallel the likelihood at
one vector. We also integrated an adaptive loadbalancing strategy in conjunction
with our previous static loadbalancing strategy. We implemented a strategy for par-
titioning input pedigrees, but this slowed down the program; we give some evidence
for what the problems are. To best exploit parallelism at all levels of the program
and to take advantage of both coarse-grain and fine-grain parallelism it is necessary
to combine multiple algorithmic strategies.



1 Introduction

Genetic linkage analysis is a statistical technique used to map human genes and
locate disease genes. As data collection methods have improved, the size and com-
plexity of linkage analysis problems have grown much faster than the speed of readily
available computers. In this paper we report on a multi-level attempt to parallelize
the ILINK program from the LINKAGE package [15, 13, 16], the most widely-used
software package for linkage analysis. This work represents a continuation of the
FASTLINK project in which we have significantly speeded up the main sequential
programs [3, 21] in LINKAGE and parallelized one of them (ILINK) [5].

There are several different levels at which linkage computations may be paral-
lelized. In practice, linkage analysis computations usually consist of several different
runs corresponding to different orders of possible genes and/or different candidate
recombination fraction vectors. Also, any given run may involve likelihood com-
putations for multiple pedigrees. Our work on parallelizing ILINK has focused on
strategies that can achieve parallel speedup even when there is only one pedigree
and one starting candidate recombination fraction vector. We feel that this is the
limiting case for parallelizing the LINKAGE programs and that any comprehensive
parallel implementation must try to do something about this hard case.

The principal theme of this paper is that it is possible to integrate different
parallelization strategies in ILINK to improve the parallel speedup. All previous
attempts at parallelizing linkage computations have tried essentially one strategy.
Our experience suggests that multiple strategies are needed to handle different in-
puts and to work on different hardware platforms, but integrating parallelization
strategies is a difficult programming task.

Our first implementation parallelized a single likelihood function evaluation at
a fairly low level. Experiments with our first implementation showed that this was
a good strategy for some data sets, but not so good for others. One of the problems
was a low-level loadbalancing problem, which we have tried to address with an
adaptive strategy. The introduction of an adaptive loadbalancing strategy is also
an important step towards being able to run parallel likelihood function evaluations
on heterogeneous parallel computers.

All the candidate recombination fraction vectors can be specified in advance,
and multiple likelihood evaluations can be done in parallel in the LINKMAP and
MLINK programs of the LINKAGE/FASTLINK package. The ILINK program does
present a limited opportunity to do likelihood evaluations in parallel, during the esti-
mation of the gradient. Doing likelihood evaluations in parallel can be advantageous
because processors working on different evaluations do not need to share data with
each other. The computation proceeds more quickly because sharing data causes
significant communication overhead. Our new parallel implementation performs the
likelihood function evaluations for gradient estimation in parallel, but the number of
processors is still usually larger than the number of likelihood evaluations that can



be done simultaneously. Therefore, we integrated the strategies of doing multiple
likelihood evaluations simultaneously and having many processors work on one like-
lihood evaluation. This combined strategy is also likely to be useful for LINKMAP
and MLINK and we plan to adapt our parallel code to those programs in the future.

We implemented a strategy of partitioning the input pedigrees and having differ-
ent processors work on different nuclear families. Our implementation was similar
to a theoretical proposal of Schork [22]. We found that partitioning the input pedi-
grees actually slowed the program down measurably; therefore, we do not devote
any space in the body of the paper to explaining our partitioning implementation,
but we briefly explain the problems we encountered in the Discussion at the end.

Both of our parallel implementations are written in a shared memory program-
ming style using the TreadMarks distributed shared memory system [9], which is
under development at Rice University. TreadMarks is a runtime library that enables
a shared memory program to run on a network of workstations. Networks of work-
stations are quite common in research institutions and are more readily available
than shared-memory multiprocessors. However, after simple syntactic changes, it is
also possible to run our parallel implementation on a shared-memory multiproces-
sor computer. The shared-memory programming model supported by TreadMarks
is easier to use than message passing.

We tried our parallel implementation on 5 data sets, 3 of which were used in [5].
We used an 8-processor network with either a 100Mb/s ATM (Asynchronous Trans-
fer Mode) switch, or 10Mb/s Ethernet. Using the faster ATM network, speedup on
the 3 common data sets improved from 5.38, 3.15, and 5.73 to 6.04, 3.91, and 6.33
respectively. On the 2 new data sets speedup is 7.02 and 6.88. Using the slower
Ethernet, the speedup on the 3 shared data sets improved from 3.82, 1.86, and 5.09
to 4.86, 2.80, and 5.71 respectively. Speedup on the 2 new data sets using Ethernet
is 6.30 and 6.34.

The rest of this paper is organized as follows. Section 2 describes background
information on LINKAGE, FASTLINK, and ILINK. Section 3 summarizes our first
parallel implementation and compares our work with other attempts to parallelize
linkage analysis computations. Section 4 describes our new adaptive load balancing
strategy. Section 5 describes our strategy for parallelizing the gradient estimation
step. Section 6 describes the computer hardware and software we used for mea-
surements and a few other low-level algorithmic improvements that we made to our
parallel implementation. Section 7 evaluates our new parallel implementation. We
conclude with a short Discussion.

2 Summary of LINKAGE

The basic computational goal in genetic linkage analysis is to compute the prob-
ability that a recombination occurs between two loci L; and L. A locus is an
identifiable location on the chromosome whose inheritance can be traced; it need



not be part of a gene. The probability of recombination is called the recombination
fraction and denoted by 6. Most programs in common usage estimate 6 using a
maximum likelihood approach. A thorough treatment of maximum likelihood link-
age analysis is given in Ott’s book [20]. In this section we highlight a few aspects
of the LINKAGE/FASTLINK software package that are relevant to our parallel
implementation of ILINK.

The recombination fraction can be generalized to more than two loci. Suppose
Ly, Ly, ..., Lyyq are different loci, conjectured to occur in that order. Then we define
6 to be a vector of recombination fractions, (4, ..., 8;), where 6; is the recombination
fraction between locus L; and locus L;y;. The task of estimating the 6 vector for
more than two loci, is called multilocus analysis.

A major advance of the LINKAGE package over its predecessor LIPED [19] is
that LINKAGE supports multilocus analysis [15]. The LINKAGE package contains
four related principal programs, LODSCORE, ILINK, LINKMAP, and MLINK.
The FASTLINK package [3, 21] contains significantly faster sequential versions of
these four programs. FASTLINK does not include the many auxiliary programs for
preprocessing the data and postprocessing the results that come with LINKAGE.
For this paper, LODSCORE can be viewed as a special version of ILINK, tuned to
handle 2-locus problems, and MLINK can be viewed as a variant of LINKMAP.

For our purposes there is one fundamental distinction between ILINK and
LINKMAP. ILINK starts with one candidate 6 vector and improves # through a
numerical optimization algorithm implemented in the GEMINI package [10]; all of
the components in the vector can change from one estimate to the next. LINKMAP
takes the relative positions of all but one of the loci to be fixed and the position of
one locus can be varied, either at the end or in a gap between two loci. In either
case, LINKMAP generates a fixed, and computable a priori, set of candidate 8 vec-
tors and computes the likelihood for each. The routines to compute the likelihood
for any particular 6 are essentially the same in ILINK and LINKMAP (as well as
LODSCORE and MLINK).

As in [5], we focus on parallelizing ILINK because it has the longest typical
running times and is the hardest of the four programs to parallelize. Most of the
routines that we have modified are shared between all four programs in the sequential
FASTLINK code.

As with virtually all numerical optimization procedures, GEMINI can only guar-
antee to produce a locally optimum solution. The GEMINI package as used in ILINK
proceeds in stages, which the code calls iterations. In the first iteration, the first
likelihood function evaluation computes the likelihood of the candidate 8 supplied
by the user and then does k likelihood function evaluations, one for each dimension
of the @ vector, to estimate the gradient at the initial . Each subsequent iteration
uses the best previous 6 and the gradient estimate to search for a better 8; the
number of candidate @ vectors tried varies substantially. Once GEMINI has found a
better # and cannot immediately improve it, GEMINI again estimates the gradient



at the new . When no better # can be found in the direction of the gradient, a
local optimum has been reached and the program exits shortly thereafter.

Each evaluation of the likelihood function is done by traversing the pedigree,
ending at one person p called the proband. The goal is to compute for each multi-
locus genotype g, the conditional probability that p has genotype g, conditioned on
the observed phenotype data for all the pedigree members and the candidate 8. This
is done by visiting the nuclear families one at a time, and for each nuclear family
updating the conditional genotype probabilities for that family member that con-
nects the current nuclear family to the as yet untraversed part of the pedigree. The
current nuclear family is updated conditionally on the nuclear families previously
visited, its observed data, and 6.

Details of the algorithm that LINKAGE uses to order the nuclear families in a
pedigree traversal and to handle loops can be found in documentation that comes
with the distribution of sequential FASTLINK (ftp to softlib.cs.rice.edu, login as
anonymous, cd pub/fastlink, and retrieve the files traverse.ps and loops.ps).

3 Previous Work on Parallel Linkage Analysis

Linkage analysis seems to be a particularly hard problem to parallelize in a way that
works on all varieties of typical data sets. In this section, we briefly review attempts
by other research groups to parallelize linkage analysis and review a few aspects of
our first parallel implementation needed to understand the subsequent sections.

Miller, et al. [18] did a parallel implementation of LINKMAP using the Linda
package. Their parallelization strategy assumes that that there are many pedi-
grees and/or many candidate @ vectors. They treat the evaluation of each likeli-
hood for one pedigree as a separate task that can be assigned to one processor.
If there are enough tasks, the load can be balanced effectively using a work-queue
approach. Goradia, et al [6] did a similar parallelization of the linkage analysis
program MENDEL [11, 12].

Vaughan [25] did a parallel implementation of LINKMAP using the ISIS package.
Her algorithm does parallelize the case of one pedigree and one likelihood, but she
did not present any data on running times. She was primarily concerned with
balancing the load on a heterogeneous network.

Schork [22] proposed parallelizing the computation of one likelihood by assigning
the probability updates of different nuclear families to different sets of processors.
His paper does not describe any implementation. We experimentally implemented
an algorithm similar to Schork’s, but found that it slowed down ILINK measurably.
Some of the problems we encountered are mentioned briefly in the Discussion at the
end of of the paper.

Chamberlain, Franklin, Peterson, and Province [2] parallelized the gradient com-
putation in the GEMINI optimization package using PVM in the context of two
other application programs in genetics. However, in both of those programs, the



number of dimensions in the optimization problem is typically much higher than the
number of processors available, hence it is possible to assign each function evalua-
tion to one processor and get good speedup. ILINK optimization problems typically
have dimension only 2 or 3. We note also that [2] did not parallelize those function
evaluations that update the parameters, which are therefore done one at a time by
one processor each. They mention that it is important to integrate parallelization
strategies for individual function evaluations with a strategy to parallelize the gra-
dient estimation. This is precisely the strategy integration problem that we address
in our work.

Our first parallel implementation parallelized the update of one nuclear family
at a time. The reason for this is that in some pedigrees with many generations
and many untyped (except for a disease locus) individuals, updating the conditional
probabilities of the nuclear families in the top two generations take the bulk of the
computing time.

We observed that the code for an update of a nuclear family is wrapped in two
outer loops that iterate over all the possible genotypes of one parent and then all
the possible genotypes of the other parent. This describes a rectangular iteration
matrix R. The probability updates corresponding to each possible pair of genotypes
(i.e. entry in R) can be done almost entirely in parallel. However, the time to do
the updates varies widely from entry to entry. We found that with rare exceptions
the update times for consecutive rows of R are similar because they typically cor-
respond to genotypes that have the same heterozygosity pattern (i.e., which loci
are homozygous and heterozygous) and similar alleles. Therefore, a round-robin
strategy that assigns consecutive rows of R to consecutive processors works well.

In our first implementation, all the processors participate in a function evalua-
tion, but one of them (which we designate processor number 0) plays a special role
of controlling which processors get which parts of R and of collecting all the results.

The next section explains one flaw with the static loadbalancing strategy for
partitioning R that occurs in some data sets and our new attempt to make the
loadbalancing strategy more general.

4 Adaptive Load Balancing

By adaptive load balancing we mean collecting performance statistics during a pro-
gram run and using those statistics later in the same run to balance the load among
different processors. The statistics we collect are running times for small pieces
of each nuclear family update. A theoretical examination of our first parallel im-
plementation suggested that there could be significant load imbalance when many
nuclear families had the property that for many parental genotype pairs (%, j):

1. Genotype ¢ for the first parent is consistent with spouse and children, and

2. Genotype j for the second parent is consistent with spouse and children, but



3. Genotypes ¢, 7 are not simultaneously consistent with the children.

We call this the bad-pair property. A pair of parental genotypes that is feasible
and consistent with the children is called a good pair. A simple one-child, one-locus
example of the bad-pair property occurs when a child has a heterozygous genotype
AB. Each parent may have the homozygous genotype AA or BB, but it is not
simultaneously possible for both parents to have genotype AA or for both parents
to have genotype BB. In this case the ordered pairs (AA,AA) and (BB,BB) are bad
pairs.

The static load balancing strategy we used previously assumed that the vast
majority of genotype pairs are not bad, which is true for many data sets and choices
of loci. It can also work well if the bad pairs are distributed close to uniformly
among the processors. Since the order of visiting nuclear families in each likelihood
function evaluation is fixed, the determination of bad pairs depends explicitly only
on the possible genotypes of parents and children (and implicitly on the previously
visited nuclear families, which are always the same). Thus for a fixed nuclear family,
the set of bad pairs is always the same. The set of bad pairs grows as the square of
the number of joint genotypes and is therefore, too large to store.

Since the bad pairs are not consistent with Mendelian inheritance, they require
no conditional probability updates. Our static load balancing strategy did not dis-
tinguish between good pairs and bad pairs in distributing genotype pairs to different
processors. Performance is hampered when a disproportionate number of good pairs
is distributed to one of the processors.

To address this problem, we compute timing statistics for each nuclear family on
one of the early function evaluations. The rows are initially permuted into round-
robin order as in our static loadbalancing strategy. For each row in the (permuted
version of ) genotype matrix R defined in Section 3, we compute how much time it
takes to do all the computation for all the pairs in that row. This includes both
the time to distinguish good pairs and bad pairs and the time to do the conditional
probability updates for the good pairs.

In subsequent iterations we use a greedy strategy to partition the rows into pieces
that will take roughly equal time. Since the number of rows is generally much larger
than the number of processors, we can generally find consecutive sets of rows that
take roughly 1/p of the total time each. We found that the time needed to do the
first row on each processor, except the master processor, can be large due to the
time for initial transfer of shared data over the network. Therefore, we artificially
set the time for the first row to be exactly that for the second row when doing the
adaptive row partitioning to be used in later function evaluations. The amount of
space required to store the row times is linear in the number of genotypes; if space
is tight, we can get rid of the information once the partitions are computed.

When both the adaptive loadbalancing and the parallel gradient estimation
strategies are used, one cannot collect accurate timing measurements until the first
function evaluation after the first gradient estimation. If there are k loci, this will



be the (k + 1) st likelihood function evaluation. The reasons are that we want
to do measurements when all processors work together on the function evaluation,
but a few special things happen on the first function evaluation which distort the
timing; also, the second through (k + 1)st evaluations estimate the first gradient
and may have only a subset of the processors working on each likelihood function
evaluation. If k is 3 or 4, the typical number of function evaluations is about 30 or
40 respectively. Roughly 1/10th of the function evaluations must be done with a
static loadbalancing strategy. Therefore, it is still necessary to have a good static
loadbalancing strategy and integrate it with the adaptive strategy.

Due to the need to transfer data over the network, the extra time needed for
the first row may be large enough that it is better to have only the master work on
a particular nuclear family. We use a user-specified threshold of ((20 + 10p)p/(p —
1))msec on the “nuclear family overhead” to determine whether a nuclear family
requires enough computation to justify splitting up the work. The threshold function
attempts to balance two considerations. First, the communication time to share data
goes up with the number of processors — this accounts for the 20+ 10p term, which
increases with p. Second, the overhead can be amortized better as the number of
processors increases because there are more processors to share the computational
work — this accounts for the p/(p — 1) term, which decreases with p.

5 Parallel Gradient Estimation

Our second improvement in parallel ILINK is to perform likelihood function eval-
uations in parallel during estimation of the gradient. The optimization package
GEMINI uses two different methods to estimate the gradient, forward differences
and central differences. In each case, it perturbs the components of the current
candidate 6 one dimension at a time by a small amount, A; for dimension %, and
estimates that component, g;, of the gradient by the observed rate of change in the
likelihood function. In forward differences, g; is computed as (f(0 4+ h;) — f(8))/hs,
where 6 + h; means add h; to only the ¢th component of 8. In central differences
g; is computed as (f(0 + h;) — f(0 — h;))/2h;. Central differences are more time-
consuming than forward differences because they require twice as many likelihood
function evaluations. The merits of both methods in LINKAGE are discussed and
analyzed experimentally in [14]. The currently distributed versions of ILINK in
both LINKAGE and FASTLINK start using forward differences and switch to cen-
tral differences if successive values of  appear sufficiently similar.

As suggested by Miller et al. [18] in the context of LINKMAP, performing likeli-
hood function evaluations in parallel is a good strategy. However, in their tests they
had enough function evaluations to assign each evaluation to only one processor.
Different processors working on different function evaluations do not have to share
data, eliminating significant amounts of communication. For two different values of
the 6 vector, #; and 63, the running time to compute f(6;) and f(#2) on the same



pedigree should be roughly the same, provided that neither #; nor #; has any zero
components. The structure of GEMINI prohibits # components from going to zero,
so we can get reasonably good loadbalance provided the same number of processors
work on each likelihood evaluation going on in parallel.

As a side remark, it is worth contrasting the opportunity for parallel likelihood
function evaluations in ILINK to that in LINKMAP. In ILINK only those function
evaluations used for gradient estimation can be done in parallel, but it appears
safe to assume that those that can be done in parallel will take approximately the
same amount of time. In LINKMAP, all the likelihood function evaluations can be
done in parallel, but virtually every run of LINKMAP done in practice contains 1
or 2 function evaluations with at least one zero component. Thus, as we look to
extend our parallel ILINK implementation to LINKMAP, the ability to integrate
doing multiple evaluations on separate processors and doing a single evaluation on
multiple processors will be crucial.

Typical ILINK problems have 3 or 4 loci and hence 2 or 3 dimensions in the 6
vector. Larger problems are generally prohibitive in time (even with FASTLINK)
and space. It is not unusual for sequential ILINK runs to take weeks; because of the
need to run many different tests, we picked ILINK instances of moderate size to use
in our timing experiments. Because ILINK problems are low-dimensional (unlike the
applications of GEMINI considered in [2]), we often have more processors available
than likelihood evaluations to do. To balance the load, we want the same number
of processors to work on each likelihood function evaluation.

To assign the function evaluations to processor sets, we use the following greedy
algorithm. Let n be the number of evaluations needed to estimate the gradient.
Let p be the number of processors. Find the largest integer, | <= n that divides
p. Assign the first [ evaluations to disjoint sets of p/l processors. If n > [, the
remaining n — [ function evaluations are done one at a time, with all processors
participating. This algorithm has the advantage that all the processors are kept
busy, but it has the disadvantage that if the number of processors is not divisible
by 2 or 3, we do not do any function evaluations in parallel.

As a simple example, suppose we want to perform 3 function evaluations and
we have 8 processors. We do the first 2 evaluations in parallel on 4 processors each
and do the third evaluation on all 8 processors.

To coordinate the function evaluations, we designate a master processor for
each evaluation that plays the same organizing role that processor 0 plays when all
processors work together. A few pieces of global data, such as the candidate 8 must
be different for the different evaluations going on simultaneously. We made these
data into arrays (or if they were already arrays, increased the dimension by 1) that
can be indexed by the evaluation number. Each processor knows which evaluation
it is working on and which processor is its master, and uses these two indices to
know from where to get its data and with which processor it must synchronize to
share data.

10



When the gradient phase is over, we start the next iteration where all processors
work on one function evaluation at a time.

6 Methods and Other Improvements

We evaluated the performance of our new implementation of parallel ILINK on
a network multicomputer. The code is also easily portable to a shared-memory
multiprocessor; we verified this claim on an SGI machine. A network multicomputer
is simply a cluster of ordinary workstations connected by a general-purpose local area
network, such as ATM (which stands for Asynchronous Transfer Mode), Ethernet,
or FDDI (which stands for Fiber Distributed Data Interface and is a 100 Megabit/s
local area network in which the stations are connected in the form of a ring). In
contrast, a shared-memory multiprocessor is a single machine containing several
processors that are connected by a specially-designed bus or dedicated network.
Some tradeoffs between these two types of parallel computers are discussed in the
Methods section of [5].

In a network multicomputer, processors communicate by passing messages with
send and receive operations, while a shared-memory multiprocessor supports com-
munication by reading and writing globally accessible memory. Most sequential
programs, including ILINK, are more easily parallelized by writing code in terms
of shared memory. To use message passing, the programmer must write additional
code to copy data into and out of message buffers and perform send and receive
operations.

To enable programmers to use networks of computers without writing message-
passing programs we have developed a software distributed shared memory (DSM)
system for network multicomputers called TreadMarks [9]. In essence, TreadMarks
provides a shared memory abstraction to the programmer, and implements this
abstraction efficiently using the underlying message passing system [8, 4]. The
programmer writes the parallel program as if it were intended for a shared-memory
multiprocessor, but the Tread Marks system enables the program to run on a network
multicomputer.

Since we did the performance measurements on our first parallel ILINK, Tread-
Marks has been improved in various ways. Some of the improvements are improve-
ments in functionality which were necessitated by the algorithms used in the new
ILINK as well as another application program. Other changes were improvements in
the basic communication protocols used in TreadMarks. To make the comparisons
fair we also continued to use sequential code based on version 1.0 of FASTLINK as
in our previous parallel implementation.

The current version of TreadMarks can provide accurate statistics on how many
messages are sent and how many bytes they contain. It also comes with a profiler
tool that provides a transcript of where communication occurs to simulate shared
memory over the network.

11



We used the output of the TreadMarks profiler to guide five minor changes in
the ILINK implementation to reduce the amount of communication. We would
expect that on any system such as TreadMarks some minor tuning is helpful to
adjust a parallel implementation to the parameters and implementation features
of that parallel system. The changes we made to tune for TreadMarks come in
two forms. Three changes essentially rearranged the initialization of some data
structures, so that they are computed on the processor(s) that need(s) the data.
Two other changes rearranged the declarations of certain small arrays, so that they
are forced onto the same page of memory. The memory updates in TreadMarks are
done on a page-by-page basis, so there are circumstances where having two data
structures on the same page of memory enables TreadMarks to communicate the
update with a single message, instead of two messages. These changes reduced the
communication on all data sets; the running time improvement was much more
significant on the BAD data set (described in next section) than on any of the
others. We used the new code, instrumented so that it does static loadbalancing
and no parallel gradient evaluations, for our baseline speedup measurements in the
next section. This is because our primary purpose is to measure the effectiveness of
our two major algorithmic improvements.

The network multicomputer used to perform our evaluation of parallel ILINK
consists of 8 DECStation-5000/240 workstations, each with 24 Mbytes of memory,
running the Ultrix version 4.3 operating system. All of the workstations are con-
nected to an Ethernet and a high-speed ATM network. TreadMarks can utilize
either the Ethernet or the ATM network. The interface for Ethernet is a standard
component of the workstation. An important difference between Ethernet and ATM
is that on an Ethernet the packets in the communication medium are available to all
the processors, while on ATM the communication is point-to-point. The point-to-
point communication can be exploited by algorithms, such as our parallel gradient
computation, that partition the network into pieces in which no communication
goes across the pieces. The interface for ATM is a Fore Systems TCA-100 network
adapter card supporting communication at 100 Megabit/s. In addition, we used the
same compiler, gcc 2.4.5 with -g3 -02 flag for optimization, with both networks.

The shared-memory multiprocessor used to check the correctness of our parallel
ILINK is a Silicon Graphics Iris 4D /380 memory running the IRIX Release 4.0.5
System V operating system. This machine has 8 processors that communicate via
a dedicated bus. Unfortunately, the processors on this SGI machine are somewhat
slower than our DECStation processors and we were not able to get single-user
access to the machine for long enough periods of time to do meaningful timing
measurements.

TreadMarks is still under development, but an early version is available for
license. We have tried to keep the cost of a license low for universities and other
nonprofit institutions. Contact the third author by electronic mail for information
about TreadMarks.

12



We have begun the tasks of modifying our parallel ILINK to be more consistent
with ILINK from the latest version of FASTLINK and of adapting the code to par-
allelize LINKMAP and MLINK as well. We hope to be ready to distribute parallel
versions of all three programs in 1995. Contact the second author by electronic mail
for a status report and also about obtaining the sequential FASTLINK programs.

7 Results

We present speedups for parallel LINKAGE with several input data sets. Unipro-
cessor execution times are given as well so that execution time differences may be
inferred. We use two different network types - the commonly available Ethernet
networks and the emerging ATM networks.

For consistency we use exactly the same three disease data sets and one sample
run each from [5]. We also use one sample run each from two large data sets that
we obtained subsequent to the publication of [5]. The new data sets appear to be
more representative of the kinds of data sets that cause users of sequential ILINK
to want faster alternatives.

e RPO01: data on a large family, UCLA-RPO01, with autosomal dominant retini-
tis pigmentosa (RP1) from the laboratory of Dr. Stephen P. Daiger at the
University of Texas Health Science Center at Houston. As shown in [1], this
pedigree had to be split into three pieces because computation on the whole
family together was prohibitively long. RP01-3 denotes the analysis with the
family split in three pieces.

e BAD: dataon a portion of the Old Order Amish pedigree 110 (OOA 110), with
bipolar affective disorder (BAD) from the laboratory of Drs. David R. Cox and
Richard M. Myers at the University of California at San Francisco [17].

e CLP: Data on 12 families with autosomal dominant nonsyndromic cleft lip and
palate (CLP) from the laboratory of Dr. Jacqueline T. Hecht at the University
of Texas Health Science Center at Houston [7].

e ADNIV: Data on 1 large family with autosomal dominant neovascular in-
flammatory vitroretinopathy (ADNIV) provided by Drs. Ed Stone and Brian
Nichols from the University of Towa [24]. The family has 93 individuals, of
whom 37 have unknown genotypes at all non-disease loci, and 9 have some
unknown genotypes. The family has no loops.

e LGMD: Data on 4 families with one form of limb-girdle muscular dystrophy
(LGMD) provided by Drs. Marcy Speer and Margaret Pericak-Vance from
Duke University [23]. Altogether the families have 416 individuals, 269 of
which are in the huge family number 39 (discussed at length in [23]). The
families have no loops.

13



RP01-3 | BAD | CLP | ADNIV | LGMD
4682 833 | 4085 9570 | 13011

Table 1: Uniprocessor execution times in seconds on a DECStation-5000/240

More detailed descriptions of the first three sets of pedigrees are given in [5] and
diagrams can be found in the papers cited for each data set. The loci chosen for
the RP01-3 data set have an allele product of 2 X 6 x 9 = 108; this implies that
the number of genotypes is 108 x (108 4+ 1)/2 = 5886. The loci chosen for the BAD,
CLP, ADNIV, and LGMD data sets have allele products of 2 x4 x 4,2 x4 x 4 X 4,
2x 3x4x4,and 2 x 10 x 7 respectively. In all cases, the 2-allele locus is the
disease locus. Of all these data sets, the ADNIV data set is most ideally suited to
our parallelization strategy since it has only one family and the complexity of the
analysis is not caused by loops.

Figures 1 through 10 show speedup performance for the five data sets on each
of the ATM network and the Ethernet network. Each graph compares four parallel
versions: our first parallel implementation with the minor changes described in
Section 6 (base), a version with only adaptive loadbalancing (loadbalance), a version
with only parallel gradient estimation (parallel thetas), and a version with both
adaptive load balancing and parallel gradient estimation (integrated).

Comparing the version with no changes and the version with both changes on 8
processors, the ATM network speedups improved from (5.52,3.43,5.96,6.69,6.45) to
(6.04,3.91,6.33,7.02,6.88) on the five data sets respectively, The speedups on the first
three data sets for our first implementation [5] were (5.38,3.15,5.73) respectively.

Comparing the version with no changes and the version with both changes on 8
processors the Ethernet network speedups improved from (3.97,2.28,5.32,5.09,5.40)
to (4.86,2.80,5.71,6.30,6.34). The speedups on the first three data sets for our first
implementation [5] were (3.82, 1.86, and 5.09) respectively. The amount of improve-
ment caused by adaptive loadbalancing and parallel gradient evaluation vary widely
from data set to data set. The improvements become more apparent as the number
of processors grows, which is not surprising because having more precise loadbal-
ancing and reducing communication become more significant objectives with more
processors. In fact with 2 and 4 processors there are a few anomalies (e.g. RP01-3
with 4 processors) where the integrated version is alightly slower than at least one
other version, but these disappear with 6 and 8 processors.

The speedups on RP01-3, CLP, ADNIV, and LGMD are quite pleasing, but the
BAD data set remains a problem. Table 2 tries to assess the reasons for imperfect
speedup in BAD and the other data sets. We identified four distinct reasons for
imperfect speedup:

1. Computations done outside the parallel code, which we call “overhead”. Al-
most all of this computation is to initialize the genotype probabilities of in-
dividuals in the first nuclear family where they are encountered in a pedigree
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RP01-3 | BAD | CLP | ADNIV | LGMD
1-proc. time 4682 833 | 4085 9570 13011
overhead 52 22 47 37 122
seq. families 29 18 40 20 40
seq. time 81 40 87 57 162
8-proc. time 775 213 | 645 1363 1890
ideal time 657 139 | 587 1246 1768
ratio 1.18 | 1.53 | 1.10 1.09 1.07

Table 2: Assessment of Reasons for Imperfect Speedup on 8 processors with ATM

traversal. This computation is done only by the master processor for the
likelihood function evaluation.

2. Nuclear families whose updates are done sequentially by one processor. This is
called “sequential families” (abbreviated as seq. families in Table 2). The sum
of overhead and sequential families is called “sequential time” (abbreviated as
seq. time in Table 2).

3. Communication of shared data.
4. Load Imbalance.

To assess the overhead and sequential time, we inserted timers into the code
to measure the time spent outside the parallel code and the time spent updating
nuclear families sequentially. It should be noted that there may be a slight “probe
effect” in the figures.

To assess the combined cost of communication and imperfect loadbalance, we
estimated what the 8-processor running time would be if there were no communi-
cation and if loadbalance were perfect for the nuclear families updated in parallel.
This is called the “ideal running time” and is computed as:

(1 processor time — sequential time)/8 + sequential time.

The difference between the actual 8 processor running time and the ideal 8-processor
running time is our estimate of the cost of communication and load imbalance. In
Table 2, we instead show the ratio of actual 8-processor running time to ideal running
time. The lowest ratio we could hope for would be 1.0; anything above 1.0 is an
indication of inefficiency due to communication or load imbalance.

We tried to evaluate the performance of the adaptive loadbalancing strategy by
itself, using one of the runs where speedup is not as good as on some others. We
sought to measure how much variation there is in the work assigned to different
processors, when a nuclear family is updated in parallel by all the processors. To
measure the fluctuation we did the RP01-3 run reported later, measuring for each
of 8 processors, each function evaluation, and each nuclear family, how much time
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# Family 52 Max. | Family 52 Min. | Family 37 Max | Family 37 Min
14.27 13.89 1.13 1.01
14.08 13.84 1.08 0.98
14.21 13.98 1.07 0.98
14.23 14.00 1.09 1.00
14.21 13.99 1.13 1.03
14.29 13.99 1.07 0.98
14.16 13.91 1.07 0.98
14.21 13.98 1.09 0.96
14.22 13.99 1.08 1.00
14.21 13.98 1.08 0.99
14.23 14.00 1.07 0.98
14.16 13.92 1.07 0.98
14.21 13.98 1.08 0.98
14.20 13.97 1.08 0.98
14.21 13.97 1.09 1.00
14.14 13.90 1.10 0.98
14.16 13.93 1.07 0.98
14.23 13.98 1.06 0.98
14.21 13.98 1.08 1.01
14.22 13.97 1.09 1.00
14.23 14.00 1.07 0.98
14.14 13.92 1.07 0.98
14.22 13.99 1.07 0.98
14.22 13.97 1.10 1.00
14.22 13.99 1.10 0.98
14.23 13.98 1.07 0.98
14.14 13.91 1.06 0.98
14.15 13.93 1.07 0.98
14.25 14.00 1.09 1.00
14.23 13.98 1.09 1.00

Table 3: Maximum and minimum processor times (in seconds) for Two Nuclear
Families; each row is a different likelihood function evaluation
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that processor spent on that nuclear family in that function evaluation. We selected
two of the families, including the one that takes the most time by far, and noted
for each function evaluation the largest and smallest processor times. The data are
show in Table 3.

As the reader can see, there is a pretty consistent difference of about .24s for
family 52 and about .09s for family 37. There are two or three processors which
consistently get the lightest loads and two or three processors which consistently
get the heaviest loads. This is largely due to the effects of discretization on the
partitioning problem. The effects are relatively larger for those families that have
fewer possible genotypes.

To assess the relative importance of communication and load imbalance, we
present four pieces of evidence that all suggest that the cost of communication is
far more significant than the cost of load imbalance.

First, we can look at the data from Table 3. We assume (in all cases trying to
increase the effect of load imbalance) that family 37 is roughly representative of all
the other nuclear families updated in parallel, that load imbalance is roughly half
the difference between maximum and minimum times, and that there is no probe
effect. With these assumptions, the data in Table 3 would indicate that the overall
load imbalance for our RP01-3 run is very roughly 20s. Even if this were too low by
a factor of 2, it would still be less than half of the gap between the actual running
time of 775s and the ideal running time of 657s. Because the load imbalance that
remains occurs in very small quanta, it seems to be a very hard problem to fix.

Second, if we compare the baseline speedup against the speedup with just parallel
gradient estimation and Ethernet vs. ATM, we see that parallel gradient estimation
has a much larger effect on Ethernet than on ATM. An important difference between
Ethernet and ATM is that communication is much faster with the ATM switch. The
main virtue of parallel gradient estimation is that it significantly reduces the amount
of communication for those function evaluations where it is applied because sets of
processor working on different function evaluations do not need to communicate.
For example, on the RP01-3 run using ATM and 8 processors, the parallel function
evaluation reduced the amount of communication from approximately 359Mbytes of
data shipped and 851K messages to 286 Mbytes and 620K messages. However, the
function evaluations where 8 is being updated cannot be done in parallel. Therefore,
it stands to reason that communication is still a major bottleneck on those function
evaluations. We can see this in more detail with data for the RP01-3 run. That run
has a total of 33 function evaluations, of which 14 involve estimating gradients and
19 involve updating §. The running time using 8 processors and ATM without either
strategy is 848s. The running time with just parallel gradient estimation is 793s.
Therefore, we saved 55s essentially by reducing communication on those 14 function
evaluations where the gradient is being estimated. If we extrapolate this to the other
19 function evaluations, the extra communication accounts for (19/14) x 55 = 75s,
which is the majority of the gap between the 8-processor running time with both
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strategies of 775s and the ideal running time of 657s in Table 2.

Third, several of the low-level changes described in the last section had the
primary effect of reducing the number of messages sent. On the 8-processor ATM
run of the BAD data set, they reduced running time by about 15s while reducing
the total number of messages from about 197K to about 164K. If we extrapolate
these figures, we see that the remaining 164K messages probably account for the
bulk of the gap between the actual 8-processor running time of 213s and the ideal
8-processor running time of 139s.

Fourth, we tried to improve the running time on BAD by reparameterizing the
loadbalancing strategy to reduce the load on the master processor which sets up
each nuclear family update. We assigned the work so that this processor would
get substantially less than 1/p of the work on those nuclear families that were split
among all the processors. Reducing the amount of work for the first processor did
not improve the running time measurably.

In general, the speedups for all data sets except BAD are quite good. From the
data in Table 2 and the above discussion, we see that three reasons contribute to the
inferior speedup obtained for BAD, but communication is the biggest contributor.
The cost of communication is roughly 74s (213-139), as opposed to only 40s of
sequential time. It seems very difficult and somewhat pointless to do much about
the sequential time. Table 2 shows clearly that the sequential time tends to decrease
in significance as the runs get longer; for example it accounts for 5% of the BAD
1-processor time, but only 1% of the LGMD 1-processor time.

The larger amount of communication per unit time for BAD is due primarily
to the loop in the data set. Unfortunately the BAD data set has data specified
for only 3 loci, so it is not possible to do a longer 4-locus run to understand the
asymptotic behavior better. When pedigrees have loops, each function evaluation
does multiple traversals of the pedigree. It would be natural to do the different loop
traversals in parallel, but this is tricky because different traversals will take different
amounts of time. Furthermore, Schiffer, Gupta, Shriram, and Cottingham [21]
made a substantial improvement in the loop handling strategy in version 2.0 of
FASTLINK. We are currently working on other fundamental improvements to the
sequential algorithms for handling loops. To parallelize the loop traversals it would
make sense to start with the improved sequential algorithm, but this would make it
impossible to properly compare running times with our first parallel implementation

of ILINK.

8 Discussion

The sequential algorithmic improvements in FASTLINK have helped many users,
but they do not provide enough speedup to solve many problems that users would
like to solve. In response to a questionnaire we sent out to several dozen sequen-
tial FASTLINK users, only one respondent reported that she did not need further
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speedup beyond that in our sequential code. An effective and comprehensive parallel
implementation of FASTLINK is clearly called for. Previous attempts to parallelize
LINKAGE have handled only some types of inputs and have not been used by the
LINKAGE user community.

This paper describes the second major scientific step towards a truly usable
parallel FASTLINK. We have completely integrated a strategy for parallel likelihood
evaluations in a setting where it is applicable only during parts of the run, which is
harder than if it were applicable throughout a run. These modifications allow us to
exploit parallelism at different levels of the computation, where possible. They take
advantage of the fact that newer networks, such as ATM networks, allow point-to-
point communication.

We introduced a low-level adaptive loadbalancing strategy to protect against
certain potential imbalance problems inherent in the data. Our adaptive loadbal-
ancing strategy is implemented for a homogeneous network because that is what we
have available. However, we think it would not be hard to modify the algorithm
for a heterogeneous network with machines of different speeds. Since we compute
running times for small pieces of each nuclear family update, we could balance the
load on a heterogeneous network by weighting each row time by the relative speed
of the processor that computes that row.

Each of the two parallelization strategies improves the speedup by a fraction
of a processor on most runs with 6 or 8 processors using either Ethernet or ATM
networks. The improvements close much of the gap between the speedup of our first
parallel implementation and perfect speedup. The new parallelization strategies are
particularly noticeable as the number of processors increases; this is not surprising
because the speedups for our first implementation were very good for up to 4 pro-
cessors, leaving little room for improvement there. The speedups on runs that take
over 1 hour sequentially are quite satisfactory on the ATM, but the speedup on the
one shorter run (less than 15 minutes sequentially) that we tried is still not very
good. Users of sequential LINKAGE and FASTLINK often wait for 1-3 weeks for
a sequential run, so it is the speedup on the long runs that matters, in practice.

We investigated the possibility of splitting up the likelihood function evaluation
by assigning different nuclear families to different processors. This had been pro-
posed by Schork [22] in a theoretical paper. We have not reported in detail on our
trial implementation because we found that it consistently increased the running
time measurably.

Qualitative observations of our implementation of Schork’s idea in ILINK suggest
the following difficulties:

1. Most of the nuclear families that take a lot of time to update are at the top
of the pedigree, where the number of nuclear families whose probabilities can
logically be updated in parallel is almost certain to be fewer than the number
of processors.
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2. Because of problem 1, the only way to get good speedup is to assign nuclear
families to subsets of processors that have more than 1, but fewer than p
processors. This is extremely hard to implement correctly let alone implement
with good loadbalance.

3. At the lower levels of the pedigree, the nuclear families are updated so quickly
that sending the data over the network (so that different processors work on
different families in parallel) slows down the computation significantly.

Nevertheless, Schork’s suggestion is theoretically appealing and we would be most
interested to see if other researchers can get it to work effectively in FASTLINK.

Our integration fo multiple parallelization strategies in ILINK exploits different
opportunities for parallelism. It is suited to networks with point-to-point communi-
cation, but also works reasonably well on Ethernet. By using a distributed shared
memory system such as TreadMarks we have tried to anticipate what hardware po-
tential users will have available. Our implementation can run either on a network
of workstations or on a shared-memory multiprocessor. However, many FASTLINK
users do not have access to more than one workstation. With this constraint in
mind, several FASTLINK users have started to build servers, where linkage analysis
problems can be submitted by electronic mail and the server returns the answer by
mail. When our parallel code is ready for general usage and distribution we hope it
will be used in such linkage servers.
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