Parallelization of General Linkage Analysis Problems

Sandhya Dwarkadas *
Department of Computer Science
Rice University
Houston

Robert W. Cottingham Jr. *
Department of Cell Biology
Baylor College of Medicine

Houston

Peter Keleher ¥
Department of Computer Science
Rice University
Houston

Alejandro A. Schaffer
Department of Computer Science
Rice University
Houston

Alan L. Cox 8

Department of Computer Science

Rice University
Houston

Willy Zwaenepoel |l
Department of Computer Science
Rice University
Houston

Address for correspondence: Robert W. Cottingham Jr. Department of Cell
Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030.

*sandhya@cs.rice.edu
tschaffer@cs.rice.edu
Ybwc@bem.tme.edu
Salc@Qcs.rice.edu

T pete@cs.rice.edu

I willy@Qcs.rice.edu

Abstract

We describe a parallel implementation of a genetic linkage analysis program
that achieves good speed improvement, even for analyses on a single pedigree and
with a single starting recombination fraction vector. Qur parallel implementation
has been run on three different platforms: an Ethernet network of workstations,
a higher-bandwidth Asynchronous Transfer Mode (ATM) network of workstations,
and a shared-memory multiprocessor. The same program, written in a shared mem-
ory programming style, is used on all platforms. On the workstation networks,
the hardware does not provide shared memory, so the program executes on a dis-
tributed shared memory system that implements shared memory in software. These
three platforms represent different points on the price/performance scale. Ethernet
networks are cheap and omnipresent, ATM networks are an emerging technology
that offers higher bandwidth, and shared-memory multiprocessors offer the best
performance because communication is implemented entirely by hardware. On 8
processors and for the longer runs, we achieve speedups between 3.5 and 5 on the
Ethernet network and between 4.8 and 6 on the ATM network. On the shared-
memory multiprocessor, we achieve speedups in the 5.5 to 6.5 range for all runs.

1 Introduction

Genetic linkage analysis is a statistical technique that uses family pedigree informa-
tion to map human genes and locate disease genes in the human genome. Several
computer packages have been written for linkage computations and most published
linkage studies use one of these programs [20, 21, 16, 15, 17, 11, 10, 13, 14]. As the
ability to collect large family pedigrees with more informative genes has improved,
the magnitude of linkage computations that geneticists want to run has increased.
It is not unusual for these runs to take hours or days, and many of the cases that
geneticists would like to analyze are practically intractable on current computers.
We see two complementary approaches that should be pursued to speed up linkage
computations: better algorithms and parallel computers.

In this paper we report on a parallel implementation of programs from the LINK-
AGE [16, 15, 17] package, which is a very popular general purpose set of linkage
analysis programs. This paper complements research conducted by two of us to-
gether with R. M. Idury in which we significantly sped up the sequential algorithms
in LINKAGE [2].

We focus on parallelizing the computation for a single recombination fraction
vector and for a small number of pedigrees. This approach distinguishes our work
from a previous parallel implementation of LINKMAP from the LINKAGE pack-
age [19], in which likelihood computations on different pedigrees and with different
recombination fraction vectors are distributed on different processors. This distri-
bution is not appropriate for the most CPU-intensive of the LINKAGE programs,
called ILINK, partly because ILINK has only one starting recombination fraction
vector. Furthermore, in many disease-location applications the input contains only
a small number of pedigrees. There has also been a similar parallel implementation
of the MENDEL [13, 14] program [5]. In her Master’s thesis, Vaughan parallelizes
LINKMAP for a single recombination fraction vector, but her work focuses on load
balancing issues in a heterogeneous computing environment and in the presence of
other workloads [23].

Unlike both previous parallel LINKAGE implementations, we start from the
faster sequential LINKAGE algorithms [2] instead of the algorithms that had pre-
viously been distributed in the LINKAGE package. It is important to investigate
whether the new LINKAGE algorithms are also amenable to parallel implementa-
tion, so that the advantages of better algorithms and parallel computers can be
combined.

Our parallel implementation is written in a shared-memory programming style.
We evaluated our implementation on two different architectures: a shared-memory
multiprocessor and a network of workstations. On the network of workstations we
used TreadMarks, an experimental distributed shared memory system under devel-
opment at Rice University [7]. Distributed shared memory is a software runtime
system that enables processes executing on different workstations to share mem-

ory, even though the hardware connecting the workstations only provides message
passing. We experimented with two different technologies for connecting the work-
stations: a standard Ethernet and an ATM (Asynchronous Transfer Mode) network,
which is rapidly gaining popularity because of its increased bandwidth.

We seek to address three interdisciplinary questions:

1. Is it possible to parallelize linkage computations that have as input only a
small number of pedigrees and a small number of initial parameter vectors?

2. Can the new sequential algorithms [2] be effectively parallelized?

3. Can reasonable speedup be achieved for long linkage computations on a net-
work of workstations, which is much cheaper and more commonly available
than a shared-memory multiprocessor?

This paper is organized as follows. In Section 2, we explain the basics of linkage
analysis and the LINKAGE programs. In Section 3 we give a short outline of the
sequential algorithm for computing the likelihood. In Section 4, we describe our
new parallel algorithm. In Section 5, we describe the parallel computing systems on
which we tried our implementation. In Section 6, we report the performance of our
implementation on some sample data. We conclude with a discussion section.

2 Summary of LINKAGE

The fundamental goal in linkage analysis is to compute the probability that a recom-
bination occurs between two genes (G; and GG3. The closer the genes are, the smaller
the probability will be. A variety of theories connect this probability to the actual
distance between the two genes on the chromosome. Two genes are said to be linked
if the recombination probability between them is less than .5. The recombination
probability is denoted by 6. A thorough treatment of genetic linkage analysis is
given in Ott’s monograph [22]. We review a few particulars, especially concerning
the LINKAGE programs, that are relevant to our parallel implementation.

The LINKAGE package contains four related programs LODSCORE, ILINK,
LINKMAP, and MLINK; we shall discuss the first three. The improved sequential
algorithms in [2] are applicable to all the programs.

The LODSCORE program searches for a maximum likelihood estimate g of the
recombination probability. The likelihood is computed with respect to the input
pedigree(s). Given a set of loci, LODSCORE estimates 6 for each pair of loci, but
LODSCORE does not analyze more than two loci simultaneously.

The notion of recombination can be generalized to more than two loci. Suppose
G1,Ga,...,Gf are multiple loci occurring in that order. Then we can define a vector
(61,02,...,0,_1), where 6; is the recombination fraction between loci G; and G1.
The ILINK program searches for a maximum likelihood estimate of the multilocus
f vector. Both LODSCORE and ILINK start from a single initial estimate of the

recombination fraction, and use an iterative procedure called GEMINI [9] to find
the maximum likelihood estimate §. Like most iterative procedures, GEMINI can
only guarantee to find a local optimum and not a global optimum.

In contrast, LINKMAP takes multiple values of the 8 vector and computes the
likelihood for each one. The computation of the likelihood for each € and for each
pedigree are essentially independent except for some shared input/output. The
parallel implementation of LINKMAP [19] takes advantage of this observation and
distributes likelihood computations for separate pedigrees and 6 vectors on different
processors. The main challenge is to balance the load among the different processors,
so that each processor is working most of the time.

Since LODSCORE and ILINK start with only one # vector it is not straight-
forward to do subcomputations for different vectors on different processors. In
applications where the goal is to locate a disease gene it is our experience that the
number of different pedigrees tends to be small and most of the computation time
is spent on just one or two pedigrees. Therefore, we need a parallelization strategy
that distributes the likelihood computation for a single pedigree and a single value
of the 8 vector.

We focus on ILINK because that is the program where the runs tend to be
longest and thus where parallel speedup is most needed, but our techniques are
applicable to the other programs as well. Almost all the code we modified is shared

by all the LINKAGE programs.

3 Review of Sequential Likelihood Algorithm

The basic structure of the likelihood computation as done in LINKAGE is outlined
in the section on Numerical and Computerized Methods in [22]. The following
summary describes LINKAGE 5.1 [16] and its faster version [2].

Given a fixed value of 8, the outer loop of the likelihood evaluation iterates over
all the pedigrees calculating the likelihood for each one. Within a pedigree, the
program visits each nuclear family and updates the probabilities of each genotype
for each individual. Associated with each individual is an array genarray indexed
by genotype numbers. The entry genarray[j] initially stores the probability that
the individual has the phenotype associated with genotype j given the genotype j
(normally this will be 1 or 0, except in cases of variable penetrance). There may
be several possible phenotypes if the individual’s phenotype is incomplete in the in-
put. After traversing the part of the pedigree including the individual, genarray[j]
stores the probability that the individual has genotype j and its associated pheno-
type, conditioned on the recombination fraction and on the genotypes of relatives
already visited in the traversal.

Fach update of a nuclear family updates the probabilities for either one parent
conditioned on the spouse and all children, or updates one child conditioned on both
parents and all the other siblings. In both of these update situations the algorithm

starts with a double nested loop that iterates over the genotypes of the two parents,
one loop per parent. One of the improvements made in [2] is that in the case where
there is only one child, the bulk of the computation can be transformed into two
disjoint loops, one on each parent, instead of a double nested loop. A separate gene
array is used to accumulate the contributions from each pair of parental genotypes.
The only arithmetic operations done in accumulating gene are additions and multi-
plications of non-negative numbers, and the contributions for each pair of parental
genotypes are added together. At the end of the loop, the new value of genarray]i]
is set to the old value multiplied by geneli] for all genotypes i. This is, in effect,
an application of Bayes’ Theorem that converts the original unconditioned value of
genarray|i] into a value that is conditioned on the part of the pedigree that has
already been visited.

It will help to think of the double loop iteration space as a square S whose side
length is the number of genotypes. The point (7, j) in the square corresponds to the
first parent having genotype ¢ and the second having genotype j.

There are two biological facts about the genarrays that are relevant both to
the improved sequential algorithms and to our parallelization strategy. First, the
genarrays tend to be sparse because most of the possible genotypes can be ruled
out based on the observed phenotype data. One way in which sparsity is used in
the improved sequential algorithms is to precompute which rows and columns of
S correspond to possible genotypes of each parent, leaving a much smaller iter-
ation rectangle R. Ignoring procedure boundaries, we can think of the loops in
the sequential likelihood calculation as follows. More indentation indicates deeper
nesting.

For each pedigree
For each nuclear family
For double loop over rows and columns of R
Do updates to genarray

As a result, most of the computation time is spent on probability updates for
individuals whose genarrays are not sparse. Such individuals are referred to as
unknowns because we do not know their phenotype at some of the loci being studied.

The second useful biological fact is that the genotypes can be partitioned into
equivalence classes by a relation we call the isozygote relation [2]. Two genotypes
are isozygotes if at each locus they have the same allele(s). Isozygotes differ in the
placement of the alleles on each haplotype; i.e., one isozygote could have A; on the
first haplotype and Ay on the second, while another has Ay on the first haplotype
and A; on the second. Among other things, the computations for different isozygous
genotypes are very similar, and some parts of the computation can be performed
once for all genotypes in the same isozygote class.

4 Parallel Algorithm

In this section we describe our strategy for parallelizing ILINK. The same strategy
can be applied to LODSCORE and LINKMAP. The main theme is that some un-
derstanding of the underlying biology, in particular, the ideas of sparsity and similar
patterns of heterozygosity, are essential to designing a good strategy.

Recall that ILINK takes only one starting € vector and ILINK may have only
one input pedigree. Although two of the data sets we use in the next section have
more than one pedigree, the computation time is dominated by one or two pedigrees.
Therefore, we cannot parallelize by doing different likelihood calculations on different
machines, but must parallelize within the calculation of the likelihood at a specific
f and a specific pedigree.

The genotype probability updates for different individuals are naturally sequen-
tial because the updated probabilities for the ! individual are dependent on the
updates for all the previous individuals visited. Therefore, we want to parallelize
each individual’s probability update.

We mention as an aside that the strict sequential nature of the updates is specific
to the probability update algorithms used in LINKAGE, but only partially inherent
in the original update algorithm of Elston and Stewart [4]. Elston and Stewart
proposed an update order that was strictly bottom-up, which would allow some
updates to be done in parallel. Because of space limitations and other practical
implementation concerns, LINKAGE uses an update order with the invariant that
the nuclear families whose updates have been completed always form a contiguous
subtree of the pedigree. If we want to keep this order, then we cannot update the
probabilities in nonadjacent parts of the pedigree in parallel.

The algorithm is parallelized by splitting up the iteration space over the rectangle
R among the available processors. The single gene array used in the sequential
algorithm is replaced by a number of gene arrays, each one local to a particular
processor. Each processor then accumulates in its local gene array its contributions
to the updated genarray. When a processor finishes computing its contributions,
it waits until all the processors have completed their work. Then one processor
obtains the contributions to gene from each processor, sums them together, and
uses the resulting value of gene to update genarray in the same way as in the
sequential algorithm. Since the contributions for each pair of parental genotypes
are simply added together, they can be accumulated locally by each processor and
summed together at the end. By using a local array to compute the contributions
and summing them at the end, we avoid communication and synchronization at
each update.

In order to achieve good speedups, R needs to be partitioned in a way that
balances the load among the different processors. Different points in R may require
different amounts of computation. For simplicity, suppose that we decide which
processor gets the point (G1,G3) in R based only on the first parent’s genotype,

leading to the following loop structure:

For each pedigree
For each nuclear family
Split up rows of R into p sets
For each processor
Do updates to gene for assigned rows
Synchronize processors to sum update together

We use a fact relating the computation time to the underlying biology in order to
distribute the points in R among the processors with a good load balance. If G and
G| have the same pattern of heterozygosity and G5 and G’ have the same pattern of
heterozygosity, then the sequence of arithmetic operations for the update at (G4, G3)
is similar to that for (G}, GY). Therefore, we distribute the genotypes among the
processors, so that for each heterozygosity pattern, the possible genotypes with that
pattern are distributed evenly among the processors. For reasons unrelated to our
parallel implementation, the genotypes are already ordered so that all the genotypes
with the same heterozygosity pattern are consecutive.

Suppose that Hy, Ho, ... are the possible genotypes of the first parent. To bal-
ance the load we assign the genotypes to processors in a round-robin or striped
fashion: H; goes to processor 1, H; to processor 2,..., H, to processor p, Hpy1 to
processor 1, H,is to processor 2, ..., Hy, to processor p and so on. If the num-
ber of possible genotypes is large, then most of the consecutive sets of p items will
have the same heterozygosity pattern, resulting in good load balancing. When there
is a double loop, we do a striped assignment for the parent corresponding to the
outer loop and the rows in R; within each row, all the genotype pairs in that row
corresponding to different columns get assigned to the same processor. When we
have two separate loops in the one-child case, we get two one-dimensional iteration
spaces, and we do a striped assignment for each parent separately.

There are a few points in the computation where all the processors must syn-
chronize and share their data. One is at the distribution of points in R or the
one-dimensional spaces to all the processors, and another occurs just before we sum
the contributions to gene from each processor. In the case where we are updating
a parent based on its spouse and children, there is one more synchronization point
needed so that an intermediate table can be propagated to all processors. This ta-
ble stores for each haplotype, the probability that the second parent (the one in the
inner loop) passes that haplotype on to a child. This table was introduced in [2] to
speed up the sequential computation.

We applied the idea of sparsity one more time to further improve performance.
Recall from the section discussing the sequential algorithm that most of the running
time in the likelihood calculation is spent on those nuclear families where at least
one parent’s genarray is not sparse. This means that R will have a large area.
We found that when R is sufficiently small, it is actually detrimental to perform
the updates in parallel because of the overhead involved in data distribution and

synchronization. Therefore, for the runs on a network of workstations we defined a
threshold for the size of R; if R is smaller than the threshold, we do the update for
that nuclear family using only one processor. For the experiments we report later,
we set the threshold to be the sum of the two sides of R < 100 for the one-child
case, or the product of the two sides of R < 3000 for the many-child case. We did
not experiment extensively with different thresholds. There were a small number
of nuclear families where the size of R was at or near the threshold. In almost all
cases the size of R is much smaller or much larger than the threshold. Thus minor
variations in the threshold do not result in noticeable changes in performance. When
running on a shared-memory multiprocessor, the cost of synchronization is minimal,
and hence the threshold was set to 0.

5 Methods

We evaluated parallel ILINK on two different types of parallel computers: a network
multicomputer and a shared-memory multiprocessor. A network multicomputer is
simply a cluster of ordinary workstations connected by a general-purpose local area
network, such as ATM, Ethernet, or FDDI (which stands for Fiber Distributed
Data Interface and is a 100 Megabit/s local area network in which the stations are
connected in the form of a ring). In contrast, a shared-memory multiprocessor is
a single machine containing several processors that are connected by a specially-
designed bus or dedicated network.

These two types of parallel computers present different tradeoffs between cost
and performance. On one hand, network multicomputers are cheaper. In fact, in
many laboratories, the required hardware for a network multicomputer is already
present. On the other hand, shared-memory multiprocessors are faster, because they
implement communication and synchronization entirely by hardware. On worksta-
tions, a large software overhead is associated with sending and receiving messages
over the network. For parallel computations where the individual processors commu-
nicate with each other frequently, shared-memory multiprocessors typically achieve
better performance. The advent of faster general-purpose networks is, however,
narrowing the performance gap between workstation networks and shared-memory
multiprocessors.

Besides differences in cost and performance, shared-memory multiprocessors and
workstations also typically present different communications interfaces. In a net-
work multicomputer, processors communicate by passing messages with send and
receive operations. A shared-memory multiprocessor supports communication by
reading and writing shared memory. Fundamentally, neither mechanism is more
powerful than the other. Either mechanism can be used to simulate the other
through software. However, most sequential programs, including ILINK, are more
easily parallelized in terms of shared memory. To use message passing, the program-
mer must write additional code to copy data into and out of message buffers and

perform send and receive operations.

Motivated by the difficulty of writing message passing programs, we have devel-
oped a software distributed shared memory (DSM) system for network multicom-
puters called TreadMarks [7]. In essence, TreadMarks provides a shared memory
abstraction to the programmer, and implements this abstraction efficiently using
the underlying message passing system [8, 3]. Thus the programmer writes the pro-
gram as if it were intended for a shared-memory multiprocessor, but the Tread Marks
system enables the program to run on a network multicomputer.

At the present time, TreadMarks is still under development. We expect it to be
ready for distribution some time in 1994. TreadMarks will be made available at low
cost to universities and nonprofit institutions. At that time, we intend to distribute
the parallel LINKAGE code that runs on top of TreadMarks.

The network multicomputer used to perform our evaluation of parallel ILINK
consists of 8 DECstation-5000/240 workstations, each with 16 Mbytes of memory,
running the Ultrix version 4.3 operating system. All of the workstations are con-
nected to an Ethernet and a high-speed ATM network. TreadMarks can utilize
either the Ethernet or the ATM network. The interface for Ethernet is a standard
component of the workstation. The interface for ATM is a Fore Systems TCA-100
network adapter card supporting communication at 100 Megabit /s.

The shared-memory multiprocessor used to perform our evaluation of parallel
ILINK is a Silicon Graphics Iris 4D /480 with 128 Mbytes of memory running the
IRIX Release 4.0.1 System V operating system. This machine has 8 processors that
communicate via a dedicated bus.

An important aspect of our evaluation is that the DECstation-5000/240 and
the SGI Iris 4D /480 use the same type of processor running at the same speed. In
addition, we used the same compiler, gcc 2.3.3 with -O flag for optimization, on both
machines. The only significant difference between the two parallel computers is the
method for implementing shared memory: dedicated hardware versus software on
message-passing hardware.

6 Results

We present speedups for parallel LINKAGE with several input data sets. Unipro-
cessor execution times are given as well so that execution time differences may be
inferred. We use two different network types - the commonly available Ethernet net-
works and the emerging ATM networks. The performance obtained on a network
of workstations is then compared to the performance on a shared-memory machine
with identical processor power.

We use two disease data sets from [2] and a new data set:

e RPO01: data on a large family, UCLA-RPO01, with autosomal dominant retini-
tis pigmentosa (RP1) from the laboratory of Dr. Stephen P. Daiger at the
University of Texas Health Science Center at Houston. This pedigree has 7

10

generations with 189 individuals containing 2 marriage loops [1]. There are 86
individuals that are unknown at some loci. As shown in [1], this pedigree had
to be split into three pieces because computation on the whole family together
was prohibitively long. RP01-3 denotes the analysis with the family split in
three pieces.

e BAD: dataon a portion of the Old Order Amish pedigree 110 (OOA 110), with
bipolar affective disorder (BAD) from the laboratory of Drs. David R. Cox and
Richard M. Myers at the University of California at San Francisco. This pedi-
gree spans 5 generations with 96 individuals and contains 1 marriage loop [18].
Data is available for three loci, the disease locus (number 1) and two others.
15 individuals are unknown at locus 2 and those same 15 plus 3 more are
unknown at locus 3.

e CLP: Data on 12 families with autosomal dominant nonsyndromic cleft lip and
palate (CLP) from the laboratory of Dr. Jacqueline T. Hecht at the University
of Texas Health Science Center at Houston. Diagrams of the families are shown
in [6]. Subsequent to that paper data was collected on 9 more individuals aug-
menting 4 of the families. The families include 110 individuals in all. We list
for each family, the identifying number given in [6], the number of individuals,
the number of generations, and the number of individuals that are unknown at
at least one of the loci we used: [(100,9,2,1) (300,4,2,0) (500,6,2,0) (600,7,3,0)
(700,9,3,1) (800,7,3,1) (900,8,3,1) (1000,17,3,3) (1100,22,3,12) (1200,11,2,2)
(1400,6,2,3) (1500,4,2,0)]. The computation time is dominated by pedigrees
1000 and 1100 because of the larger size and the unknowns, although pedigree
1200 has a marriage loop.

The loci chosen for the RP01-3 data set have an allele product of 2x6 x 9. Those
for the BAD and CLP data sets have allele products of 2 x4 x 4, and 2 x 4 x 4 X 4,
respectively. In all cases, the 2-allele locus is the disease locus, and these runs
represent real runs one might want to execute in locating the disease gene.

In addition, we also compare the program on different sets of loci from the same
pedigree set. In particular, we use three different sets of loci from the RP01-3 data
set, with allele products 2x6x6, 3xX5x2x3, and 2x6x9. This comparison shows how
the running time changes as the allele product changes, but other factors stay the
same. This is motivated by a common usage pattern for the LINKAGE programs.
Once a set of pedigree information is collected, it is common for geneticists to do
many linkage analysis runs on it, changing the set of loci each time.

The speedup figures are based on one-processor execution times for the faster
version of ILINK used in the tests for [2], but run on a DECstation-5000. Table 1
presents the uniprocessor execution times on the DECstation-5000 workstations.
All execution times are reported in seconds. In all the speedup graphs (Figures 1
to 6) the horizontal axis represents the number of processors and the vertical axis

11

RP01-3 | RPO1-3 | RP01-3 | BAD CLP
2x6x6 | 3xHx2x3 2x6x9 | 2x4x4 | 2x4x4x4
901 10005 4805 848 6388

Table 1: Uniprocessor Execution Times in Seconds on the DECstation-5000/240

Speedup
S
NN FEE PR FETEl R R

Processors

* BAD 4 RP01-3 © CLP

Figure 1: Speedup on an Ethernet Network - Different pedigrees

represents the speedup. The parallel version described here (with the code reorga-
nization for load balancing and extra TreadMarks code) ran in approximately the
same time on one processor as the sequential version of the code. The difference
in running time was always a few seconds compared to the thousands of seconds
of total execution time. Thus the use of TreadMarks code does not slow down the
execution for one processor.

Figure 1 shows speedups for a run from each of the three data sets described on
an Ethernet network. In Figure 2 we plot the speedups obtained on an Ethernet
network using the three different sets of loci from the RP01-3 data set.

Figures 3 and 4 present speedups using an ATM network in place of the Ethernet
network with the same runs as in the previous figures. While the performance of
the program on an Ethernet network is reasonable, better speedups are obtained
with the ATM network. The faster network removes part of the communication
bottleneck, closing the gap in performance between different data sets and loci.

To determine the difference between the performance obtained using a network
of workstations and the performance that is possible on a hardware shared-memory
system, we present results for the same program running on an SGI shared-memory
multiprocessor. Figures 5 and 6 show that the speedups achieved are slightly better

12

(o2}
Ll

Speedup
N

N
ta e

Processors

* 2X6X6 & 3x5x2x3 © 2x6x9

Figure 2: Speedup on an Ethernet Network - RP01-3 pedigree, different loci

7]
6 —
5 / """"
s] 4
Q| 4 i
8]
%)] A
] /t
2] K P
1 7~
-,A’"‘/
1
1 2 3 4 5 6 7 8

* BAD 4 RP01-3 © CLP

Figure 3: Speedup on an ATM Network - Different pedigrees

13

Speedup
S
S EREEl FETEE FETEE PR PR

Processors

- 2xX6X6 & 3x5x2x3 © 2x6x9

Figure 4: Speedup on an ATM Network - RP01-3 pedigree, different loci

RP01-3 | RPO1-3 | RP01-3 | BAD CLP
2x6x6 | 3xHx2x3 2x6x9 | 2x4x4 | 2x4x4x4
904 9585 4808 936 6208

Table 2: Uniprocessor Execution Times in Seconds on an SGI Multiprocessor

than those obtained using the ATM network for the larger problems. On the smaller
problems, the SGI machine does much better. The SGI uniprocessor execution times
are presented in Table 2.

Two factors contribute to the less than perfect speedup observed in the experi-
ments: load imbalance and — on TreadMarks — communication overhead.

Perfect load balancing cannot be achieved because of imperfect knowledge of the
combined genotypes possible for the two parents. While our load balancing strategy
takes advantage of the sparsity of each parent’s genarray, it may be the case that
a pair of genotypes (¢,7) is not simultaneously possible, although 7 is possible for
the first parent and j is possible for the second parent. An alternative strategy
would be to determine the possible combinations on the master processor before
distributing the work. The increase in sequential computation would, however,
outweigh the benefits of better load balancing. Load imbalance as a result of the
unequal assignment of possible genotype pairs is present to some degree in all the
data sets.

The problem of deciding whether a pair of parental genotypes (¢, 7) is compatible
with the children is different from the problem of genotype elimination as addressed
in [12] or in the unknown preprocessor program that is part of LINKAGE. The

14

L

Speedup
s

L1
s

Processors

* BAD & RP01-3 ©- CLP

Figure 5: Speedup on an SGI Multiprocessor - Different pedigrees

11

L1

Speedup
s

L1
Y

Processors

X 2X6X6 & 3x5x2x3 € 2x6x9

Figure 6: Speedup on an SGI Multiprocessor - RP01-3 pedigree, different loci

15

distinction can best be illustrated with a trivial one-locus, two-allele, one-child ex-
ample. Let the parents be p and ¢ and the child be r. Suppose that for each of p
and ¢ the possible genotypes are {1|2,2|2} and that r’s genotype is known to be 1]2.
From this information it can be inferred that it is not simultaneously possible that
both p and ¢ have genotype 2|2, but it is possible that either one has genotype 2|2,
while the other has genotype 1|2. Such a situation is detected within the likelihood
calculation itself and not by any genotype elimination algorithm. Genotype elimi-
nation algorithms only eliminate genotypes that an individual cannot have; they do
not eliminate combinations of genotypes that collections of individuals cannot have
simultaneously. It would require too much storage to precompute the set of pos-
sible genotype combinations for all nuclear families, even for moderate-size 3-locus
problems.

Communication overhead adds to the decline in speedup on TreadMarks. The
effect of communication overhead on the speedup depends on the input pedigree and
the loci for which the 8 vector is being estimated. As the number of possible alleles
increases, the length of the computation increases with little change in the amount
of data communicated, resulting in improved speedups. The run with 4 loci takes
much longer because it takes many more likelihood estimates to converge, but the
time per likelihood estimate is comparable to the large 3-locus run.

In addition, the presence of loops in the pedigreee can further increase the com-
munication rate. One example is BAD. Much of BAD’s complexity comes from the
presence of the loop in the pedigree rather than a high allele product. The way that
LINKAGE handles loops in the pedigree is that the input format designates one
individual to be the loop breaker. For each evaluation of the likelihood estimate,
LINKAGE does a separate traversal of the pedigree for each genotype that the loop
breaker individual may have. Thus, one evaluation of the likelihood estimate may
include many pedigree traversals. In each traversal each nuclear family update is
parallelized as before, resulting in many small pieces of work and large communica-
tion overhead. For more details on how LINKAGE handles loops see pages 170-171
of [22].

As discussed in the section describing the parallel algorithm, when the size of
the reduced iteration rectangle R drops below a threshold, the TreadMarks version
performs the computation sequentially to avoid high communication overheads. Al-
though this method reduces communication, it leads to further load imbalance in
the TreadMarks version. This contributes to our algorithm’s poor performance on
BAD. This explanation is supported by the imbalance in synchronization wait times
between the master processor that performs the sequential computation and all the
other processors (a ratio of 1 to 6.5 on average in wait times at 8 processors on
the ATM network). However, performing all the computation in parallel only re-
sults in worse speedup because of the small amount of computation relative to the
communication overhead.

For each of the runs and data sets on the ATM network, Table 3 provides the

16

Procs RPO1-3 | RP0O1-3 | RP01-3 | BAD CLP
2x6x6 | 3x5x2x3 2x6x9 | 2x4x4 | 2x4x4x4

2 msgs/sec 74 31 26 101 12
Yowaittime 5.7 4.3 3.1 10.0 2.2

4 msgs/sec 477 225 189 533 80
Yowaittime 14.1 10.7 7.5 20.4 8.7

8 msgs/sec 2019 1099 1042 | 1800 449
Yowaittime 25.7 26.1 17.1 33.3 20.0

Table 3: Overhead Statistics on an ATM Network

average number of messages per second (msgs/sec), and the percentage of total run-
ning time that each processor on average spends waiting at synchronization points
(#waittime). The number of messages per second and the percentage wait time
increase with increasing number of processors, explaining the decreasing slope of
the speedup curves.

The data in Table 3 also allows us to derive a quantitative estimate of the
relative contributions of load imbalance and communication overhead to the decline
in speedup on both the SGI and the ATM network. The formula

speedup = 8 X (1 — %waittime/100)

estimates the speedup if load imbalance were the only limiting factor and communi-
cation overhead were negligible. Focusing on the results with 8 processors, Table 4
shows that this predicted speedup matches very well with the observed speedup on
the SGI for all data and input sets. In order to estimate the effect of communication
overhead on the speedup, we assume that the reduction in speedup is linear in terms
of the number of messages per second, or

speedup = 8 x (1 — %waittime/100) — F X msgs/sec

where Fis determined by a least squares fit. Again, the match between the predicted
speedups and the speedups observed on the ATM is remarkable (see Table 5). These
derivations, although approximate, confirm our basic conclusions: Speedup on the
SGI is limited by load imbalance, while speedup on the ATM network is limited by
a combination of load imbalance and communication overhead.

The experiments show that our parallel algorithm does a reasonable job of bal-
ancing the load between processors, and can achieve good speedups on runs that have
a large computation-to-communication ratio. While some speedup can be obtained
using the Ethernet, performance closer to that of a shared-memory multiprocessor
is possible using an ATM network on large runs. For small runs, such as BAD, it is
not clear that a parallel implementation of any sort is of much benefit.

ATM networks are gaining popularity because they are suitable for use in both
high-performance local-area and wide-area networks. Qur experiments show that

17

RP01-3 | RPO1-3 | RP01-3 | BAD CLP

2x6x6 | 3x5Hx2x3 2x6x9 | 2x4x4 | 2x4x4x4
Estimated speedup 5.94 5.91 6.63 5.34 6.40
Observed speedup 5.61 6.26 6.64 5.41 6.23

Table 4: Estimated and Observed Speedup on SGI: 8 Processors

RP01-3 | RPO1-3 | RP01-3 | BAD CLP

2x6x6 | 3x5Hx2x3 2x6x9 | 2x4x4 | 2x4x4x4
Estimated speedup 3.47 4.56 5.35 3.14 5.85
Observed speedup 3.49 4.83 5.38 3.15 5.73

Table 5: Estimated and Observed Speedup on ATM Network: 8 Processors

for linkage analysis, the performance of a shared-memory multiprocessor can be
obtained at a fraction of the cost, without compromising the convenient shared
memory abstraction presented to the programmer.

To be a little more quantitative about price/performance, in the Fall of 1992,
the cost ratio was approximately 1:2:3 comparing 8 DECstations connected by Eth-
ernet, 8 DECstations connected by ATM, and the SGI 4D /480, respectively, with
prices falling for the ATM network and the shared-memory multiprocessor. Aver-
aged over all data and input sets, the speedups achieved on 8 processors are 3.3
for the Ethernet, 4.5 for the ATM network, and 6.0 for the SGI. Although such
comparisons need to be taken with a grain of salt, the Ethernet currently offers the
best price/performance ratio, while the SGI offers the best performance.

7 Discussion

The structure of general pedigree linkage computations using the likelihood method
does not lend itself very well to vector processing or fine grain parallel processing.
A coarse-grain parallel machine, where a large memory is provided with each pro-
cessor, is more suitable for programs such as LINKAGE. We have shown that using
TreadMarks, a new distributed shared memory system, has resulted in significant
performance improvement on all types of genetic linkage analysis problems. This
includes problems involving a small number of pedigrees. Large single pedigrees fre-
quently are the basis of disease studies and require some of the longest computation
times. Performance results for this type of problem are specifically covered in the
previous section.

Genetic linkage analysis is computationally intensive. With the recent growth
in the number and informativeness of genetic markers, computation times have in-
creased dramatically. Our research into ways to reduce computation time previously
led to improvements in the sequential algorithms. Here, we demonstrate a general
purpose method for processing the LINKAGE programs in paraellel on a network

18

of workstations that further reduces computation time as the number of available
Processors grows.

We presented a parallelization strategy that works even for single pedigrees and
single starting vectors. Our strategy makes good use of the underlying biological
theory and focuses on getting good speedup for long runs. Nevertheless, we are ex-
ploring some modifications of our strategy in the hopes of further improving parallel
performance. We give three examples.

When ILINK estimates the partial derivatives of the likelihood function in mul-
tilocus analysis, a separate likelihood evaluation is done for each dimension of the 6
vector. These evaluations could be done in parallel.

The pedigree traversal and nuclear family updates are very similar for each choice
of 8. Therefore, it might make sense to measure the time of a given distribution of
work among the processors at one function evaluation and use the timing results to
better distribute the work on the next function evaluation.

The final idea in our parallelization strategy was to do a threshold test on the
size of the iteration space R. Based on the result of the test we either used all
processors or only one processor to do that update. One might consider a variety
of options for how many processors to use (e.g., 2, 3, 4, or more) depending on the
size of R.

As shown above, the parallel implementation provides a reasonable speedup for
the number of available processors. Speedups improve as the size of the computation
involved increases. Because the two methods of speed improvement, algorithmic
and now parallel processing are implemented in completely independent ways, the
speedups compound.

As TreadMarks becomes a mature software package we intend to organize large
numbers of workstations on our local network for processing long linkage analyses.
Because most workstations have a large amount of free cycles available, especially
at night and on weekends, we would make use of these for linkage problems. If our
local efforts are successful, we may wish to expand the network more broadly for
very large problems and organize a linkage analysis consortium over Internet.

This effort confirmed our experience that a synthesis of the biology and computer
science knowledge relevant to the problem is necessary to make linkage analysis soft-
ware run much faster. We concur with the authors of [19] that to parallelize the
LINKAGE programs effectively, the programmer must put ezplicit parallel instruc-
tions in the programs using knowledge of the underlying genetic application domain.
Automatic parallelization tools and blind reliance on massive hardware installations
are no substitute for human reasoning about the genetics and the algorithms.

Acknowledgments

We thank Dr. Stephen P. Daiger, Dr. Lori A. Sadler, Dr. David R. Cox, Dr. Richard
M. Myers, Dr. Susan H. Blanton and Dr. Jacqueline T. Hecht for contributing the

19

disease family data for our experiments. Development of the RP data was supported
by grants from the National Retinitis Pigmentosa Foundation and the George Gund
Foundation. The Amish family data was developed with the support of a grant from
the National Institutes of Health. Development of the CLP data was supported by
grants from the National Institutes of Health and Shriners Hospital. We thank Dr.
Michael Scott at the University of Rochester for providing us access to their Silicon
Graphics multiprocessor. The machine was purchased with funds from a National
Science Foundation grant. We thank Honghui Lu for her work in getting the linkage
programs running on the SGI. This work was supported by grants from the National
Science Foundation, the Texas Advanced Technology Program, the Human Genome
Program of the National Institutes of Health, and the W. M. Keck Foundation.

References

[1] S. H. Blanton, J. R. Heckenlively, A. W. Cottingham, J. Friedman, L. A. Sadler,
M. Wagner, L. H. Friedman, and S. P. Daiger. Linkage mapping of autosomal
dominant retinitis pigmentosa (RP1) to the pericentric region of human chro-
mosome 8. Genomics, 11:857-869, 1991.

[2] R. W. Cottingham Jr., R. M. Idury, and A. A. Schiffer. Faster sequential
genetic linkage computations. American Journal of Human Genetics, 53:252—
263, 1993.

[3] S. Dwarkadas, P. Keleher, A.L. Cox, and W. Zwaenepoel. Evaluation of release
consistent software distributed shared memory on emerging network technol-
ogy. In Proceedings of the 20th Annual International Symposium on Computer
Architecture, pages 144-155, May 1993.

[4] R. C. Elston and J. Stewart. A general model for the analysis of pedigree data.
Human Heredity, 21:523-542, 1971.

[5] T. M. Goradia, K. Lange, P. L. Miller, and P. M. Nadkarni. Fast computation of
genetic likelihoods on human pedigree data. Human Heredity, 42:42-62, 1992.

[6] J. T. Hecht, Y. Wang, B. Connor, and S. H. Blantonand S. P. Daiger. Non-
syndromic cleft lip and palate: No evidence of linkage to hla or factor 13a.
American Journal of Human Genetics, 52:1230-1233, 1993.

[7] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. Treadmarks: Dis-
tributed shared memory on standard workstations and operating systems. To
appear in Proceedings of the 1994 Winter USENIX Conference, 1994.

[8] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for software
distributed shared memory. In Proceedings of the 19th Annual International
Symposium on Compuler Architecture, pages 13-21, May 1992.

20

[9] J. M. Lalouel. GEMINI - a computer program for optimization of general
nonlinear functions. Technical Report 14, University of Utah, Department of
Medical Biophysics and Computing, Salt Lake City, Utah, 1979.

[10] E. S. Lander and P. Green. Construction of multilocus genetic linkage maps in
humans. Proc. Natl. Acad. Sci. USA, 84:2363-2367, 1987.

[11] E. S. Lander, P. Green, J. Abrahamson, A. Barlow, M. J. Daly, S. E. Lin-
coln, and L. Newburg. MAPMAKER: An interactive computer package for

constructing primary genetic linkage maps of experimental and natural popu-
lations. Genomics, 1:174-81, 1987.

[12] K. Lange and T. M. Goradia. An algorithm for automatic genotype elimination.
American Journal of Human Genetics, 40:250-256, 1987.

[13] K. Lange, D. Weeks, and M. Boehnke. Programs for pedigree analysis:
MENDEL, FISHER, and dGene. Genetic Fpidemiology, 5:471-473, 1988.

[14] K. Lange and D. E. Weeks. Efficient computation of lod scores — genotype
elimination, genotype redefinition, and hybrid maximum likelihood algorithms.
Annals of Human Genetics, 53:67-83, 1989.

[15] G. M. Lathrop and J. M. Lalouel. Easy calculations of lod scores and genetic
risks on small computers. American Journal of Human Genelics, 36:460-465,
1984.

[16] G. M. Lathrop, J. M. Lalouel, C. Julier, and J. Ott. Strategies for multilocus
linkage analysis in humans. Proc. Natl. Acad. Sci. USA, 81:3443-3446, June
1984.

[17] G. M. Lathrop, J. M. Lalouel, C. Julier, and J. Ott. Multilocus linkage analysis
in humans: detection of linkage and estimation of recombination. American
Journal of Human Genelics, 37:482-498, 1985.

[18] A. Law, C. W. Richard III, R. W. Cottingham Jr ., G. M. Lathrop, D. R. Cox,
and R. M. Myers. Genetic linkage analysis of bipolar affective disorder in an
old order amish pedigree. Human Genelics, 88:562-568, 1992.

[19] P. L. Miller, P. Nadkarni, J. E. Gelernter, N. Carriero, A. J. Pakstis, and
K. K. Kidd. Parallelizing genetic linkage analysis: A case study for applying
parallel computation in molecular biology. Computers and Biomedical Research,
24:234-248, 1991.

[20] J. Ott. Estimation of the recombination fraction in human pedigrees— efficient
computation of the likelihood for human linkage studies. American Journal of
Human Genetics, 26:588-597, 1974.

21

[21] J. Ott. A computer program for linkage analysis of general human pedigrees.
American Journal of Human Genetics, 28:528-29, 1976.

[22] J. Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University
Press, Baltimore and London, 1991. Revised edition.

[23] M.S. Vaughan. A distributed approach to human genetic linkage analysis. M.S.
Thesis, Department of Computer Science, Duke University, 1991.

22

