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ABSTRACT 

Bibliographical references that appear in journal articles can provide valuable hints for subsequent information 
extraction. We describe our statistical machine learning algorithms for locating and parsing such references from HTML 
medical journal articles. Reference locating identifies the reference sections and then decomposes them into individual 
references. We formulate reference locating as a two-class classification problem based on text and geometric features. 
An evaluation conducted on 500 articles from 100 journals achieves near perfect precision and recall rates for locating 
references. Reference parsing is to identify components, e.g. author, article title, journal title etc., from each individual 
reference. We implement and compare two reference parsing algorithms. One relies on sequence statistics and trains a 
Conditional Random Field. The other focuses on local feature statistics and trains a Support Vector Machine to classify 
each individual word, and then a search algorithm systematically corrects low confidence labels if the label sequence 
violates a set of predefined rules. The overall performance of these two reference parsing algorithms is about the same: 
above 99% accuracy at the word level, and over 97% accuracy at the chunk level. 

 

Keywords: Reference Parsing, HTML Document Analysis, Document Object Model (DOM), Support Vector Machine 
(SVM), Conditional Random Field (CRF). 

1. INTRODUCTION 
Automatic metadata extraction from medical journals is key to the affordable creation of citations in MEDLINE®, the 
flagship database of the U.S. National Library of Medicine (NLM), containing over 17 million records and searched over 
3 million times per day worldwide. Analyzing references, which are citations usually placed at the end of scientific 
publications, is an important preprocessing step for generating several MEDLINE bibliographic data items, e.g., 
identifying Comment-On/Comment-In articles (commentary article pairs)11, assigning MeSH (Medical Subject Heading) 
indexing terms1 through analyzing the MeSH terms already assigned to the cited articles, and many others. 

With a rapidly increasing number of articles published online in the HTML format, we concentrate on analyzing 
references in such articles. It is a two-step process: 

• Locate references: to identify reference sections, and then decompose them into individual references. 
• Parse references: to extract entities from the references. Our goal is to extract 7 entities: Citation Number 

(<N>), Author Names (<A>), Article Title (<T>), Journal Title (<J>), Volume (<V>), Pagination (<P>) and 
Publication Year (<Y>). All remaining words are labeled as Unknown (<U>). [The notation inside each 
parenthesis is the abbreviated entity label.] 

The most straightforward method for locating references is to use HTML tags. However, the HTML syntax is overly 
flexible, and is designed for displaying and manipulating, rather than for semantic understanding of, the HTML pages. 
Consequently, references can be implemented by completely different HTML codes. Using predefined HTML tags for 
reference locating can therefore produce misleading results24. 

We observe the following with regard to bibliographical references: (1) They contain distinctive text, e.g., author names, 
abbreviated journal names, pagination, publication years, etc.; (2) They have similar geometric features, e.g., occurring 
at end of the article, having similar width and height, etc.; (3) All references are consecutive neighbors, and adjacent 
ones are separated by a line-break. 
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We therefore formulate reference location as a two-class classification. After rendering the HTML article in a Browser, 
geometric and text features are extracted from the zones in the HTML article, and an SVM classifier is used to classify 
these zones as either reference zones or non-reference zones. The third observation in the previous paragraph is a useful 
constraint which can expedite the process and increase its reliability. 

Parsing references is also challenging, because NLM indexes over 5,200 journals from hundreds of publishers, who 
follow many different citation formats. Table 1 is a partial list of reference styles. While only shorter references are 
shown in the table for brevity, their lengths vary from less than 10 to more than 100 words.  

Table 1: Examples of reference styles collected from MEDLINE-indexed medical articles. 
(a) 2. M.F. Perutz, Nature of haem-haem interaction, Nature 237 (1972), pp. 495–499. Full Text via CrossRef | Abstract + References in Scopus | 

Cited By in Scopus 

<N>2.</N><A>M.F. Perutz,</A><T>Nature of haem-haem interaction,</T> <J> Nature</J><V>237</V><Y>(1972)</Y> <P> pp. 495–
499</P>. <U> Full Text via CrossRef | Abstract + References in Scopus | Cited By in Scopus </U> 

(b) Cao et al., 2002a X. Cao, C. Tang and Y. Luo, Effect of nerve growth factor on neuronal apoptosis after spinal cord injury in rats, Chin. J. 
Traumatol. 5 (2002), pp. 131–5. Abstract + References in Scopus | Cited By in Scopus 

<N> Cao et al., 2002a </N><A>X. Cao, C. Tang and Y. Luo,</A> <T> Effect of nerve growth factor on neuronal apoptosis after spinal cord 
injury in rats,</T> <J> Chin. J. Traumatol. </J><V>5</V> <Y>(2002)</Y> <P> pp. 131–5.</P><U> Abstract + References in Scopus | 
Cited By in Scopus </U> 

(c) Saha, S., et al. (2002) Using the transcriptome to annotate the genome. Nat. Biotechnol, 20, 508–512[CrossRef][ISI][Medline]. 

<A>Saha, S., et al.</A> <Y>(2002)</Y> <T> Using the transcriptome to annotate the genome.</T> <J> Nat. Biotechnol,</J> <V>20</V> 
<P>508–512</P> <U>[CrossRef][ISI][Medline]</U> 

(d) Paddock, C. D., and J. E. Childs. 2003. Ehrlichia chaffeensis: a prototypical emerging pathogen. Clin. Microbiol. Rev. 16:37-
64.[Abstract/Free Full Text] 

<A> Paddock, C. D., and J. E. Childs.</A> <Y>2003.</Y> <T> Ehrlichia chaffeensis: a prototypical emerging pathogen.</T> <J>Clin. 
Microbiol. Rev.</J> <V>16</V>: <P>37-64</P>. <U>[Abstract/Free Full Text]</U> 

(e) Wagner, A. F., Frey, M., Neugebauer, F. A., Schäfer, W., and Knappe, J. (1992) Proc. Natl Acad. Sci. U. S. A. 89, 996–1000[Abstract/Free 
Full Text] 

<A>Wagner, A. F., Frey, M., Neugebauer, F. A., Schäfer, W., and Knappe, J.</A> <Y>(1992)</Y> <J> Proc. Natl Acad. Sci. U. S. A.</J> 
<V>89</V>, <P>996–1000</P><U>[Abstract/Free Full Text]</U> 

(f) 23. Ytrehus K, Liu Y, Downey J M. Am J Physiol. 1994;266:H1145–H1152. [PubMed] [Full Text] 

<N>23.</N><A> Ytrehus K, Liu Y, Downey J M.</A><J>Am J Physiol.</J><Y>1994</Y>;<V>226</V>:<P> H1145–H1152</P> 
<U>[PubMed] [Free Full Text]</U> 

(g) 25. M. Huse, J. Kuriyan, Cell 109, 275 (2002). [CrossRef] [ISI] [Medline] 

<N>25.</N><A> M. Huse, J. Kuriyan,</A><J> Cell </J><V>109</V><P>275</P><Y>(2002)</Y> <U>[CrossRef] [ISI] [Medline]</U> 
(h) Roe, BA.; Crabtree, JS.; Khan, AS. DNA Isolation and Sequencing. Hoboken: John Wiley and Sons; 1996. 

<A>Roe, BA.; Crabtree, JS.; Khan, AS.</A><T>DNA Isolation and Sequencing</T><U>Hoboken: John Wiley and 
Sons</U><Y>1996</Y>  

(i) 1. Tjaden P, Thoennes N. Full Report of the Prevalence, Incidence and Consequences of Violence Against Women: Research Report. 
Washington, DC: National Institute of Justice; 2000. NCJ 183781. 

<N>1.</N><A> Tjaden P, Thoennes N</A><T> Full Report of the Prevalence, Incidence and Consequences of Violence Against Women: 
Research Report.</T><U> Washington, DC: National Institute of Justice;</U><Y>2000</Y><U> NCJ 183781</U> 

(j) Lindell, T.J. (1980) Inhibitors of mammalian RNA polymerases In P.S., Sarin and R.C., Gallo (Eds.). Inhibitors of DNA and RNA 
Polymerases, Oxford Pergamon Press pp. 111–141. 

<A>Lindell, T.J.</A><Y>(1980)</Y><T> Inhibitors of mammalian RNA polymerases </T><U> In P.S., Sarin and R.C., Gallo (Eds.). 
</U><J> Inhibitors of DNA and RNA Polymerases </J><U> Oxford Pergamon Press </U><P> pp. 111–141</P> 

(k) 25 Collaborative Computational Project Number 4, The CCP4 suite: programs for protein crystallography, Acta Crystallog. sect. D 50 (1994), 
pp. 760–763. 

<N>25</N><A> Collaborative Computational Project Number 4</A><T> The CCP4 suite: programs for protein crystallography </T><J> 
Acta Crystallog. sect. D </J><V>50</V><Y>(1994)</Y><P>pp. 760–763</P> 

Shown in each part of the table are the original references with HTML tags removed, and labeled in an XML-like 
format. These references vary considerably in style. For example, (a) and (b) have Citation Numbers, but in completely 
different formats. Some other references, on the other hand, do not have Citation Numbers. There are also many 
different formats for Author Names: initials followed by last names, e.g., (a); last names followed by initials, e.g., (e); 
not all authors listed, e.g., (c); and the first author and the remaining authors in different formats, e.g., (d). In most cases, 



 
 

 
 

the Article Title exists, but, sometimes not, as in (e). Most Journal Titles are significantly abbreviated, while some are 
not. Publication Years may or may not be inside a parenthesis. Pagination may be in the full format, e.g., 495-499 in (a), 
abbreviated format, e.g., 131-5 in (b) or only indicate the starting page, e.g., 275 in (g). They may be preceded by “pp.”, 
“p.”, or nothing. They can also contain non-digits, e.g., H1145-H1152 in (f). There are also several different volume-
page combinations. The order in which the eight entities appear may also vary. Most references are citations to journal 
papers, but also to books, e.g., (h), reports, e.g., (i) and edited book chapters, e.g., (j). Occasionally, the authors may be 
organizations, e.g., (k). There are also many minor variations in the use of commas, spaces, semicolons or periods to 
separate different entities; in capitalizing all title words or just the first one; and so on. 

We have implemented and compared two reference parsing algorithms, each based on a state-of-the-art machine learning 
technique. One focuses on sequence modeling and uses the Conditional Random Field (CRF), a statistical sequence 
model, to model the word sequence of a reference. 

The other algorithm involves local word classification and is a two-step process. The first step is a multi-class (in our 
case, 8-class) classification. We call this single-word classification, since each word in the reference is assigned an entity 
label. We concentrate on examining local features of each individual word. These local features include the attributes of 
the word itself and its adjacent neighbors.  

In addition, we find rules that always hold, in spite of the many styles and variations in the references. For example: 

• Citation Number (<N>) is always the first entity, if it exists. 

• “pp.” or “p.”, if labeled as pagination, has to be followed by at least another pagination word. 

The complete set of such rules is listed in Section 4.2. These rules are useful global constraints with which the label 
sequence must comply. In the second step of the algorithm, labels with low confidence are systematically corrected if the 
entire label sequence violates the global rules.  

This paper is organized as follows: in Section 2, we review existing methods for both locating and parsing references. 
We also briefly discuss the rationale and novelty of our approach. We discuss our methods in detail in Sections 3 and 4. 
Experimental evaluation is presented in Sections 5 and 6, and conclusions and future work constitute Section 7. 

2. RELATED WORK 
CiteSeer is a well-known and successful citation indexing system developed at NEC Research Institute13. CiteSeer uses 
Web search engines and heuristics to crawl the Web and download PDF and PostScript articles. After converting to text, 
CiteSeer uses heuristics to locate the reference section, and then parses each reference to extract fields such as title, 
author, year of publication, and so on. Similar systems include ISI Web of Knowledge26 and Google Scholar27. We focus 
on HTML articles. By rendering the HTML articles in a Web browser (e.g. Microsoft Internet Explorer), geometric 
information (locations and sizes of zones) can be extracted, and these are important features for reliably locating 
bibliographical references. 

There does not appear to be work reported on specifically locating references appearing in HTML articles. A related 
problem, which has been carefully studied recently by several researchers, is mining data records from Web pages. Data 
records are a list of similarly structured items, e.g., a list of products on sale. Liu et al. exploit the Web page structure 
and mostly depend on string matching of HTML tag sequences to detect data records14. Zhai and Liu extended this work, 
and used visual information and tree matching to detect data records, and then designed a partial tree alignment 
algorithm to align data records, and extract information from each one23. Reis et al. assumed that certain Web page 
groups share a common format and layout characteristics, and designed a tree matching algorithm to extract news 
content from news pages19. 

These data record mining algorithms have been used to extract consumer product reviews, news, Internet forum 
postings, and several other applications. These algorithms are mostly based on HTML DOM (Document Object Model) 
tree and HTML tags. The duplication of similar DOM tree structures is the primary cue for locating and aligning data 
records and for extracting information from them. In our reference locating problem, the text is a much more reliable 
feature compared to HTML tags. We therefore formulate the reference locating as a two-class classification based on 
geometric and text features. 



 
 

 
 

Reference parsing, on the other hand, has received far more attention. Existing reference parsing methods can be 
generally divided into two categories: rule based methods and those based on machine learning. Rule based methods 
usually rely on a set of rules based on a domain expert’s observation. Chowdhury4 and Ding et al. 7 have used template 
mining techniques. Templates are manually crafted to summarize the recognizable patterns formed by either the data 
and/or text surrounding the data. A set of rules is usually associated with the templates, and when text matches to the 
templates, the data are extracted according to the rules. Day et al. 5, 6 extended the template mining approach, and used 
INFOMAP, a hierarchical framework, for knowledge (template) representation. Huang et al. used a gene sequence 
alignment tool, BLAST (Basic Local Alignment Search Tool), to extract citation metadata10. 

Journal publishers usually require authors to strictly follow predefined citation styles, and careful editorial checking and 
correction are usually conducted before publishing. Therefore, for a small set of journals, rule-based methods can be 
very successful. On the other hand, rule-based methods require domain experts to design the rules and maintain them 
over time. This approach also prevents adaptability and it is difficult to tune the system due to the rigidity of the rules. 
As mentioned, for MEDLINE data, over 5,200 journals from hundreds of publishers need to be processed. Hence, 
automatic reference parsing through rule-based methods poses a challenge due to the large variation of citation styles. 

In contrast, machine learning approaches exhibit good adaptability by automatically learning the knowledge from 
training samples, and have therefore attracted a great deal of interest. Parmentier and Belaïd developed a concept 
network to hierarchically represent and recognize structured data from bibliographic citations16. Besagni et al. took a 
bottom-up approach based on Part-of-Speech (PoS) tagging2. In this approach, basic tags, which are easily recognized, 
are first grouped into homogeneous classes. Confusing tokens are then classified by either a set of PoS correction rules 
or a structure model generated from correctly detected records. 

Hidden Markov Model (HMM), a successful machine learning tool for information extraction from sequences, has also 
been studied for parsing references, e.g., Takasu applied HMM for parsing erroneous references22. Conditional Random 
Field, another popular sequence model, is recently reported to achieve better performance compared to HMM18. We 
have therefore included CRF as one of our reference parsing methods. 

Another frequently adopted machine learning method for information extraction is the Support Vector Machine (SVM) 
classifier. Han et al. took a two-stage approach for metadata extraction from the header part of research papers9. Okada 
et al. combined SVM and HMM for bibliographic component extraction 17. We have implemented a reference parsing 
algorithm, which uses the SVM to classify each individual word. Intuitively, adjacent words in a reference usually are 
more likely to belong to the same entity. To exploit this important local dependency, we use not only the features 
extracted from the word itself, but also those extracted from its neighbors.  

3. REFERENCE LOCATING 
Our method begins by rendering the HTML article in Internet Explorer, and then creating an HTML DOM tree. DOM 
tree is a well-defined model published by W3C (World Wide Web Consortium) for accessing and manipulating HTML 
documents. However, DOM tree usually over-segments the HTML article. Figure 1 illustrates the HTML codes of two 
consecutive references, their rendering results and their corresponding DOM sub-trees. Following the DOM convention, 
we use <> to indicate element nodes and use # to indicate text nodes. Two references, shown in Figure 1(b), are simple 
text lines, but correspond to complicated DOM sub-trees, shown in Figure 1(c). (Dashed bounding boxes indicate zone 
sub-trees and will be explained below.) HTML DOM tree is the starting point for our reference locating algorithm, but a 
preprocessing step is required for pruning those unnecessary sub-trees, such as all DOM sub-trees in the lower two 
bounding boxes. 

All HTML tags can be divided into two categories. Inline tags are those that do not introduce line breaks. A complete 
inline tag list in our algorithm includes: <A>, <ACRONYM>, <ABBR>, <B>, <BIG>, <CITE>, <CODE>, <DEL>, 
<DFN>, <EM>, <FONT>, <I>, <IMG>, <INPUT>,  <INS>, <NOBR>, <KBD>, <Q>, <SAMP>, <SMALL>, <SPAN>, 
<STRONG>, <SUP>, <SUB>, <TT>, <U>, <VAR>. Line-break tags are the remaining tags, which do introduce line 
breaks, e.g., <P>, <TABLE>, <DIV>, <H1>, etc. 

We merge all consecutive inline DOM nodes. This generates another tree structure that we call a zone tree. Each zone 
node contains either a set of consecutive inline DOM nodes, or one line-break node. Examples are shown in Figure 1(c). 
Dashed bounding boxes correspond to zone nodes. Two child zones are formed due to the line-break <BR> nodes. Their 



 
 

 
 

<A name="#REF-JOC60062-11">11.</A> Wiener J, Quinn JP, Bradford PA, et al. Multiple antibiotic-resistant <I>Klebsiella</I> and <I>Escherichia coli</I> in nursing homes. <I>JAMA.</I> 
1999;281:517-523. <A href="/cgi/ijlink?linkType=ABST&amp;journalCode=jama&amp;resid =281/6/517"><FONT face="verdana, arial, helvetica, sans-serif" size=1><NOBR><B>FREE</B> FULL 
TEXT</NOBR></FONT></A><BR> 
<A name="#REF-JOC60062-12">12.</A> Kayser-Jones JS, Wiener CL, Barbaccia JC. Factors contributing to the hospitalization of nursing home residents. <I>Gerontologist.</I> 1989;29:502-510. 
<A href="/cgi/ijlink?linkType=ABST&amp;journalCode=thegeron&amp;resid=29/4/502"><FONT face="verdana, arial, helvetica, sans-serif" size=1>ABSTRACT</FONT></A><BR> 

(a) 

         
(b) 

 Parent
Zone 

<A> 

#11. 

#Wiener…  <I> 

#Klebsiella 

#and <I> 

#Esch… 

#in… <I> 

#JAMA. 

#1999… <A> 

  <FONT> 

  <NOBR> 

  <B> 

#FREE 

#FULL… 

<BR> <A> 

#12. 

#Kayser…  <I> 

# Gerontologist 

#1989… <A> 

  <FONT> 

  #ABSTRACT 

<BR> 

<TD>

Child Zone 
Child Zone 

 
(c) 

Figure 1: Two reference examples. (a): HTML code; (b): Displayed in the Browser; (c): DOM sub-tree and zone sub-
tree (marked with dashed bounding boxes). 

parent is a zone corresponding to the <TD> DOM node. After this step, the non-break text lines are usually formed into 
one zone. The following process is conducted on the zone tree. 

For each zone node, containing non-space text, 59 geometry and text features are extracted. The first 9 features with 
brief explanations are listed in the first 9 rows of Table 2. The remaining 50 features are binary features which indicate 
whether the specified words appear in the text. The 50 words are selected by the GSS measure8. 

Table 2: 59 features for reference locating. 
Features Comments 
1. left The left position of the zone bounding box normalized by the page width 
2. top The top position of the zone bounding box normalized by the page height 
3. width The width of the zone bounding box normalized by the page width 
4. # of words The number of words in the zone 
5. 4-digit year pattern Does the zone contain a word in four digit year pattern, e.g., 2005? The four digit year pattern must not 

be later than the current year. 
6. pagination pattern Does the zone contain a word in pagination pattern, e.g., 200-5, H100-H105? 
7. # of name words The number of name words in the zone. Our name dictionary contains 236,748 names, which are 

collected from 10 years of MEDLINE data 
8. # of single-upper-case-letter words The number of single-upper-case-letter words, e.g., D, in the zone. 
9. # of double-upper-case-letter words The number of double-upper-case-letter words, e.g., DL, in the zone. 
10~59. Special word features Does the zone contain the following words: j, crossref, abstract, full, text, medline, free, pp, via, 

scopus, cited, biol, amp, isi, infotrieve, microbiol, order, chem, mol, sci, no, res, proc, acad, biochem, 
natl, appl, al, et, acta, bacteriol, amino, environ, nature, summaryplus, links, rev, escherichia, 
biochemistry, vol, med, sect, crystallogr, immunol, biophys, crystallog, nat, clin, immun, nucleic. 

GSS is named after the three authors who proposed the method. In a survey of text categorization by Sebastiani20, the 
GSS measure is recognized as one of the best methods for selecting informative words. In our two-class classification, 
we define a joint GSS measure for each word  to be: kt

 ( ) ( ) ( ) ( ) ( )1001 ,,,, ctPctPctPctPtGSS kkkkk −= , 

where, ( ik ctP , )  indicates the probability that, given a random zone, word  does not occur in the zone and that the zone 
belongs to category . The GSS measure reflects the intuition that the best words are the ones distributed most 
differently in the reference and non-reference zones. 

kt

ic

( )ik ctP ,  and ( )ik ctP ,  are estimated by counting occurrences in the 
training samples, and the top 50 words with the highest GSS measures are selected and listed in the last row of Table 2. 
The words are listed in descending order of their GSS values. Because our training samples are medical articles, many of 



 
 

 
 

the selected words are abbreviated journal titles. For locating references in general publications, the most informative 
word list can be easily created by following the same procedure. Also note that special words like “crossref”, “medline”, 
“scopus” and “infotrieve” are also highly ranked. They are usually placed at the end of the references to provide quick 
access to external links. Intuitively, they are informative words for detecting references. 

We used LibSVM3, an SVM library developed at the National Taiwan University, to implement our reference zone 
classification. We adopted Radial Basis Function (RBF) as the kernel function, and the values for two parameters,  
(penalty parameter of the errors) and

C
γ (RBF parameter), were selected through exhaustive grid-search using cross-

validation on training samples. 

This SVM classifier assigns each zone tree node a probability value for being a reference zone*. Because references are 
consecutive neighbors, they must be consecutive siblings in the zone tree. We use the following 3-step heuristic to label 
the reference zones:  (1) We find a parent zone node, which has the most reference-like children (probability of being 
reference zone is larger than 0.5); (2) Under this parent, we search for the best locations of the first and the last reference 
zones: [ ] ( ) ( )( ), where,  and are the locations of the first and the last 

references, 

∏∏
≤<<≤≤≤

=−==
Njttj

j
tit

i
tt

L
LFLFLF

F
RcPRcPtt

,0,

** 1, maxarg Ft Lt

N is the total number of children zones, ( )RcP k =  is the probability of the kth child to be a reference zone. 
Since there are usually at most about 100 children zones under a parent, we simply use exhaustive search to find  and 

;  (3) We label all consecutive sibling zones between  and  reference zones. 

*
F

t
*
Lt *

F
t *

Lt

4. REFERENCE PARSING 
For the step following reference locating, we have implemented two reference parsing algorithms. One relies on 
sequence statistics and trains a Conditional Random Field (CRF) sequence model. The other focuses on local feature 
statistics and trains a Support Vector Machine (SVM) to classify each individual word, followed by a search algorithm 
that systematically corrects low confidence labels if the label sequence violates a set of predefined rules. We describe 
these in the sub-sections below, and compare them in Section 6. 

Table 3: 14 binary features extracted from individual words. 
Feature Comments 
1.Author Name Feature Is the word in Author Name dictionary? 
2. Article Title Feature Is the word in Article Title dictionary? 
3. Journal Title Feature Is the word in Journal Title dictionary? 
4. Pagination Pattern Is the word in pagination format, e.g., 200-5, H100-H105? 
5. Name Initial Pattern Is the word in name initial pattern, e.g., J.Z., J.-Z? 
6.Four Digit Year Pattern Is the word in four digit year pattern, e.g., 2005? It must not be later than the current year. 
7. et, al Is the word “et” or “al”, or “et.”, or “al.”? 
8. pp., p. Is the word “pp.”, or “p.”, or “pp”, or “p”? 
9. Ended With “.” Does the word end with “.”? 
10. Upper Case First Char Is the first character of the word upper case? 
11. Letter Only Does the word contain letters only? 
12. Digit Only Does the word contain digits only? 
13. Digit and Letter Does the word contain both digits and letters? 
14. Digit and Letter Only Does the word contain digits and letters only? 

4.1 CRF for reference parsing 

CRF is a probabilistic model designed for labeling sequence data12, 21. It is defined as the conditional probability of a 
state sequence, , given an input observation sequence { Nssss ,,, 21 L= } { }Noooo ,,, 21 L= : , where ( ) ( )⎟

⎠

⎞
⎜
⎝

⎛∝ ∑
=

N

t

tosFosp
1

,,exp|

N is the length of the sequence, and  is the sum of CRF feature functions at position ( tosF ,, ) t . There are two types of 
CRF feature functions: edge feature functions, ( )⋅if , that characterize state-state transitions and state feature functions, 

                                                 
* In our implementation, many zone nodes are assigned a zero probability without going through the SVM classification in order to save 

computation time. These zones that are ignored contain less than 5 words or more than 400 words. Because articles typically have at least 2 references, 
we also ignore zone nodes which have no siblings. 



 
 

 
 

( )⋅jg , that characterize the observation-state relations. We use first-order Markov chain in our CRF model and the 
observations are extracted from the word itself and its immediate left and right neighbors. Therefore, our CRF feature 
functions can be written as: ( ) ( ) ( )∑∑ +−− +=

j
ttttjj

i
ttii sooogssftosF ,,,,,, 111 λλ . The goal of training a CRF is to estimate the 

parameters 
iλ  and 

jλ , i.e., the weights of feature functions. The trained CRF model can then be used to assign labels to 
unknown sequences.  

We collected word dictionaries for Author Names, Article Titles and Journal Titles from 10 years of MEDLINE 
historical data. There are a total of 236,748 Author Name words, 108,484 Article Title words and 6,909 Journal Title 
words. The observation vector  at position 

to t  contains not only the word itself, but also 14 other binary features as well. 
The first 3 features of a word, Author Name Feature, Article Title Feature and Journal Title Feature, are binary features 
indicating whether the word is in the corresponding dictionaries. We also extract an additional 11 binary features. All 14 
binary features and their brief explanations are listed in Table 3. We used MALLET15, a machine learning library for 
language processing, developed by McCallum, to implement our CRF reference parsing algorithm. 

4.2 Combining SVM and global rules for reference parsing 

In our second algorithm, we treat reference parsing as a multi-class classification of each individual word. A set of local 
features is extracted from each word and its adjacent neighbors. An SVM classifier is trained on a set of manually-
labeled references, and then applied to classify each word of a test reference. If the label sequence after single word 
classification violates a set of predefined rules, a search algorithm is used to find a label sequence, which obeys the 
global constraints and has the highest probability. 

Single word classification using SVM  

From each word, 15 features are extracted. The first 14 are the same binary features listed in Table 3. The 15th feature is 
the normalized position, i.e., the position of the word normalized by the total number of the words in the reference. 

Intuitively, we expect adjacent words in a reference to usually have a higher probability of belonging to the same entity. 
In order to utilize these local contextual dependencies, the features used for the classification are extracted from not only 
the word itself, but also from its neighbors. 

As done for reference locating, we adopted LibSVM with RBF kernel function for this single word classification. 
Similarly, the two parameters,  (penalty parameter of the errors) andC γ (RBF parameter), were also selected through 
exhaustive grid-search using cross-validation on training samples. 

Global rules for references  

By inspection, we have found that the following rules always hold for references. 

• “J”, “J.”, or “Journal” cannot be labeled as an isolated single Journal Title entity. At lease one of its adjacent 
neighbors must also be part of the Journal Title. 

• “pp.” or “p.”, if labeled as pagination, has to be followed by at least another pagination word. 
• Except for Unknown Entity, each of the other entities can only be composed of consecutive words, and appear at 

most once in the reference. 
• There must be an Author entity. 
• A Citation Number must be the first entity if it exists. 
• Author entity must appear before Article Title and Journal Title, if they exist. 
• Article Title entity must appear before Journal Title, if they exist. 
• Journal Title must appear before Volume and Pagination, if they exist. 
• Volume must appear before Pagination, if they exist. 

These global rules are very strong and useful constraints, but some of them characterize long distance (high order) 
correlations, and therefore are difficult to model with statistical models. We choose to explicitly check whether the label 
sequences obey the rules. 

 



 
 

 
 

A search algorithm for finding optimal label sequence which complies with the rules  

Due to the high accuracy of single word classification, most references can already be correctly parsed. For those that do 
not pass the global rule test, nearly all of them are close to the correct label sequence with only a few words mislabeled. 
The goal is then to identify and correct those mislabeled words. We present a systematic search algorithm guaranteed to 
find a label sequence that is valid (obeys the global rules) and is most-likely (has the highest probability). 

Given an  word reference, , and N { Nwww L,, 21 } M (in our case, 8=M ) entity labels, { }Mccc L,, 21 , single word 
classification calculates an probability matrix P. An element of P,NM × ( )i

j wcp | , represents the posterior probability of 

word belonging to entity . To avoid computational overflow, log-probability, iw jc ( ) ( )i
j

i
j wcpwcl |ln| = , is used in the 

following discussions. 

The log-probability of a label sequence, { }NcccL ,,, 21 L= , where, { }M
i cccc L,, 21∈  can then be calculated as: 

. The cost of changing a word’s label in the sequence can also be calculated 

as: . The cost of changing labels of 
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The key to finding the most-likely and valid label sequence is then to search possible label sequence modifications in the 
ascending order of their costs. The search stops at the first label sequence, which obeys the global rules.  Because there 
are 1−NM  possible modifications, it is computationally prohibitive to calculate costs for all possible modifications and 
then sort them. We present an algorithm which enumerates sequence modifications in ascending order of their costs. 

We first calculate the costs for all ) possible single-token modifications (only one word’s label is modified) and 
sort them in ascending order. This is not computationally expensive. We arrange these ) single-token 
modifications in the middle line of Figure 2 (marked with a dashed bounding box) in ascending order of their costs. <1> 
indicates the single-token modification with the minimum cost, and so on.  It is easy to see that the first and second 
sequence modifications must be the first two single-token modifications. In each subsequent column we list all possible 
multi-token modifications, which are all possible combinations of the previous single-token modification and all other 
previous single- and multi- token modifications. For example, in Column 3, the previous single-token modification is 
<2>, and there is only one other modification, i.e., <1>, so there is only one multi-token modification, i.e., <2,1>. Let us 
assume that <1> and <2> are the modifications to the same word, so the modification <2,1> is meaningless. We mark it 
with a dashed circle and abandon it. In Column 4, the previous single-token modification is <3>, and all other possible 
previous modifications are <1> and <2>, so we have two multi-token modifications, as shown in Column 4, <3,1> and 
<3,2>. Let us assume the cost of <3,1> is less than that of <4>, but the cost of <3,2> is greater than that of <4>, and 
therefore, we place <3,1> on top of <4> and <3,2> below <4>. Similarly, we create Columns 5, 6, and so on. In this 
example, <1>, <2>, <5> are assumed to be single-token modifications of the same word, and <3> and <4> are single-
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Figure 2: Illustration of the algorithm for searching for valid and most-likely reference label sequence. 



 
 

 
 

token modifications of the other two words. Meaningless multi-token modifications are marked with dashed circles. 

For each column, let us call the modifications above the single-token modification the upper column, and the 
modifications below the single-token modification the lower column. Although the modifications in each column are 
ordered, the modifications in the lower column may have higher cost than the modifications in the later columns. 
However, a key observation is that the modifications in an upper column must be smaller than those in the lower column 
and the later columns. This is the key for creating new columns dynamically and enumerating all modifications in 
ascending order of their costs. The algorithm is shown below: 

1. Calculate costs for all  single-token modifications, and sort them in ascending order. ( 1−MN )
2. Test the first single-token modification. If it obeys the rules, go to the end, otherwise continue. 
3. Test the second single-token modification. If it obeys the rules, go to the end, otherwise continue. 
4. Create Column 3, and save all modifications into an ascending ordered list. 
5. Repeat for K=3, 4,…, N(M-1)-1: 

a. Repeat: 
      i. Pop up and test the first modification from the ordered list. 
     ii. If it obeys the rules, go to the end, otherwise continue. 
b. Until single-word modification <K> is tested. 
c. Create Column K+1, and save the modifications into the ordered list. 

6. Finish testing remaining ordered list. 
7. End 

It is clear that the algorithm is still an exhaustive search, but it searches from the label sequence generated by single 
word classification, which, in our case, is close to the correct solution. Most searches, therefore, terminate very quickly. 
Because the search is conducted in the ascending order of costs, it is guaranteed to find the most-likely modification that 
obeys the rules. In an actual implementation, it is of course better to set a limit on the maximum number of modifications 
to be tested to avoid lengthy computation. In our implementation, the search terminates after 10,000 modifications have 
been tested. In practical systems, if the search does not terminate when the limit is reached, this is an indication that the 
parsing may not be accurate. 

5. EVALUATION OF REFERENCE LOCATING 
To evaluate reference locating, we randomly collected 1,000 articles from the top 100 journals cited in the MEDLINE 
2006 database (the articles from the most important 100 journals indexed by MEDLINE in 2006). We randomly select 
500 of these articles as training samples, and the remaining 500 as test samples. 

In the 500 training samples there are 21,709 references. On the other hand, there are significantly more non-reference 
zones. Because the SVM classifier is known to be biased toward the class label with more training samples25, we retain 
only the same number of the randomly selected non-reference zones. A total of 43,418 zones therefore are used to find 
the 50 most informative words using the GSS measure, and to train an SVM classifier for reference zone classification. 

Our reference locating method is very reliable. There are a total of 22,147 reference zones in those 500 test articles. The 
algorithm achieves very high precision and recall rates, producing only 6 false positives and 2 false negatives. 

6. EVALUATION OF REFERENCE PARSING 
To evaluate reference parsing, we randomly collected and manually labeled 2,400 references. 600 of them are randomly 
selected from the 500 training articles as training samples, and the remaining 1,800 are the test samples randomly 
selected from the 500 test articles. We evaluate the algorithm performance at two levels. One is at the word level, i.e., 
the labeling accuracy of individual words. The other is at a chunk or component level, i.e., the percentage of the entity 
chunks† correctly identified. 

                                                 
† An entity chunk consists of a set of consecutive words that share the same entity label. For example, the reference in Table 1(a) contains 8 entity 

chunks, where the first is the Number chunk consisting of a single word “2”, and the second is the Author chunk consisting of two words, “M.F.” and 
“Perutz”. 



 
 

 
 

6.1 CRF-based method 

We conducted an evaluation of our CRF-based parsing algorithm by varying the number of training sequences using 10, 
25, 50, 100, 300 and all 600 sequences. For 10, 25 and 50 sequences, the experiments were repeated 5 times, and for 100 
and 300 sequences, the experiments were repeated 3 times. The results are shown in Table 4. There are 53,622 words in 
the 1800 test references, and the accuracy reported in Table 4 is the overall accuracy for all 8 entities. Higher accuracy is 
indeed achieved with more training samples. Table 5 shows the accuracy at chunk level for each entity with all 600 
training sequences. 

Table 4: Word level accuracy of CRF-parsing 
Training Samples 10 25 50 100 300 600 
Accuracy(%) 95.92 97.09 97.96 98.51 98.72 99.04 

Table 5: Chunk level accuracy of CRF-parsing with 600 training sequences 
 Number Author Title Journal Volume Year Pagination Unknown Overall 

Total 627 1800 1308 1758 1735 1791 1751 1708 12478 
Correct 622 1753 1211 1692 1720 1778 1731 1640 12147 

Accuracy 99.2% 97.4% 92.6% 96.2% 99.1% 99.3% 98.9% 96.0% 97.3% 

6.2 Combining SVM and global rule correction 

Evaluation of single word classification 

For the second approach, i.e., combining SVM and global rule correction, we first conducted a comprehensive 
evaluation of the single word classification by varying the number of training samples and the number of words from 
which the features are extracted. Following the same experimental protocol, we tested with 10, 25, 50, 100, 300, and all 
600 training sequences. To vary the number of words from which the features are extracted, we tested with the word 
itself (15 features), the word and two adjacent neighbors (the immediate left and right words, giving 45 features), and the 
word and four adjacent neighbors (the immediate two left and two right words, amounting to 75 features). The 
experimental results are shown in the third column of Table 6. 

Table 6: Word level accuracy of single word classification and after global rule correction 
Samples # of words  Accuracy of single word classification  Accuracy after global rule correction  

The word itself, 15 features 89.91% 92.67% 
The word and 2 adjacent neighbors, 45 features 95.28% 96.67% 

 
10 

The word and 4 adjacent neighbors, 75 features 95.79% 96.97% 
The word itself, 15 features 91.65% 94.44% 
The word and 2 adjacent neighbors, 45 features 96.68% 97.57% 

 
25 

The word and 4 adjacent neighbors, 75 features 97.27% 97.68% 
The word itself, 15 features 92.32% 94.71% 
The word and 2 adjacent neighbors, 45 features 97.58% 98.36% 

 
50 

The word and 4 adjacent neighbors, 75 features 98.17% 98.51% 
The word itself, 15 features 92.98% 95.12% 
The word and 2 adjacent neighbors, 45 features 98.00% 98.55% 

 
100 

The word and 4 adjacent neighbors, 75 features 98.51% 98.80% 
The word itself, 15 features 93.36% 95.63% 
The word and 2 adjacent neighbors, 45 features 98.45% 98.88% 

 
300 

The word and 4 adjacent neighbors, 75 features 98.91% 99.06% 
The word itself, 15 features 93.35% 95.39% 
The word and 2 adjacent neighbors, 45 features 98.63% 98.98% 

 
600 

The word and 4 adjacent neighbors, 75 features 99.07% 99.13% 
 

Evaluation of global rule correction 

All the experiments above are continued with the global rule correction algorithm described in Section 4.2, and the 
accuracies are reported in the fourth column of Table 6. We find that accuracies increase after the global rule correction. 
For chunk level evaluation, we conducted an experiment with all 600 training sequences and with 45 features. The chunk 
level accuracy of each entity is reported in Table 7. 

 



 
 

 
 

Table 7: Chunk level accuracy of SVM-parsing with 600 training sequences 
 Number Author Title Journal Volume Year Pagination Unknown Overall 

Total 627 1800 1308 1758 1735 1791 1751 1708 12478 
Correct 621 1757 1198 1686 1727 1788 1731 1640 12148 

Accuracy 99.0% 97.6% 91.6% 95.9% 99.5% 99.8% 98.9% 96.0% 97.4% 

6.3 Discussion  

We summarize the following observations from the evaluations we have conducted on the two reference parsing 
algorithms. 

First of all, there are strong local contextual dependencies among reference words and they must be utilized in reference 
parsing algorithms. This has been clearly demonstrated by the single word classification experiments. Regardless of the 
number of training samples, the accuracies are significantly improved if combining the features extracted from the 
immediate left and right neighbors (45 features). Combining features from an additional two adjacent neighbors (75 
features), on the other hand, achieves only slight accuracy improvements. This is in agreement with many studies of 
statistical sequence models, where usually only the first-order correlation is modeled, and the first-order Markov Chain 
is the underlying graphic model. 

Global rule correction is effective. We believe that the global rule correction is a good practical heuristic to correct 
minor errors. When it fails, it also serves as a good indicator for low confidence parsing. 

The article title contains the most heterogeneous text, and therefore is the most difficult entity to extract. Both CRF-
parsing and SVM-parsing achieve the lowest accuracy in Title chunk identification. On the other hand, both algorithms 
achieve high accuracy (around 99%) for entities having distinctive features, such as Number, Volume, Year and 
Pagination. 

Comparing Tables 5 and 7, when training with 600 references, CRF-parsing and SVM-parsing essentially achieve the 
same overall performance: about 99% accuracy at word level and above 97% accuracy at chunk level. SVM-parsing 
missed only 3 Publication Years. SVM is a sophisticated classifier, which is expected to achieve better performance on 
entities having distinctive features. On the other hand, CRF achieves 1% higher accuracy on Title chunk identification. 
Titles contain heterogeneous text, i.e., having indistinctive features. It is likely that CRF, by modeling the entire 
sequence, has better chance to label them correctly. The performance may be further improved, if the advantages of 
SVM (sophisticated local classifier) and CRF (powerful sequence model) can be combined. 

Most references in our collection are citations to journal papers (Examples (a)~(g) and (k) in Table 1). There are few 
errors in this kind of “standard” references; even organizational authors (Examples (k) in Table 1) can usually be 
successfully labeled. Only a very small percentage of references are citations to reports and books (Examples (h)~(j) in 
Table 1), and our current algorithm finds it difficult to label their Unknown (<U>) entities. For the edited books 
especially (Examples (j) in Table 1), the long word sequence of the editors sometimes confuses the algorithms. Further 
research is warranted to solve this problem. 

7. CONCLUSIONS 
We have presented approaches for locating and parsing references in HTML medical journal articles. We formulate 
reference locating as a two-class classification, and have demonstrated that text and geometry are very reliable for 
locating references, and an SVM classifier based on these features can achieve near 100% accuracy.  

The first order correlation between reference words is important contextual information, and must be used in reference 
parsing algorithms. We implemented and compared two reference parsing algorithms. CRF-parsing focuses on modeling 
the word sequence with Conditional Random Fields, and SVM-parsing concentrates on local single word classification. 
The overall performance of these two approaches is about the same: above 97% accuracy at chunk level.  
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