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Abstract

We describe four improvements we have implemented in a version of the genetic
linkage analysis programs in the LINKAGE package: subdivision of recombination
classes, better handling of loops, better coordination between the optimization and
output routines, and a checkpointing facility. The unifying theme for all the im-
provements is to store a small amount of data to avoid expensive recomputation
of known results. The subdivision of recombination classes improves on a method
of Lathrop and Lalouel [Amer. J. Hum. Genetics 42(1988), pp. 498-505]. The new
method of handling loops extends a proposal of Lange and Elston [Hum. Hered.
25(1975), pp. 95-105] for loopless pedigrees with multiple nuclear families at the
earliest generation. From a practical point of view, the most important improve-
ment may be the checkpointing facility which allows the user to carry out linkage
computations that are much longer than the mean-time-to-failure of the underlying
computer.



1 Introduction

Linkage analysis was fully thrust into the computer age by the discovery of
the Elston-Stewart [3] algorithm for pedigree traversal and its implementation in
LIPED [11]. From a computer science perspective, the reason the Elston-Stewart
algorithm works efliciently is that it avoids recomputation on subtrees of the pedi-
gree by traversing bottom-up towards the root. In this paper we further advance the
theme of avoiding recomputation in linkage analysis by describing four improvements
of that genre that we have implemented in programs in the LINKAGE package.

Although the Elston-Stewart algorithm made a host of linkage problems compu-
tationally tractable for the first time, geneticists still want to solve computationally
intractable linkage problems. The computational requirements caused by better
data collection methods and the desire to do multilocus analysis have grown at a
much greater rate than the speed of readily available computers.

We continue an investigation started in [2] concerning better sequential algo-
rithms for linkage analysis. That paper showed significant hope that better algo-
rithms can make much bigger linkage analysis problems computationally tractable.
As in [2], we demonstrate the improvements described herein by implementing them
in some of the programs in the LINKAGE software package and show the improve-
ments in computation time experimentally. LINKAGE [7, 9] is one of the most
popular linkage analysis packages and is particularly useful for multilocus analysis
of large disease pedigrees.

The four improvements described herein are:

1. Subdivision of recombination classes.
2. More efficient multiple traversals of pedigrees with loops.
3. Better coordination between the optimization routine and the output routine.

4. A checkpointing facility that allows the user to restart a “crashed” computa-
tion near the point where the crash occurred.

The first two improvements can be viewed as general algorithmic improvements
based on proposals in the literature, while the latter two improvements correct
weaknesses specific to programs in LINKAGE. The subdivision of recombination
classes improves on a proposal of Lathrop and Lalouel [8] that was implemented in
LINKAGE. The new loop algorithm extends a proposal of Lange and Elston [6] for
handling loopless pedigrees with multiple nuclear families at the earliest generation
(Lange and Elston called such a pedigree complez).

All four improvements help by avoiding recomputation of already known val-
ues. The first three improvements speed up uninterrupted runs. The checkpointing
facility avoids significant recomputation when the computer crashes.

In terms of practical benefit to the LINKAGE user, the checkpointing facility
may be the most significant of the improvements, because it drastically increases



the size of linkage problems that can be solved reliably on inherently unreliable
computers.

We have implemented the changes described herein in the already improved
versions of the LINKAGE programs described in [2], however they are essentially
independent of our previous work. Our modified programs are in C. The improved
LINKAGE programs are available by anonymous FTP from a computer at Rice
University (Current instructions: ftp softlib.cs.rice.edu, cd linkage/fastlink, get files
from that subdirectory; contact the first author by e-mail at schaffer@cs.rice.edu for
further assistance).

The rest of this paper is organized as follows. Section 2 gives relevant background
on the LINKAGE programs. Sections 3 through 6 describe the four improvements.
Sections 7 and 8 validate the improvements. We conclude with a short discussion.

2 Summary of LINKAGE and Related Work

A thorough treatment of genetic linkage analysis, including a summary of the LINK-
AGE programs, is given in Ott’s monograph [12]. In this section we review a few
facts about LINKAGE relevant to this paper. The most fundamental goal in linkage
analysis is to compute the probability, 8, that a recombination occurs between two
genes G; and G.

The LINKAGE package contains four linkage analysis programs: LODSCORE,
ILINK, LINKMAP, and MLINK. The improved sequential algorithms in [2] are
applicable to all the programs. The four changes described here are applicable to
LODSCORE and ILINK. The improved handling of recombination classes and loops
are also applicable to LINKMAP and MLINK.

The LODSCORE program searches for the maximum likelihood estimate, é,
of the recombination probability between two genes. For each candidate 6, its
likelihood is computed with respect to the input pedigree(s). Given a set of loci,
LODSCORE will estimate @ for each pair of loci.

The notion of recombination can be generalized to more than two loci. Suppose
G1,Ga,...,G, are multiple gene loci occurring in that order. Then we can define
a vector (8',0%,...,0"1), where the component #' is the recombination fraction
between loci G; and G;41. We use superscripts here because later éZ will represent
the ith estimate, in a sequence of estimates, to the 8 vector. We will use n to repre-
sent the number of loci. The ILINK program searches for the maximum likelihood
estimate of the multilocus 8 vector.

Both LODSCORE and ILINK start from an initial solution and use an iterative
procedure called gemini [5] to find the estimate f. Like many iterative optimization
procedures, gemini can only guarantee to find a local optimum and not a global
optimum. After gemini computes a locally optimal é, an output procedure outf is
called to report é, the likelihood, and a variety of other statistics. The interaction
between gemini and outf will be discussed more in Section 5.



The function that computes a combined likelihood for all the pedigrees and
reports the value —2 x log(likelihood) (offset by an additive scaling term) is called
fun. The programs try to maximize the value of the likelihood, but because of
the minus sign, this corresponds to minimizing the value of fun. FEach time a
new candidate vector 0}, provably better than previous candidates (él, .. .,éi_l), is
generated this is called an iteration and the value of fun at the new 6; is reported
on the screen along with some diagnostics.

In different iterations there may be a variable number of calls to fun. We denote
a call to fun by FE, short for function evaluation. FEach iteration of gemini has
two phases. The first phase searches for a new estimate to 6 that improves on the
estimate from the previous iteration. The second phase estimates the gradient at the
the current § by perturbing one dimension at a time. Qur experiments suggest that
the first phase often takes two FEs, but there is no upper bound on the number of
FEs needed. The gradient estimation usually takes n — 1 FEs if forward differences
are used and 2 (n — 1) if central differences are used. The two gradient estimation
methods are discussed in [8]. There are a few exceptions; e.g., if  for males and
females are assumed to be distinct then the number of FEs for the second phase is
doubled.

In contrast to LODSCORE and ILINK, LINKMAP and MLINK take multiple
values of the # vector and computes the likelihood for each one. The computation
of the likelihood for each input value and for each pedigree are essentially indepen-
dent except for some shared input/output. Thus if the computation crashes in the
middle, all the likelihood calculations that were completed do not need to be redone
(provided the results were written to a file before the crash); This explains why
there is little need to use a checkpointing scheme within LINKMAP and MLINK.

The basic structure of the likelihood computation is outlined in the section on
Numerical and Computerized Methods in [12]. Inside the loop over pedigrees, the
programs traverse a pedigree updating the probabilities of each joint genotype for
each individual. There are several different updating routines, but they all start
with a double nested loop over the possible genotypes for one parent and then the
other parent.

Associated with each individual is an array genarray indexed by joint genotype
numbers. We assume that the alleles at each locus, the haplotypes, and the geno-
types are encoded by numbers. The specific encoding scheme used in the programs
is not important here. We denote the number of haplotypes by h. The number of
genotypes is denoted by g = h x (h + 1)/2. The reason for this formula is that a
genotype is formed by choosing two haplotypes to make the two strands. If the two
strands are different and we think of drawing the genotype as a diagram, then the
strand that has the lower allele number at the first heterozygous locus is declared
by convention to be the left strand; and the strand with the higher allele number
at the first heterozygous locus is declared to be the right strand.

The size of a genarray is g. For our first improvement it is useful to understand



that generally h is at most in the hundreds, even on long runs, but g may be in
the tens or hundreds of thousands. The entry genarray[j] initially stores a scaled
version of the probability that the individual has the phenotype associated with
genotype j given the joint genotype j. After traversing the part of the pedigree
including the individual, genarray[j] stores the probability that the individual has
genotype 7 and its associated phenotype, conditioned on the genotypes of relatives
already visited in the traversal and the recombination fraction. Following the no-
tation of Lathrop and Lalouel [8], suppose we are updating the probability that
individual with phenotype X has joint genotype G, conditioned on the collective
joint genotypes Y of the relatives that have already been traversed and a candidate
f. Then the update rule is:

P(X,G|Y,0) = P(X | G)P(G|Y, 9).

If we could compute with arbitrary precision, then P(X | G) would be the contents
of genarray[G| before the update, and P(X,G | Y,0) would be the contents after.
However, the probability computed is generally so small that underflow is a danger.
Therefore, LINKAGE scales all the values in genarray and undoes the scaling at
the very end of the likelihood computation.

3 Subdividing Recombination Classes

In this section, we describe how we improved the use of recombination classes, as
previously proposed in [8]. We first need to review what recombination classes are
and how they are used inside the likelihood computation. Throughout this section,
we assume that all sample parental genotypes are heterozygous at all loci. In the
issues discussed here, the homozygous loci can be ignored since we know what the
child will inherit at homozygous loci. For this section we assume we are working on
a computation for an autosomal chromosome.

We define a recombination pattern to be a vector of length n—1 with value 0 or 1
at each position. Given a genotype for a parent, the recombination pattern restricts
which haplotypes the child may inherit. If we fix the allele inherited at locus 1, we
then interpret 0 in position ¢ to mean that the child inherits the allele from locus
t+ 1 from the same strand as the allele from locus ¢; i.e., no recombination occurs
between loci 7 and ¢z + 1. We interpret 1 in position ¢ to mean that recombination
does occur between loci 7 and 7 + 1.

For example, suppose that the parent has a 3-locus phase known genotype of
(1]2,3]4,5]| 6). If inheritance follows the recombination pattern (1,0), then
the child could inherit either of the haplotypes (1,4,6) or (2,3,5) depending on the
choice of allele at the first locus.

Recall from Section 2 that the update of a nuclear family starts with two loops
over the possible genotypes of each parent. Let G be a possible genotype for parent
1 and G5 a possible genotype for parent 2. Let R; and Rj be recombination patterns.



Let the two haplotypes that an untyped child can inherit from G, consistent with
pattern Ry be Hy; and Hy,. with the second subscript indicating whether the allele
at locus 1 is inherited from the left strand or the right. Similarly, let Hy and H,
be the two haplotypes that the child can inherit from G5 consistent with Rj.

Lathrop and Lalouel defined a recombination class to be the set of four genotypes
formed from the haplotype pairs { Hy;Hyy, HyHor, Hi Hop, HiHo, }. These are the
four genotypes that a child might inherit from parents with genotypes G and G,
if recombination patterns Ry and Ry apply.

For each recombination class, inside an inner loop we need to compute the sum

genarray [Hq Hy |+ genarray, [Hq1Hy,|+genarray, [Hi, Hy| +genarray [H1, Ha,l,

where genarray, is the array of genotype probabilities for a child ¢. Such a sum is
done for each child in a nuclear family, except possibly the first. Many recombination
classes (viewed as unordered sets) contain exactly the same genotypes. Therefore,
in very early versions of the LINKAGE programs the same sum was being redone
for every identical class. By rearranging the order of the computation, Lathrop and
Lalouel did all the identical classes consecutively, so that for each different class the
four-term sum is done only once.

It should be emphasized that the above sum involves 3 floating-point additions
and is in a deeply nested loop; versions of the sum (with different array indices and
different children) are done tens of millions of times, or more, on long LINKAGE
computations. Therefore, we look at the sum very, very closely and find more
opportunity to eliminate duplicate additions. In the sex-linked case, the four-term
sum becomes a two-term sum and there is no better way to compute it.

Suppose we consider a different possible genotype GY for the second parent, while
keeping the first parent the same. In practice, such a change happens frequently
because, we loop over all possible genotypes for parent 2 is inside the genotype loop
for parent 1. The new 4-term sum will be

genarray [Hq H}| +genarray [Hy H), |+ genarray [Hy,H}|+genarray [Hi, H),].

The change from G5 to GY, may change all four genotypes in the recombination class,
but it can be more usefully viewed as a substitution of the haplotype H}, for Hy
and a substitution of the haplotype H)_ for H;,. To promote the latter view, let us
reorganize the previous quadruple sum as follows

(genarray [Hy H})|+genarray [Hy, HY))])+(genarray [Hy H), |+genarray [Hy, Hj. ).

Notice that if we fix G, Ry, and ¢, each parenthesized pair sum depends only on a
haplotype for parent 2. Three important consequences are:

1. Even though, each quadruple sum like our first sum is done only once, the
pair sums parenthesized in our third sum occur in many quadruple sums and
are being redone many times.



2. If we could precompute each possible pair sum, the sum in the inner loop
would become a single floating point addition of two terms rather than a triple
floating point addition of four terms.

3. If we fix 1, the number of possible pair sums needed is at most
(number of recombination patterns X number of children X maxhap),
which is reasonable as long as the number of loci is 5 or less.

Therefore, once inside the first loop, where G is fixed, we compute a table of
all the possible pair sums. Inside the innermost loop, the triple sum becomes a sum
of two terms from our table.

In pseudocode: the old algorithm looks like:

For each possible genotype G of parent 1
For each possible genotype G5 of parent 2
Do probability update with many 4-term sums
and the new algorithm (calling the table for child ¢ T.) looks like:
For each possible genotype G of parent 1
For each haplotype H
T.[H] — genarray.[Hy H]| + genarray, [Hy, H]|
For each possible genotype G5 of parent 2
Do probability update with 2-term sums

where the typical 4-term sum:
genarray [Hq Hy |+ genarray, [Hq1Hy,|+genarray [Hy, Hy| +genarray [H1, Ha,,

becomes the 2-term sum:

TC[HQZ] + TC[HQT]

In this simplified pseudocode, if there are h haplotypes and ¢ quadruple sums
to be computed for a given choice of G, then the old code does 3¢ sum operations,
while the new code does h + ¢, where h are done to build table T and ¢ are done in
the inner loop. In the actual code, there is a second index to the table depending
on the choice of recombination pattern for parent 1 (which determines the values of
Hy, and Hq;.

The number of entries in the table is 2(*~1) x (number of haplotypes) x (number
of children). For example, in 4-locus problem, with allele product (i.e., number of
haplotypes) 2 x3 x4 x5 = 120, and at most 10 children in a family, the table would
have 8 x 120 x 10 = 9600 entries.

4 Handling Loops

One of the causes of long LINKAGE runs is loops in the input pedigree(s). The
algorithm used in LINKAGE to handle loops was first proposed by Lange and El-
ston [6] and is also described on pages 170-171 of [12]. We review it here to keep
the paper self-contained.



Suppose for simplicity that there is just one one loop in the pedigree; this is by
far the most common case. LINKAGE expects the preparer of the input to designate
one individual in the loop as the loop breaker, b. This is done by making two copies
of the individual b, which we call by and by. Person by is shown as the child of b’s
parents, but b; has no spouse or children. Person by has b’s spouse and children,
but has no parents.

If person b can have only one joint genotype then the modified pedigree is com-
puted in a manner equivalent to having no loop declared. If person b can have
several genotypes, {G1, Gy, ..., Gy} then the algorithm iterates over all these geno-
types. For each possible genotype G;, the likelihood is computed conditioned on
both b; and by having genotype G;. Ott [12] denotes this by P(z,G;), where z
stands for the phenotype data observed on the pedigree members. Then the overall

likelihood is given by
P

Z P(z,G;)
=1

Fach computation of P(z,G;) does a fresh traversal of the entire pedigree up-
dating genarrays. In each nuclear family, there is a single representative, r, such
that the genarray of r is updated during the traversal; the update for r is condi-
tioned on the probabilities for the other members of the nuclear family, so that their
probability updates are done implicitly. We observed the following recomputation
happening and found a simple way to avoid it. Suppose that the loop does not
encompass the entire pedigree. Then there may be certain nuclear families where
the genarray values are computed independently of b’s genotype. These nuclear
families do not need to be revisited on each traversal, since the update done will be
the same for each G;. We have modified the pedigree traversal algorithm, so that
during the traversal for the first possible genotype of b, which we called G, the set
of nuclear families that do not have to be revisited is identified.

There is a colorful biochemical metaphor that captures precisely how the decision
of whether a nuclear family needs to be revisited is made. Imagine that we take
some radioactive dye that we can “inject” into the pedigree, so that some members
will be radioactive and others not. If a nuclear family representative r is radioactive
and is updated on the first traversal, then that nuclear family must be revisited,
and r updated again, for each G;. If r is not radioactive, then its nuclear family
does not need to be revisited. Here are the rules we use for updates:

Rule 1. Before the first traversal for Gy: by, bs, and all the descendants of by
(b1 has no descendants, by definition) are made radioactive.

Rule 2. During the traversal for Gy: for each nuclear family, if any member of
the nuclear family is radioactive, then the representative is made radioactive.

Rule 3. During later traversal for G, G35, . ... we update the representative of
a nuclear family if and only if the representative is radioactive.

The reason for Rule 1 is that LINKAGE takes into account which genotypes
an individual can inherit when initializing genarray. Thus for by, by, and all the



descendants of by, the initial genarray for each traversal depends on the choice of
genotype for by and by and must be recomputed.

When there are multiple loops, each loop is broken separately. The algorithm
iterates over all vectors of genotypes, where component j of the vector is a possible
genotype for the j** loop breaker. We apply our traversal algorithm to the loop
whose component is the least significant or innermost in the vector iteration. This
is the component that always changes from iteration to iteration.

The ordering of loops from inner to outer is determined by numbers that the
user supplies in the input pedigree. Running times for all versions of LINKAGE can
vary widely depending on the loop order chosen by the user.

There is another user-specified parameter that can cause the running time to
vary significantly. This parameter is the root (in LINKAGE this is referred to as the
proband) of the pedigree. The traversal order “peels” the pedigree towards the root
so that the root belongs to the last nuclear family updated. A variety of peeling
orders are possible [3, 12]. We have not changed the peeling order in LINKAGE,
but we make no claim that the current order always minimizes the running time. A
good, but overly simplistic heuristic to minimize running time, is to choose the root
as high as possible and the loop breaker(s) as low as possible in the pedigree, but
this choice is not provably optimal in all cases.

Automating the choice of proband and loop breakers, and varying the peeling
order are interesting research questions beyond the scope of this paper. Neverthe-
less, our idea of not updating pedigree members whose probability update does not
depend on the genotype of the loop breaker(s) will save time on some pedigrees, for
any method of choosing root, loop breaker(s), and traversal order. However, the
time saved may depend significantly on those choices.

5 Coordinating Optimization and Output

The previous versions of ILINK and LODSCORE do several wasteful FEs. We
identified three distinct sources of wastefulness:

1. When it is decided that the previous estimate 6, is better than the new estimate
0; 41, the gradient at 6,41 is still calculated but never used.

2. The output function evaluates fun at the optimal é, even though this was
already done by gemini.

3. The function which reports lodscores reevaluates the likelihood for each pedi-
gree at the optimal 8, even though this was already done inside fun when
gemini called fun with the optimal 8.

The extra FEs for cause 1 can be eliminated because the gradient at the nonop-
timal #;4, is not needed.

10



The extra evaluations from causes 2 and 3 can be eliminated simply by storing
the values when the same calls are made from gemini. The only subtlety is that
gemini does not decide until shortly after the call to fun whether the value used
in the most recent call is best so far. Thus the likelihood and fun values are stored
provisionally pending that decision.

The number of FEs in cause 1 is typically n — 1 if forward differences are used
to compute the gradient and 2(n — 1) if central differences are used. Which method
is used, and whether the number of FEs matches the typical number, both depend
on some program constants and the specific structure of the problem instance.

Cause 2 saves 1 FE and cause 3 saves an amount of computation which is almost
the same as for an FE. It should be noted that the old versions of the LINKAGE
programs did not count the computations for output when they reported a number
of FE’s (in the file final.dat). Thus when comparing the files produced by old and
new versions only the savings from cause 1 are seen in the reduced number of FE’s.

In the course of testing our code to save these FE’s we found and repaired a bug
in ILINK and LODSCORE. In some situations the old version was deciding correctly
that 0 was the local optimum, but then reporting the slightly non-optimal 0J+1 and
its lodscore as the final value. Qur new code to coordinate optimization and output
corrects this problem.

6 Checkpointing

In this section we describe how we save partial computations of LODSCORE and
ILINK, so they can be restarted if the computer crashes. For the purposes of
checkpointing, these two programs are almost identical. LODSCORE is slightly
more complex because we must store which pair of loci we are working on, while
ILINK only works on one locus ordering per run.

There are publically available packages that can checkpoint a general application
by taking a core dump of the system state. However, the packages we have seen are
designed for specific implementations of UNIX and are not portable. Therefore, we
implemented checkpointing by modifying the LINKAGE source code in a portable
fashion.

The programs perform checkpointing before some calls to fun.

The functions that make calls to fun are: initialize, firststep, increaset,
decreaset, gforward, and gcentral. After the changes described in the previous
section, the output function outf no longer makes any calls to fun. It does eval-
uate the likelihood at § = 0.5 for every dimension, to report what is called “Ott’s
generalized LODSCORE”. The function initialize is called at the beginning of
the first iteration and generates one FE. The function firststep is called in every
subsequent iteration and generates one FE. In each iteration, either the function
increaset or decreaset is called; they generate a variable number of estimates of
6 and call fun to evaluate each one. In the vast majority of iterations we have seen
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increaset and decreaset generate one or two estimates, but there are exceptions.
At the end of each iteration either gforward or gcentral is called to estimate
the gradient by generating FEs with a slightly perturbed . Both gforward and
gcentral have a loop in which one dimension is perturbed at a time; gforward
makes one FE per loop iteration and gcentral makes two FEs per loop iteration.

We take a checkpoint at the start of initialize, firststep,increaset,
decreaset, outf, each iteration of the loop in gforward, and each iteration of
the loop ingcentral. Qur rough goal is to take at least one large checkpoint be-
tween every two FEs; the only time this goal is not met is when a call to increaset
or to decreaset makes more than two FEs. When a crash occurs, we can restart
the computation from the last place where a checkpoint was completed. Since this
is usually at most two calls to FEs away, it means that we can have reasonable hope
of doing runs where the mean-time-to-failure of the computer is about the time it
takes for two FEs.

Checkpointing is done by storing all the relevant program variables in a file. A
typical checkpoint file on the SunOS operating system has length roughly 15,000
bytes, which is very small by modern checkpointing standards. The file includes
some control flow information, so we can tell where the checkpoint was taken during
the recovery process. The file contains a special string at the end so we can tell if
the checkpoint is complete. The reason this is needed is that there is a small chance
that the computer may crash while a checkpoint is being written out. To prepare
for this situation we keep a backup copy of the preceding checkpoint file after the
next checkpoint is taken. If we detect during the recovery process that the principal
checkpoint file has been corrupted, then we advise the user as to where to move the
backup checkpoint file so we can recover from an earlier point in the execution and
still not lose too much.

When the programs complete their linkage computations successfully, the check-
point files are deleted at the very end of the execution. When the programs start
up, they determine whether to start from a checkpoint or start from the beginning
depending on whether the checkpoint file exists in the working directory.

Because ILINK estimates the 8 vector for only one order of loci per run, it is
common practice to make scripts that execute multiple runs of ILINK one for each
order. It is also possible to make scripts that execute multiple runs of LODSCORE,
although this is not nearly as common because LODSCORE during a single run
estimates @ for all pairs of loci specified. If a crash occurs during the fourth run
in a script say, we would like to be able to keep the results from the first three
runs and have the machine know that when the script is restarted, it should start
from a crash recovery for the fourth run. We call this script-level checkpointing. It
is important to realize that script-level checkpointing is essentially external to the
programs themselves, and has been integrated mainly for the convenience of the
user, who might not be as aware of the state of the computation as the computer is.

The process introduces a small auxiliary program that we call ckpt, which be-
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haves as a front-end to the user desiring such checkpointing. In collaboration with
the individual programs ILINK and LODSCORE, the ckpt program keeps track
of the number of invocations of the respective program made during the current
script. This count is written to a disk file. In addition, during execution, the pro-
grams store information on script-level output, namely the state of the two key
output files final.out and stream.out, which are needed to get the results. The
file final final.out stores a description of the run, the final 6 and some diagnos-
tics. The file stream.out store the final # and the final likelihood values for each
pedigree.

Suppose now that a script prematurely terminates; when execution is resumed,
the mechanism knows which invocation of LODSCORE or ILINK in the script was
last in force. Thus, the script is executed again from the beginning, but completed
invocations of the above programs exit immediately without contributing any out-
put. Further, since the state of the output files was saved before the crash occurred,
these files can merely be copied into from the stored versions, thus yielding no
indication that the script had to be re-started.

7 Methods

We compared the LINKAGE programs described in [2] to the modified new versions
described here on some sample runs. We first installed the three changes that im-
prove the speed of the programs and measured the improvement. Then we installed
the checkpointing facility and tried to measure how much it slowed down the pro-
grams under crash-free operation, but the slowdown was too small to measure with
any precision. The timing experiments were run on an unloaded Sun SPARCsta-
tion 2 computer with 32Mbytes of RAM. This machine runs the operating system
SunOS, version 4.1.2, which is an implementation of UNIX. To compile all versions
of the programs we used the gcc compiler, version 2.3.3 using the -0 flag for op-
timization. The times reported in the next section are the user time given by the
time command. Since our test runs were usually the only user processes running,
this is a pretty good estimate of the actual time taken.

8 Results

We present results to show the performance obtained by our improved implemen-
tation. We did a variety of sample runs always comparing the version of the code
reported in [2] with the version described here. We tried to measure the cost of
checkpointing by using new versions both with and without checkpointing. We were
pleased to find that on our computers, the extra time for checkpointing in any non-
trivial run is less than the time variation between different executions of the same
run. In a few cases the time we measured for a run with checkpointing was as much
as 1% less than the time measured without checkpointing.

13



# Data Set Program | No. of Alleles | Old Time(s) | New Time(s) | Speedup
RPO1 LODSCORE 2x9 1121 468 2.40
RPO1 ILINK 2x3x3 8671 3589 2.42
RPO1 ILINK 2x3x4 71145 27687 2.57

RPO01-3 ILINK 2x6x9 6023 4349 1.38

RPO1-3 LINKMAP | 2x3x5x6 14200 13577 1.05

BAD ILINK 2x4x4 4185 2868 1.46

CLP ILINK | 2x4x4x4 7012 6285 1.12

CLP ILINK | 2x4x4x4 9705 9067 1.07

CLP LINKMAP | 2x4x4x4 3445 3455 1.00
Table 1: Execution Times in Seconds

For simplicity and consistency, we report the times taken by the versions in [2]
and the new version with checkpointing. Those are the two versions we have been
and will be distributing.

We used the three following disease data sets for our experiments:

e RPO01: data on a large family, UCLA-RPO01, with autosomal dominant retini-

tis pigmentosa (RP1) from the laboratory of Dr. Stephen P. Daiger at the
University of Texas Health Science Center at Houston. This pedigree has 7
generations with 190 individuals containing 2 marriage loops [1]. As shown
in [1], this pedigree had to be split into three pieces because desired computa-
tions with large allele products on the whole family together took prohibitively
long. In the tables of results, RP01-3 denotes analysis with the family split in
three pieces.

BAD: data on a portion of the Old Order Amish pedigree 110 (OOA 110),
with bipolar affective disorder (BAD) from the laboratory of Drs. David R.
Cox and Richard M. Myers at the University of California at San Francisco.
This pedigree spans 5 generations with 96 individuals and contains 1 marriage
loop [10].

CLP: Data on 12 families with autosomal dominant nonsyndromic cleft lift and
palate (CLP) from the laboratory of Dr. Jacqueline T. Hecht at the University
of Texas Health Science Center at Houston. Diagrams of the families are shown
in [4]. The families include 110 individuals in all. Pedigrees 1000 and 1100 are
significantly larger than the rest. Pedigree 1200 has a loop, but it encompasses
the entire family, so our new loop algorithm does not help.

In most cases, we achieved noticeable speedups.

The speedups here are not

nearly as large as the speedups we obtained in going from LINKAGE 5.1 to the
faster version in [2], but are still worthwhile. Our changes helped the most on the
RPO1 pedigree because its second loop covers only a small part of the pedigree. The
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above computations on the full RP01 pedigree are feasible in part because of the
algorithmic changes in [2] and because the allele products for the loci we chose are
not too high. Our changes had the least effect on CLP because the loop change
is irrelevant there and its genarrays are not dense enough to benefit much from
subdividing recombination classes.

By comparing some pairs of runs in the above table we can see how the three
different changes affect the speedup on specific pedigrees. For example, the last
LINKMAP run shows that CLP does not benefit from either of the first two changes;
of course, this run cannot benefit from the iteration saving change in LODSCORE
and ILINK. The loci used in the last two runs are the same. The non-disease loci
in the two CLP ILINK runs are completely different, although they have the same
number of alleles. Thus we see that the iteration saving change saves about 700
seconds on each CLP ILINK run. The speedups are different because the two runs
have different numbers of iterations, but the absolute amount of computation saved
is approximately the same.

Comparing the RP01 runs versus the RP01-3 runs, we see that the new way of
handling loops must account for most of the savings on RP01. Since RP01-3 has no
loops, it benefits only from the first and third changes.

We see no effective way to estimate on paper what the speedup from the three
speed improvements will be for a new run because:

1. The savings from our change to recombination classes depend on the sparsity
patterns of the genarrays of different individuals in the pedigree, which are
hard to determine without running the program.

2. The savings from our better loop traversal algorithm depend on the loop struc-
ture, the choice of proband, and the sparsity patterns. Knowing the loop struc-
ture and proband, it is possible to compute by hand which nuclear families
will not be revisited for each genotype of the loop breaker. However, it is not
easy to estimate, how much time will be saved by not visiting those families.

3. The savings achieved by better coordination between optimization and output
depend on details of the numerical convergence of the 6 estimates. These
details cannot be determined without actually doing the run.

9 Discussion

One of us (RWC) recently asked Elston what led to the breakthrough Elston-Stewart
algorithm. Elston replied,“That’s the way I had always done the [linkage] computa-
tions by hand.” One of the key principles of successful pencil and paper computation
is to write down a few intermediate values, so they do not have to be recomputed
and so they can be checked in case of errors. The principle of avoiding recompu-
tation was well understood before the time of Newton; it was the stimulus for the
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hand-computation and publication of vast logarithm tables, for example. Unfortu-
nately the principle is too often forgotten by late 20th century programmers when
they assume incorrectly that:

1. Having the computer recompute intermediate results does not add significantly
to the computation time because the computer is so fast.

2. If the computer crashes, it is satisfactory to restart the program.

We have corrected three places where the LINKAGE programs were spending
nontrivial amounts of time recomputing known values internally. We have made
it possible for the LODSCORE and ILINK programs to recover from a crash by
restarting from a recently completed likelihood function evaluation.

To stress the importance of the last improvement, consider the following sce-
nario which is realistic based on our experience with LINKAGE. We wish to do a
multilocus ILINK run where every function evaluation takes roughly a day. We have
available to us a workstation whose mean-time-to-crash is roughly a week. Given
that the ILINK computation will surely take at least 20 function evaluations, it does
not seem worth trying because the workstation is sure to crash during the 20 days
it would take to finish the run.

With the checkpointing facility in place, we now see no significant impediment
to doing our desired ILINK run. Because operating systems such as UNIX allow
processes to run in the “background” at low priority, we can do long runs without
interfering with other high priority computations.
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