
Faster Sequential Genetic Linkage Computations

Robert W. Cottingham Jr.
�

Department of Cell Biology
Baylor College of Medicine

Houston

Ramana M. Idury
�

Department of Computer Science
Rice University

Houston

Alejandro A. Schäffer
�

Department of Computer Science
Rice University

Houston

September 30, 1992

Revised February 9, 1993

Address for correspondence: Robert W. Cottingham, Department of Cell Biology, Baylor

College of Medicine, One Baylor Plaza, Houston, TX 77030.�
bwc@bcm.tmc.edu�
idury@cs.rice.edu�
schaffer@cs.rice.edu

Abstract

Linkage analysis using maximum likelihood estimation is a powerful tool for locating

genes. As available data sets have grown, the computation required for analysis has grown

exponentially, and become a significant impediment. Others have previously shown that

parallel computation is applicable to linkage analysis and can yield order of magnitude

improvements in speed. In this paper, we demonstrate that algorithmic modifications can

also yield order of magnitude improvements, and sometimes much more.

Using the software package LINKAGE, we describe a variety of algorithmic improve-

ments we have implemented, demonstrating how these techniques are applied, and their

power. Experiments show that these improvements speed up the programs by an order of

magnitude on problems of moderate and large size. All improvements were made only

in the combinatorial part of the code, without resorting to parallel computers. These im-

provements synthesize biological principles with computer science techniques to effectively

restructure the time-consuming computations in genetic linkage analysis.

2

Introduction

With the advent of index maps of the human genome (NCHGR article 1991), maximum

likelihood linkage analysis is becoming a powerful tool for rapidly locating disease genes.

However, as effort has been expended to collect more data, the computational effort has

increased exponentially and thereby significantly increased the time to getting a result.

Factors which contribute to increased computational effort include increases in the number

of genetic markers being considered simultaneously, the number of alleles per marker, the

number of unknown individuals in a pedigree, pedigree size, and the degree of inbreeding.

Of course, each of these factors provides additional information and is therefore of interest.

As the genetic map is further improved and automated genotyping becomes commonly

available, computational effort will further increase to the point of becoming the bottleneck

in obtaining results given the current tools.

LINKAGE (Lathrop et al. 1984; Lathrop and Lalouel 1984; Lathrop et al. 1986)

is one of the most popular collections of genetic linkage analysis programs, especially

in the study of human disease genes, and is representative of current maximum likelihood

linkage analysis packages based on the Elston-Stewart algorithm (Elston and Stewart 1971).

Therefore, we chose to demonstrate our concepts by modifying the programs in this package.

Given the goal of significantly increasing the speed of the programs, one method would

be to implement the programs on a parallel computer system. However, before doing so it

is good practice to first improve the sequential speed of any algorithm since failure to do

so will multiply the inefficiencies in the parallel environment.

We describe and validate a collection of improvements to the sequential implementation

of the central, time-consuming, probability calculations in LINKAGE that speed up the

programs substantially. We begin in the next section by describing the aspects of LINKAGE

that are relevant to our improvements. The Methods section gives a brief description of the

software and hardware tools used. Then we describe the biological and computer science

3

basis of our algorithmic improvements. Finally the experimental results are given, showing

how much the algorithmic modifications improved the speed of the LINKAGE programs,

on some sample data sets. And we conclude with a short discussion section.

Summary of the LINKAGE package

The computationally intensive programs in LINKAGE (LODSCORE, ILINK, MLINK,

LINKMAP) are structured to solve a variety of genetic linkage problems. The algorithms we

have improved are used in all four programs. To simplify our description, we focus almost

exclusively on LODSCORE, which does two-point analyses, but later we also present

timing data on our new version of ILINK. The improvements are more important in ILINK,

which does multipoint analysis, because the running time of multipoint analyses can be

prohibitive. However, they are easier to explain in the two-point context of LODSCORE.

The primary input to LODSCORE is a list of family pedigrees and phenotype data.

To whatever extent it is known, the phenotype of each individual is listed for a number of

loci. In any given run, a set of loci is specified and LODSCORE computes an estimate

of the recombination fraction � for each pair of loci in the set. For simplicity, we assume

in this description that only one pair of loci is specified. LODSCORE can analyze both

autosomal and sex-linked markers and there are various allowable input formats, such as

binary factors and numbered alleles. Again to simplify our discussion, suppose that the two

loci are autosomal and that the genetic data is encoded by numbered alleles.

If we had perfect information, then at each locus � , where there are �
	 alleles, each

individual would be encoded with an allele number for each of the two chromosome strands

with phase known. For example, if the first locus has 5 alleles and the second locus has 8 ,

we could have an encoding that looks like:

4

2 4

3 7

where 2 and 4 are allele numbers for locus 1, while 3 and 7 are for locus 2. The values 2

and 3 come from the same chromosome strand, as do 4 and 7.

In practice, perfect information is not known. Typically, we have genotype information

but do not know the phase (i.e., we don’t know which alleles are on which chromosome).

We may have only phenotype information (i.e., various genotypes are possible, but some

are excluded), or we may have no information at all. Any uncertainty in genotypes or phase

is accounted for by assigning nonzero (conditional) probabilities to several genotypes that

any individual might have.

The program combines the two values on a chromosome into a joint haplotype number

and then combines the two joint haplotypes into a joint genotype. In the example above,

there would be 5 � 8 � 40 possible joint haplotypes and 40 � 41
 2 � 820 possible

joint genotypes (joint genotypes that differ only by flipping the role of two strands are not

distinguishable).

The basic structure of the computation is outlined in the section on Numerical and

Computerized Methods in Ott’s book (Ott 1991). The programs have an outer loop that

iteratively updates the estimate of � using Lalouel’s GEMINI optimization package (Lalouel

1979) to search for an optimal value ˆ� that maximizes the likelihood. Inside the main loop,

LODSCORE traverses the pedigrees updating the probabilities of each joint genotype for

each individual. Associated with each individual is an array genarray indexed by the

joint genotype numbers. The entry genarray[�] initially stores the probability that

the individual has the phenotype associated with genotype � given the joint genotype �
(normally this will be 1 or 0, except in cases of variable penetrance). After traversing the

5

part of the pedigree including the individual, genarray[�] stores the probability that

the individual has genotype � and its associated phenotype, conditioned on the genotypes

of the individual’s relatives and the recombination fraction. For example, to update the

probability genarray[�] for a child, we multiply the old genarray[�] value by the

probability that the child inherits genotype � conditioned on the probabilities of parents and

siblings. Using the notation of (Lathrop and Lalouel 1988), this can be expressed as:

��������������� ����� � �!�"�#� � ���$�%�&�'� ���
where

�
is the joint phenotype of the child,

�
is the joint genotype and

�
represents the

collective joint phenotypes of the relatives of
�

that have already been traversed. A similar

expression can be written for updating a parent in terms of its children. The probabilities

are generally very small, so they are scaled up by a multiplicative factor to avoid numerical

floating point errors.

Elston and Stewart (Elston and Stewart 1971) devised a clever bottom-up strategy for

traversing certain simple pedigrees to rapidly compute the conditional probabilities. This

bottom-up strategy was later generalized by Ott, Lange, and Elston among others (Ott 1974;

Lange and Elston 1975) to more general pedigrees. As explained on pages 170–171 of (Ott

1991), the LINKAGE programs implement a variation of the strategy described in (Lange

and Elston 1975) where the traversal algorithm can either traverse in an upward direction

or in a downward direction. The freedom to go in either direction allows the program to

peel a contiguous subtree of pedigree consecutively.

Depending on the direction of the traversal taken to reach a particular individual, one

of two fundamental routines is used to update the values in genarray. In one direction,

segdown updates the probabilities for a child based on probabilities for the parents and

other children. In the other direction, segup updates the probabilities for parents based

on the probabilities for their children. Both routines use an important auxiliary routine

segfun in the inner loop of the computation when there are multiple children. There are

6

several variants of segdown, segup, and segfun that are used in different situations

depending on autosomal/sex-linked, input format, or special places in the pedigree, but

most of our improvements are applicable equally well to those routines.

In the original segup and segdown most of the computation is done inside two

outer nested loops that each iterate over all joint genotypes. Each loop corresponds to the

genotype assigned to one parent in the family.

To achieve our improvements, we completely rewrote segup and segdown, and

added some new auxiliary routines, which replace segfun. As useful and intricate as our

changes are, it is also important to summarize what has not changed. The GEMINI code

and its use has not changed — the iterations and the sequence of estimates to ˆ� is the same.

The higher level routines that decide in what order to visit the pedigrees and individuals

have not changed. The new programs are input and output identical to the original.

Methods

Our improvements were carried out starting with the PASCAL source code for LINKAGE

version 5.1a. We began by converting the PASCAL programs to C using the translation

program p2c, available as a UNIX utility (UNIX is a trademark of AT&T). It has been

reported several times on various computer bulletin boards that the LINKAGE programs

could be translated from PASCAL to C in this way, and that the resulting C versions work

properly.

There are two reasons for converting from PASCAL to C. The first reason is that there

are a wide variety of good software development tools available with UNIX for C programs,

while PASCAL is minimally supported. The second reason is that the best C compilers

available to us produce much better assembly code than the best PASCAL compilers. Some

small experiments we did suggest that unmodified C code obtained directly from p2c runs

about 25% faster than the original PASCAL, despite the fact that p2c is quite conservative

7

in its translation. Our speedup results compare only the unmodified C programs with the

modified C programs, and do not incorporate the additional speedup obtained by switching

from PASCAL to C.

In addition to standard editors and debuggers, we used two UNIX tools to understand

the behavior of the LINKAGE programs. The first tool is a function-level profiler called

gprof. When a C program is compiled with the appropriate gprof flags, the program

records how many calls are made to each subroutine and very roughly how much time is

spent in each subroutine. The second useful UNIX tool is called tcov. It records how often

each basic block of code is executed in a particular execution. The UNIX implementations

we are familiar with have several tools similar to gprof and tcov.

The timing experiments were run on various Sun SPARCstation 2 computers with

32Mbytes of RAM. These machines run the operating system SunOS, version 4.1.2, which

is an implementation of UNIX. For each test, we ran both the old and new programs on

the same machine to avoid any inter-machine variation. To compile both the old and new

versions of the LINKAGE programs we used the gcc (short for gnu cc) compiler, version

2.2.2 with the optimization flag -O (Stallman 1992).

Algorithmic Improvements

This section reviews the ideas behind our improvements to LINKAGE and gives some

examples of how those ideas are applied. We first summarize two basic biological principles

and four basic computer science techniques that are crucial to our improvements. The

general paradigm for our more interesting improvements is that one biological principle

exposes a part of the computation that can be sped up, and then one or more computer

science techniques are used to speed up that part. Our key point is that a synthesis of

ideas from the two disciplines is essential to the improvements we have obtained in the

LINKAGE programs.

8

Biological Principles

Sparsity. An array or matrix is sparse if a significant fraction of the entries are 0. In most

cases the array genarray (containing the probabilities for each joint genotype) is sparse.

It is always sparse when the complete genotype is known, and will usually be sparse even if

some partial phenotype information is known. The reason is simple from a biological point

of view: knowledge of the phenotype severely restricts the possible genotypes, although it

may not determine the genotype completely.

Isozygotes. The biological theory of linkage and recombination, as described by

Ott (Ott 1991), for example, suggests that inheritance events which differ only by whether

or not recombination has occurred, can be treated similarly. We make more precise what

we mean by “similar” with a generic example of two-locus inheritance.

We call two joint genotypes isozygotes if they can pass on to a child precisely the same

set of haplotypes. We use the notation (1) (2 to mean the ordered joint genotype where (1

is on the left strand and (2 is on the right strand. For example, if * 1 +�,* 2 and - 1 +�.- 2,

then the ordered, phase known joint genotypes

* 1 * 2 * 2 * 1 * 1 * 2 * 2 * 1- 1 - 2 - 2 - 1 - 2 - 1 - 1 - 2

are isozygotes because they can all pass on the haplotypes

* 1 * 1 * 2 * 2- 1 - 2 - 1 - 2

There is an obvious symmetry between the first and second genotypes and between

the third and fourth obtained by just swapping the two strands. This symmetry is already

exploited in the original LINKAGE code and is the reason for the 2 in the denominator of

the number of joint genotypes. Thus from the point of view of LINKAGE there are just

two isozygotes in this example, the first and third genotypes.

9

Suppose a child of the above parent inherits the joint haplotype

* 1- 1

Then with the first genotype no recombination has occurred, while with the third genotype

a recombination has occurred. Otherwise, there is no difference. Similar facts hold for the

other three joint haplotypes.

The set of all joint genotypes can be partitioned into equivalence classes of isozygotes.

By partition we mean that each joint genotype belongs to exactly one equivalence class

of isozygotes; this is the mathematically precise notion of “similarity” we sought. The

principle that isozygotes are similar is useful computationally because it reveals that the

most we need to know about a genotype is which haplotypes can be passed on to a child and,

thus, some pieces of the computation on different isozygote genotypes can be combined.

The definition of isozygotes can be extended naturally to any number of loci; in fact, the

concept becomes more important computationally as the number of loci increases. The size

of an isozygote class is the number of joint genotypes in the class that are not symmetric

by switching strands. For the case of two loci, each doubly heterozygous genotype will

be in a class of size 2, while singly heterozygous and doubly homozygous genotypes will

be in classes of size 1. This is shown by fixing the position of the two alleles for the first

locus and then alternating (switching strands of) the two alleles for the second locus. This

alternation produces 2 different joint genotypes if and only if they are doubly heterozygous

at both loci. So the size of the equivalence class in a particular instance can be determined

by conducting this analysis. In a 3-locus case, for example, triply heterozygous genotypes

form isozygote classes of size 4. This is because we again fix the left-right choice at the

first locus and then flip the alleles at the other two loci one at a time. In general, if a

genotype is heterozygous at /10 0 loci, it belongs to an isozygote class of size 2 243 1. What

distinguishes the different elements of an isozygote class is recombination if it exists. The

size of the class in relation to the number of possible joint genotypes is an indication of the

10

potential performance improvement.

The notion of isozygotes can be further extended to two parents in a straightforward

way. The ordered pairs
�$�

1
�5�

2 � and
�$�

3
���

4 � are isozygotes if
�

1
���

3 are in the same

isozygote class for one parent and
�

2
�5�

4 are in the same isozygote class for the other

parent.

The symmetry that isozygotes share is quite different from the symmetry of recombi-

nation classes described in (Lathrop and Lalouel 1988) that was previously implemented

in LINKAGE, which we still use. In recombination classes, the elements in the same class

share the same recombination pattern but have different alleles and haplotypes (left or right

haplotype of each parent). In isozygote classes, the elements have different recombination

patterns and different haplotypes, but use the same alleles and can pass on a fixed set of

haplotype combinations to a child. Another way of viewing this distinction is that recom-

bination classes exploit a symmetry of child genotypes, while isozygote classes exploit a

symmetry of the parental genotypes.

Computer Science Techniques

Common Subexpression Elimination. Our first computer science technique is the elimi-

nation of common subexpressions. A traditional example is the evaluation of the expression

6
1
6

3 7 6 2
6

3 7 6 1
6

4 7 6 2
6

4 8
We can replace this by the equivalent expression

� 6
1 7 6 2 �9� � 6 3 7 6 4 �

which replaces an expression that has 3 additions and 4 multiplications with an expression

that has 2 additions and 1 multiplication. The key idea is to first determine the common

subexpressions
� 6

1 7 6 2 � and
� 6

3 7 6 4 � .
In fact, we use a generalized version of precisely this substitution to speed up the

computation of how haplotypes are transmitted. Using the notation of segdown, suppose

11

the parents are : �<; and their only child is = . Suppose that their genotypes are
�?>@���BA

and�BC
, and

�BC
consists of haplotypes (C 1 and (C 2. In the original version of segdown the

probability that = gets genotype
�BC

is computed as

DFEHGID�EKJ �L��� : passes on (C 1 �M�?> �9� � �N; passes on (C 2 �O�BA ��� 7�N� � : passes on (C 2 �&�P> �'� ���L; passes on (C 1 �M�BA ���
This can be sped up by first computing separately the probability that each parent passes

on each haplotype.

� � : passes on (C 1 �Q�SR E G � � : passes on (C 1 �M� > �9� ���$� > �
Then we compute the probability that = gets genotype

�BC
as

�L��� : passes on (C 1 �T� � �L; passes on (C 2 ��� 7 �L� � : passes on (C 2 �K� ���L; passes on (C 1 �<�
Thus instead of a long double sum over pairs of joint genotypes for each recombination

class, we do four short single sums for each haplotype and then just two more multiplications

and one addition for each recombination class.

We will show later that this simplification can be further improved by applying the

principle of sparsity.

Caching. Storing expressions that are frequently recomputed is our next computer

science technique. This is sometimes called caching, similar to the term cache, which is

used to described the fast internal memory of a computer. A good memory management

strategy tries to put frequently accessed variables in the cache. In our context, caching means

simply defining extra variables or arrays to store intermediate results that are frequently

needed.

Replacing Top-Down Computation with Bottom Up. Our third computer science

technique is replacing top-down computation with bottom-up. This is a general technique

that can be used to traverse trees or evaluate recursive functions. The general idea is that

12

one should do a bottom-up traversal when starting at the bottom of the tree will eliminate

or combine many of the options that would be separately explored if one started at the top.

One of the important ideas in the Elston-Stewart algorithm is that one should compute

the conditional probabilities traversing the pedigrees from children to parents. While this

is possible in simple pedigrees (and is done in LINKAGE), there are complicated pedigrees

that arise in practice where it is necessary to update some children’s probabilities based on

their parents.

It is very interesting that Elston and Stewart independently discovered the benefit of

replacing top-down with bottom-up in the context of linkage analysis. We extend the

application of this principle beyond the order of pedigree traversal to the sequence of

computations for a particular nuclear family.

Reduction in Operator Strength. Our fourth computer science technique is called

strength reduction or more formally reduction in operator strength. The idea is to replace a

slower primitive operation with a faster one, especially inside frequently executed loops. An

important example, relevant to LINKAGE, is that floating point multiplication is generally

considerably slower than other operations such as addition or boolean comparisons.

Good optimizing compilers apply all four of these techniques to some extent in an

effort to make the assembly code run faster. However, in our experience with LINKAGE

we found many cases where these techniques apply that even state-of-the-art compilers

cannot detect. Sometimes, the reason is that the logic needed to apply the technique is just

too complicated—for example, when it requires restructuring code across several nontrivial

loops or across procedure boundaries. Other times, the compiler cannot detect that applying

the technique is advantageous because this requires knowledge of the underlying biology,

in particular the principles of sparsity and isozygotes.

13

Synthesis - Putting All the Ideas Together

We now briefly describe seven improvements we have made in the probability updating

algorithms of segup,segdown, andsegfun. The reader who is not at all algorithmically

inclined may find this subsection overly technical and may prefer to skip ahead to the next

section.

List of genotypes that have nonzero probability. For each individual we keep a

list of genotypes that are possible; a genotype is possible if the corresponding genarray

entry is not 0.0. A similar list is constructed in MENDEL using more complicated logic to

determine what is possible (Lange and Goradia 1987). This is an example of combining

the principle of sparsity with the technique of caching.

Instead of iterating over all genotypes, we can iterate over just the possible ones. Here

is one simple example of how this speeds up the computation. Expressed in pseudocode,

the original two outer loops in segdown and segup look like:

For father’s genotype = 1 to number of joint genotypes do

if this genotype is possible for the father then

for mother’s genotype = 1 to number of joint genotypes do

if this genotype is possible for the mother then

8�848�84848�848�8U848�84848�8
Notice that this code does test for sparsity—if a joint genotype is not possible, the

computation in that loop iteration stops. However, the tests for sparsity on the mother’s

genarray are very excessive. The reason is that the set of joint genotypes for the mother

that are possible and pass the second if test is the same for every choice of the father’s

joint genotype. Therefore, we precompute and cache the set of possible joint genotypes for

the mother and change the code to look like:

14

For father’s genotype = 1 to number of joint genotypes do

if this genotype is possible for the father then

for each joint genotype that is possible for the mother

848�848�84848�848�84848�848�8
Sparsity pattern of the child’s genarray at the beginning of segdown. We have

found a way to apply the basic Elston-Stewart bottom-up principle tosegup and segdown

when the number of children is 1 (a very important and frequent special case). With the

sparsity modification described above, all the sparsity testing was being done on the parents’

joint genotype. But as outlined in the summary of the LINKAGE package above, the new

value of VXW#YXZ\[@[]ZO^`_ �Oa is the old value multiplied by some factors depending on the parent’s

probabilities and the recombination fraction. This means that if the old child probability

was 0.0 (genotype not possible), it will remain 0.0, and there is no point in updating it. The

other key observation is that if we know some information about the child’s phenotype,

then (in most cases) the number of possible genotypes for the child that are consistent with

the known phenotype is very much smaller than the number of possible joint genotypes that

the parents can give to a child based on their genotypes. To put this in the other direction,

there are many joint genotypes � , such that the parents could potentially have a child with

joint genotype � , but the one child cannot have joint genotype � because it is not consistent

with the child’s known phenotype.

Boolean expressions for 0 testing. It has been understoodsince the time of Haldane that

logical analysis of the genotypes and inheritance patterns can be used to derive genotype

information. An interesting formal, but theoretical treatment of this idea is given by

Wijsman (Wijsman 1987).

We have found that Wijsman’s suggestion of using Boolean logic to reason about the

pedigrees has some very practical uses. To do this we combine the principle of sparsity with

the technique of strength reduction, and in some cases we also use caching. We describe our

15

most interesting use of boolean logic here. The next improvement shows another, simpler

use.

For some joint genotypes that are possible for two parents, many meiotic combinations

may not be possible for a child, due to what is known about the child or its siblings.

Therefore, many calls to segfun yield 0.0. We want to avoid these calls or reduce their

cost if at all possible. We can use the facts that: 1) testing whether a bit is 0 is a lot faster

than testing whether a floating point number is 0.0 and 2) all the numbers are nonnegative

and the only arithmetic operations are addition and multiplication, so we cannot get 0.0 by

adding a positive number and its negative complement.

To put these ideas in practice, consider a real number expression using only addition

and multiplication. Replace every 0.0 value by the boolean value 0 (FALSE), replace every

nonzero value by the boolean value 1 (TRUE), replace every + by the boolean operator

OR, and replace every � by the boolean operator AND. Provided all the original values are

nonnegative, this replacement yields a boolean expression whose value is 0 if and only if

the original expression has value 0.0. Thus we replace the pseudocode:

Compute algebraic expression E

by the pseudocode:

If the corresponding Boolean expression evaluates to 1

then compute algebraic expression E

This is a major improvementwhen the terms in the algebraic subcomputations are repeatedly

reused, and we just need to precompute once and cache which simple terms are 0.0 and which

simple terms are positive, to set up the boolean expressions. For example, we augmented

the routine segfun with its boolean counterpart lsegfun (l stands for logical), so that

whenever the previous program called segfun, we call lsegfun first and call segfun

only when it is known to return a nonzero value. We later replaced segfun with a more

useful alternative, but we still use lsegfun before calling that alternative.

16

The cost of the boolean expression is mitigated by the fact that both C and PASCAL can

evaluate the logical operators AND and OR conditionally (this is the default in C), so that

as soon as we find a 0 argument to AND we return 0, and as soon as we find a 1 argument

to OR we return 1. Thus we usually do not need to evaluate the full boolean expression.

Boolean flags for haplotypes. This idea combines the common subexpression simpli-

fication for haplotypes with the idea of using boolean logic to apply the sparsity principle.

We keep an array of boolean flags that indicates for each haplotype (whether the child can

have any genotype that includes (as one haplotype. For all the haplotypes that the child

cannot have, we need not compute the probability that each parent passes on that haplotype.

When significant phenotype information is known, the vast majority of haplotypes can be

ruled out, so we compound the effect of extracting common subexpressions.

Caching haplotypes that can be passed on for each genotype. The principle of

isozygotes tells us that from a computational point of view what matters most about a

parent’s genotype is what haplotypes can be passed on to the child. Thereforewe precompute

this set for all joint genotypes. In the previous code this set was repeatedly recomputed

inside multiple loops using two levels of indirection (two array accesses). In our version

we need just one level of indirection to retrieve the set.

This use of caching trades off substantial memory usage to gain speed. In complex

linkage analysis speed is a problem, so this is a trade off we willingly make. In this case

the cache contains space for 3 � 2 243 1 � ��b 6dcfe`6 : 7 1 �I� b 6\cfe`6 :

 2 integer values, where

k is the number of loci, and maxhap is the product of the number of alleles. For 3 loci with

6 alleles each, maxhap is 216 and the cache has 281,232 total locations. In exchange, we

avoid recomputing these haplotypes repeatedly inside a double loop.

Remove probability multiplications fromsegfun. We reorganized the computations

in segfun, so that some of them are now done in segdown and segup. The rest are done

in a new routinecalledsegsum. The essence of the computation within the routinesegfun

17

can be described in two stages. In the first stage, we determine which recombination classes

can be produced by a given pair of parents, and sum up the probabilities of each child under

each recombination class. In the second stage, we take a weighted average of these sums

based on the recombinationprobabilities for each class. The principle of isozygotes revealed

that among the children the first stage was being repeated for each isozygote because each

isozygote produces that recombination class with a different probability. Since the first

stage is the same for all parent pairs in the same isozygote class, we compute it only once

for each isozygote class in the routine segsum and save these sums in a cache. For

the second stage, we multiply the values in the cache with the appropriate recombination

probabilities and take the weighted average in segup or segdown itself.

One call to lsegfun for each combined parent’s isozygote class. Recall that by

incorporating Boolean flags we guarded our calls to segsum (replacement for segfun)

with a preliminary call to the logical routine lsegfun, so that if lsegfun can prove

that segsum will return all zeroes, we avoid the call to segsum. Now we apply the

principle of isozygotes to lsegfun. Our criterion for returning 0.0 is precisely that

at least one child is not genetically compatible with the proposed joint genotypes of the

parents. More specifically this means that for the parental genotypes
�$�Bg@���Bh � , none of

the haplotype combinations that these parental genotypes can pass on to a child can be

a genotype for the child. Now suppose
�$�jig ���kih � is an isozygote of

�$�lg]�5� h � . This

means that the set of haplotypes that can be passed on by
�$� i g �5� i h � is the same as that

for
�$�Bgm�5� h � . Therefore, if a child is incompatible with parental genotypes

�$�Bg]��� h � , the

child must also be incompatible with parental genotypes
�$�kig ���kih � . Thus we can just pick

one representative of the isozygote class to test lsegfun and the same answer (0 or 1)

applies to all the other members of the class. This is an example of an improvement that

is much more powerful as the number of loci increases. With three loci, for example, in

the case where both parent genotypes are triply heterozygous, each single parent isozygote

18

class is of size 4 as explained above, so the combined classes are of size 4 � 4 � 16. This

means that we cut down on the number of calls to lsegfun by a factor of 16 in this case.

Validation of Speedup

To validate our improvements, we report the running times of the old programs and the new

programs on three sample data sets.

The data sets are:

n CEPH: data from the CEPH Database for chromosome 6 on the the standard family

panel of 65 three generation families (Dausset et al. 1990).

n RP01: data on a large family, UCLA-RP01, with autosomal dominant retinitis pig-

mentosa (RP1) from the laboratory of Dr. Stephen P. Daiger at the University of

Texas Health Science Center at Houston. This pedigree has 7 generations with 192

individuals containing 2 marriage loops (Blanton et al. 1991). As shown in (Blanton

et al. 1991), this pedigree had to be split into three pieces because computation on

the whole family together was prohibitively long. In the Tables of Results, RP01-3

denotes analysis with the family split in three pieces. RP01 denotes analysis of the

whole family as a single pedigree (fig. 1).

n BAD: data on a portion of the Old Order Amish pedigree 110 (OOA 110), with

bipolar affective disorder (BAD) from the laboratory of Drs. David R. Cox and

Richard M. Myers at the University of California at San Francisco. This pedigree

spans 5 generations with 96 individuals and contains 1 marriage loop (Law et al.

1992).

The CEPH and RP01 data sets are two extremely different kinds of pedigree structures

and are representative of the range of pedigree situations found in genetic disease linkage

studies. These two data sets contain many loci, so we chose various subsets for our

19

experiments. In the case of RP01, the locus with 2 alleles is always the disease locus. The

BAD data set represents a large single family with a disease, like RP01. However, it is not

as deep and we only have data for 3 loci.

All these data sets represent autosomal inheritance, but we have also implemented our

improvements for the sex-linked analogues of segup, segdown, and segfun, and they

work there too. The problem of long runs is not as serious for sex-linked data because

updating the probabilities for a male child is relatively easy as compared to the autosomal

case, and there is no recombination in the sex chromosomes of a father.

The times recorded are the “user” times reported by the time command on our systems.

We have rounded the times to the nearest second or minute to simplify the data and to

acknowledge that times will vary. In fact, we observed variations in running time of as

much as 10% on the same run because of inherent variations in the load of the other

processes running simultaneously on the computer. We have also rounded the speedup

quotients to the nearest integer for simplicity.

Table 1 shows sample performance improvements on 2-point analyses using LOD-

SCORE, and Table 2 shows sample improvements on 3-point analyses using ILINK. Table

3 shows a few sample improvements on 4-point analyses using ILINK.

In some of the test cases the computation is so long that we ran the old, slow program for

just one function evaluation of each order tried. In these cases, we ran the fast new program

to completion and then divided its running time by the number of function evaluations. This

is reasonable because our changes should have roughly the same effect on each function

evaluation of a given order. We found in practice that comparing one function evaluation of

the old program with the average on the new program underestimates the speedup slightly,

because the old program modified for one function evaluation, avoids some overhead at the

end of the run. In the two 3-point runs for the full RP01 we report here the speedups based

one function evaluation of each program. In the three 4-point tests on RP01-3 and the two

20

3-point tests on the full RP01, we tried only one order. The four runs withs 2 � 6 � 9 alleles

represent two different choices each for the 6-allele and for the 9-allele locus.

The speedup numbers in the rightmost column are substantial in all but the shortest runs.

In the short runs, such as the 2 � 3 � 3 allele run, the overhead of various initializations

and procedure calls is not negligible, and the part of the code we have speeded up is not as

dominant as it becomes in longer runs.

The numbers suggest that as the amount of computation increases above some pedigree-

dependent threshold, our improvements become more effective. This is important because

we are primarily concerned with longer runs, since these are where the most absolute time

can be saved using our faster programs. In practice, the user must do some amount of

thinking and hypothesis formulation before running the LINKAGE programs. If the slow

version already takes substantially less time than the user needs to think up the hypothesis

and set up the program, then LINKAGE is not the bottleneck. We are concerned with cases,

such as the longer runs on the RP01 data set, where the slow speed of the old LINKAGE

programs is the bottleneck in the user’s work.

The reader may be curious as to why the CEPH run with 7 � 9 alleles exhibits so much

more speedup than the other two CEPH examples. The reason is there are many fewer

unknowns for the 6-allele locus than for the other two loci. We can quantify this partially

as follows. There are 137 individuals whose 6-allele gene is known, but whose 7-allele and

9-allele genes are not known. The are only 17 individuals whose 7-allele gene is known,

but whose 6-allele and 9-allele genes are not known. There are only 5 individuals whose

9-allele gene is known, but whose 6-allele and 7-allele genes are unknown. Most of these

unknowns are grandparents. This results in many more grandparental genotype possibilities

and a significantly longer run. However, by doing the sparsity analysis bottom-up in the

new program, we take tremendous advantage of what is known about the parent to simplify

the update for the grandparent.

21

The reader may also be curious as to why we got so much more speedup on the full

RP01 than on the split RP01-3. The answer is that from the perspective of the computation

these two pedigrees are quite different. Using gprof we observed that at least 80% of

the computation time is spent updating the probabilities in the top two generations. The

split considerably simplifies the top generations by reducing the number of children in

several nuclear families and removing one loop (involving a child of parents in the second

generation). The fact that the lower generations of RP01 and RP01-3 are very similar is

insignificant computationally.

The previous two paragraphs give some indication of the difficulty of predicting speed

effects. There is some discussion about running time in (Lange and Elston 1975), but it does

not take sparsity into account. As we mentioned above, even the old LINKAGE programs

took some advantage of sparsity. There are many variables that can affect the amount of

sparsity, e.g., graph structure of the pedigree, number of loci, number of alleles, number

of unknows for those alleles, and pedigree traversal order. Of course, their effects are not

independent.

Another important variable factor in total running time is the number of function

evaluations. In the runs reported above, the programs took anywhere from 15 to 55

function evaluations to converge for a single order. As mentioned previously, the number

of function evaluations is the same for the old and new programs. We do not see a clear

pattern that could help predict how many evaluations would be required for a given run.

Similarly, it is very hard to quantify the separate effects of the changes we made. Like

the basic factors affecting running time, the changes interact in complicated ways, but we

give some anecdotal evidence.

For pedigrees like CEPH, the most useful changes are sparsity-based, and the switch to

bottom-up computation in segup and segdown is the most useful. The reason appears

to be that the pedigrees have two or three generations with most of the unknowns in

22

the top generation of the three-generation pedigrees. Switching to bottom-up evaluation

eliminates most of the candidate genotypes in the grandparent generation. We implemented

the sparsity-based changes first and we observed most of the speedup reported in Table 1

then, before the isozygote-based changes were implemented.

For the disease pedigrees, both the sparsity-based changes and the isozygote-based

changes contribute significantly. Intuitively, the sparsity-based changes work as in the

CEPH pedigree to drastically reduce the computation caused by the youngest generation

or two with unknowns. If there are more generations with unknowns, their genarrays

may not be very sparse. For example, using a debugger and/or tcov we can check that the

genarray for the top male and female in RP01-3 for the 2 � 9 � 9 run are not very sparse.

Most of the genotypes that are consistent with their disease status and the disease status of

their offspring cannot be ruled out. The rearrangement of the probability summations based

on isozygotes significantly cut the computation time of updating the probability arrays by

at least a factor of 2.

These performance improvement results compare the new C program with the old C

program generated by p2c. Therefore these are valid comparisons of the results of our

work. However, to summarize, and put the total results in perspective, we ran the 2 � 9 � 9

ILINK run on the RP01 data with the new ILINK and the original Pascal version of ILINK

compiled with flag -O4. Because this run would take so long we ran just the first function

evaluation for each program to compare the speed. We found that the new program is 40

times faster on this problem. Then the new program was rerun to completion, which took

6 days on a Sun SPARCstation 2. So the comparable run under Pascal would have taken 8

months!

23

Discussion

The combinatorial complexity of genetic linkage computations and the slow speed of

linkage programs are rapidly becoming a bottleneck in genetic linkage analysis. Rather than

trying to throw more and better computer hardware at the problem, we have systematically

improved the basic algorithms used in the LINKAGE package.

The algorithmic approach to speeding up the programs is sequential and completely

different from the complementary approach of using more hardware such as vector or

parallel computers, which has been shown to be successful (Miller et al. 1991; Goradia

et al. 1992). According to these papers, one can achieve a speedup of roughly one order

of magnitude if enough processors are available. As shown by our results, the algorithmic

improvements described also achieve a speedup of one order of magnitude, and sometimes

more, but without using any extra computer hardware. Both types of improvements make a

qualitative change in the complexity of useful genetic linkage problems that can be solved

in a reasonable amount of time. It will be interesting to combine our approach of better

algorithms and the approach of using parallel computation to try and achieve a speed

improvement of two or more orders of magnitude.

The data in the previous section show that the improvements are practical, substantial,

and qualitative. With our improved algorithms we can reach solutions in a week that would

have taken almost a year, and therefore were impossible. Nevertheless, we recognize that

no matter what algorithmic improvements we achieve, geneticists will want to solve larger

and more difficult linkage problems. Therefore, the complementary approach of using

better hardware, including parallel computers, should be combined with our algorithmic

approach to speed up linkage computations.

On a more abstract level our work is one more demonstration that the study of human

genetics is becoming more computational. Much more synthesis of biological theory and

computer science techniques is needed to produce programs than can efficiently carry out

24

the increasingly complex computations that geneticists want to do.

Acknowledgments

We thank Dr. Stephen P. Daiger and Dr. Lori A. Sadler for contributing the disease

family data for our experiments and generously allowing us to present the pedigree and

results. Development of these data was supported by grants from the National Retinitis

Pigmentosa Foundation and the George Gund Foundation. Also thanks to Drs. David R.

Cox and Richard M. Myers and their colleagues for their contribution of the Amish family

data developed with the support of a grant from the National Institutes of Health. And

thanks to Professor Alan Cox for help with details regarding the SPARC architecture and

gcc . Special thanks to Professors Ken Kennedy (Rice) and Charlie Lawrence (Baylor)

for helping us get our collaboration started. This work was supported by grants from the

Human Genome Program of the National Institutes of Health (RWC), the W. M. Keck

Foundation (RWC and RMI), and from the National Science Foundation (AAS).

References

[1] Blanton SH, Heckenlively JR, Cottingham AW, Friedman J, Sadler LA, Wagner M,

Friedman LH, et al. (1991) Linkage mapping of autosomal dominant retinitis pigmentosa

(rp1) to the pericentric region of human chromosome 8. Genomics 11:857–869

[2] Dausset J, Cann H, Cohen D, Lathrop M, Lalouel J-M, White R (1990) Centre

d’Etude du Polymorhisme Humain (CEPH): Collaborative genetic mapping of the human

genome. Genomics 6:575–577

[3] Elston RC, Stewart J (1971) A general model for the analysis of pedigree data. Hum

Hered 21:523–542

25

[4] Goradia TM, Lange K, Miller PL, Nadkarni PM (1992) Fast computation of genetic

likelihoods on human pedigree data. Hum Hered 42:42–62

[5] Lalouel J-M (1979) GEMINI - a computer program for optimization of general nonlin-

ear functions. Technical report no 14, Department of Medical Biophysics and Computing,

University of Utah, Salt Lake City

[6] Lange K, Elston RC (1975) Extensions to pedigree analysis. I. Likelihood calculation

for simple and complex pedigrees. Hum Hered 25:95–105

[7] Lange K, Goradia TM (1987) An algorithm for automatic genotype elimination. Am J

Hum Genet 40:250–256

[8] Lathrop GM, Lalouel, J-M (1984) Easy calculations of lod scores and genetic risks on

small computers. Am J Hum Genet 36:460–465

[9] Lathrop GM, Lalouel J-M (1988) Efficient computations in multilocus linkage analysis.

Am J Hum Genet 42:498–505

[10] Lathrop GM, Lalouel J-M, Julier C, Ott J (1984) Strategies for multilocus linkage

analysis in humans. Proc Natl Acad Sci USA 81:3443–3446

[11] Lathrop GM, Lalouel J-M, White RL (1986) Construction of human genetic linkage

maps: likelihood calculations for multilocus linkage analysis. Genet Epidemiol, 3:39–52

[12] Law A, Richard CW III, Cottingham RW Jr, Lathrop GM, Cox DR, Myers RM (1992)

Genetic linkage analysis of bipolar affective disorder in an Old Order Amish pedigree.

Human Genetics, 88:562–568

[13] Miller PL, Nadkarni P, Gelernter JE, Carriero N, Pakstis AJ, Kidd KK (1991) Par-

allelizing genetic linkage analysis: A case study for applying parallel computation in

molecular biology. Comp Biomed Res 24:234–248

26

[14] NCHGR article (1991) NCHGR begins unified framework map effort. Human

Genome News 3(2):1

[15] Ott J (1974) Estimation of the recombination fraction in human pedigrees– efficient

computation of the likelihood for human linkage studies. Am J Hum Genet 26:588–597

[16] Ott J (1991) Analysis of Human Genetic Linkage, revised edition. The Johns Hopkins

University Press, Baltimore and London, 1991

[17] Stallman RM (1992) Using and porting gnu cc. Manual provided by the Free Software

Foundation to document gcc

[18] Wijsman, EM (1987) A deductive method of haplotype analysis in pedigrees. Am J

Hum Genet 41:356–373

27

Data Set Number of Alleles New Program Time Old Program Time Speedup

CEPH 6 � 7 17sec 105sec 6

CEPH 6 � 9 22sec 647sec 30

CEPH 7 � 9 46sec 17279sec 375

RP01-3 6 � 6 436sec 4234sec 9

RP01-3 6 � 9 1357sec 14953sec 11

RP01-3 9 � 9 490sec 5452sec 11
�

Table 1: Some sample 2-point analyses done with LODSCORE.
�

means that the old

program was run for only one function evaluation.

28

Data Set Number of Alleles New Program Time Old Program Time Speedup

RP01-3 2 � 3 � 3 60sec 320sec 5

RP01-3 2 � 6 � 6 61min 586min 9

RP01-3 2 � 6 � 9 190sec 1602sec 8
�

RP01-3 2 � 6 � 9 200sec 1694sec 8
�

RP01-3 2 � 6 � 9 183sec 1682sec 9
�

RP01-3 2 � 6 � 9 200sec 1771sec 9
�

RP01-3 2 � 9 � 9 15min 130min 9
�

RP01 2 � 6 � 6 299sec 5541sec 19
�

RP01 2 � 9 � 9 99min 3013min 31
�

BAD 2 � 4 � 4 48sec 691sec 14
�

Table 2: Some sample 3-point analyses done with ILINK.
�

means that the old program was

run for only one function evaluation;
�

means that both programs were run for one function

evaluation.

29

Data Set Number of Alleles New Program Time Old Program Time Speedup

RP01-3 2 � 3 � 3 � 4 92sec 821sec 9
�

RP01-3 2 � 3 � 3 � 6 345sec 4131sec 12
�

RP01-3 2 � 3 � 4 � 5 587sec 6085sec 10
�

Table 3: Three sample 4-point analyses done with ILINK.
�

means that the old program

was run for only one function evaluation.

30

Figure 1 The UCLA-RP01 pedigree containing 192 individuals over 7 generations. Double

bars indicate the two marriage loops. The dashed boxes show how the pedigree was split

into three pieces when required, and * indicates the individuals coded in two sub-pedigrees.

Shading indicates affected individuals (solid: 100%, forward slashes: 90%, back slashes:

80% probability of being affected). The ? shows at-risk individuals whose disease status is

unknown.

31

Keywords:

genetic linkage analysis

LINKAGE

algorithms

computer science

recombination

sparsity

