Linkage Analysis Based on Multi Terminal Binary Decision
Diagrams: ALLEGRO version 2

Daniel F. Gudbjartsson

Decode Genetics, Reykjavik, Iceland
dfg@decode. is

Thorvaldur A. Thorvaldsson

Decode Genetics, Reykjavik, Iceland

Gunnar Gunnarsson'

Decode Genetics, Reykjavik, Iceland
and

Anna Ingolfsdottir?

Decode Genetics, Reykjavik, Iceland

Received ; accepted

'University of California, Santa Barbara, CA, USA
2Basic Research in Computer Science, Centre of the Danish National Research Founda-

tion, Department of Computer Science, Aalborg University, Denmark

-2 -

ABSTRACT

Linkage analysis based on Multi Terminal Binary Decision Diagrams (MTB-
DDs) is developed. These data structures offer a significant decrease in memory
and time requirements for doing exact multipoint linkage analysis. It is shown
how unnecessary computations may be avoided when genotypes make some in-
heritance patterns impossible. Also shown is how convolutions of meioses may
be delayed when singlepoint distributions are uninformative for these meioses.
The delay of convolution leads to simpler probability distributions that may be
stored in more compact MTBDDs. Finally an approximation method with com-
putable, arbitrarily small, error is introduced. This approximation can substan-
tially reduce computation costs at loci where many meioses are uninformative,
in particular when no genotype information is available at a locus.

A new version of our linkage software package, ALLEGRO, has been cre-
ated based on these ideas. The new implementation takes advantage of genotype
information to reduce computational burdens and is able to handle large pedi-
grees with many genotyped individuals, that previous linkage analysis tools have
been unable to analyze. For pedigrees, that have fewer genotyped individuals,

improvements are still substantial.

Subject headings: linkage analysis

_ 3 _
1. Introduction

Most contemporary methods for doing multipoint linkage analysis are based either
on the Elston-Stewart algorithm (Elston & Stewart (1971)) or the Lander-Green Hidden
Markov model (HMM) (Lander & Green (1987)). The Elston-Stewart algorithm scales
exponentially in the number of markers, whereas the algorithms based on the Lander-
Green HMM scale exponentially in the number of pedigree members. The VITESSE
software package is based on the Elston-Stewart algorithm and can with the most recent
advancements handle approximately 6-9 markers in moderately large pedigrees (O’Connell
& Weeks (1995); O’Connell (2001)). Currently existing multipoint linkage analysis packages
based on the Lander-Green HMM, GENEHUNTER (Kruglyak et al. (1996); Markianos
et al. (2001)), ALLEGRO (Gudbjartsson et al. (2000)), and MERLIN (Abecasis et al.
(2001)), can handle arbitrarily many markers but are limited to around 25 bits pedigrees.
The bit size of a pedigree is calculated with the formula 2n — f for GENEHUNTER, where
n is the number of non-founders in the pedigree and f is the number of founders in the
pedigree. For ALLEGRO and MERLIN the bit size is 2n — f — g, where g is the number of

ungenotyped founder couples in the pedigree.

Binary Decision Diagrams (BDDs) were originally introduced as a compact
representation of Boolean functions to reason about digital circuits (Andersen (1997);
Bryant (1986)). Later their use has been extended to other disciplines but mainly software
verification. BDDs provide a compact symbolic representation of computational problems
that often offer a practical solution to difficult problems. The Multi Terminal BDDs
(MTBDDs, sometimes also called Algebraic BDDs) are extensions of the original BDDs
that allow for encoding of functions from a finite number of Booleans into any set of values

(Bahar et al. (1997); Clarke et al. (1993)).

MTBDDs acquire their compactness through two properties. First, if two MTBDDs

— 4 —

represent the same function, they are the same MTBDD, this is referred to as uniqueness.
Second, the two children of a node can not be the same MTBDD, this is referred to as
non-redundancy. Figure 1 gives an example of how a function can be represented by a
binary tree and a MTBDD. An example of uniqueness is that all nodes on level 3 that
have children with values 1 and 2 are the same node in the MTBDD. An example of
non-redundancy is that the node on level 3 in the binary tree, that has two children with

value 0, is removed in the MTBDD.

Two things are gained by this compact storage of probability functions. First, larger
probability distribution may potentially be stored. Second, it is easy to check if calculations
have already been performed for a sub-diagram, as comparing if two sub-diagrams are
equivalent is as simple as checking if they are the same sub-diagram. Thus, comparing two
MTBDDs, both representing functions of N booleans, is a constant time operation, while
the corresponding comparison for the same functions, represented as binary trees or vectors,

has complexity of the order of 2%.

Some of the patterns captured by MTBDDs is also captured by the gene flow trees of
Abecasis et al. (2001), but the MTBDDs are more compact, in addition to comparisons

having constant cost.

2. Multipoint linkage calculations with MTBDDs

Our multipoint linkage analysis algorithm is based on the standard Lander-Green HMM
(Lander & Green (1987)). Let G1, Gy, ..., Gy be genotype information for M polymorphic
markers genotyped for the pedigree being investigated. Let v, = v;,1Um2 - - - Uy, With
Umi € B = {0, 1}, be the inheritance vector at marker m. Each bit, v,,;, in the inheritance

corresponds to the status of meiosis 7 at marker m. The size of the inheritance vector,

—5—

N, dominates the computational complexity of most previous multipoint linkage analysis

algorithms based on the Lander-Green HMM, and is of the order of N2V .

The end result of the multipoint analysis is the probability distribution over inheritance
vectors at each marker m, given all the observed data. Assuming the HMM and linkage
equilibrium between markers, this distributions factors into a contribution from markers
to the left of m, a single point contribution from marker m itself, and a contribution from

markers to the right of m;

P (v|G1,Gay ... ,Grp) X P (0|G1, Gy ..., Gre1) P (0|Gm) P (V| Gty Grtay - -+, Gar) -

(1)
Calculating the contributions from left and right requires convolving probability distributions
and it is the cost of performing these convolutions that dominates the total computational
cost. The convolution of a probability distribution p over BY by a transition matrix 7" is
the probability distribution

Yo e BY : (T xp)(v) = Z T(w,v)p(w). (2)

weBN

If we let s; = P (-|G,), and T} be the transition matrix going from marker j to marker
j + 1, then, given the assumptions made, the contribution from markers to the left of
marker m may be expressed as alternating convolutions and element wise multiplications of

probability distributions:

PGy, Gay s Gn) = Tt % (o (To % (T1 % 81) - 82)) -) - Syt)- (3)

Each of the transition matrices, 11,15, ..., Tyr_1, has typically been assumed to be functions
of single genetic distance 6,, between markers m and m+1, or at most two genetic distances
in the case of sex-specific recombination rates. However, because of delaying the convolution
of uninformative bits (explained below) we shall assume that T, is a function of N genetic

distances, 6,,1, 02, - . ., 0, one for each meiosis.

-6 —

In the MTBDD representation of probability distributions, each bit in the inheritance

vector corresponds to one level in the MTBDD.

2.1. MTBDD based convolution algorithm

An algorithm similar to that of Idury & Elston (1997) may be used to perform
multipoint linkage analysis. In order to convolve a probability distribution f over all
inheritance vectors, let fo = f. Subsequently go trough all bits ¢ that need to be convolved

and calculate f; based on f;_; and the recombination fraction 6; corresponding to the bit.

Some notation must be defined before giving the updating step. Let x; be the MTBDD
defined by
1 if the ¢th bit of v is 1,
zi(v) = (4)
0 otherwise,
and let Z; be the MTBDD corresponding to flipping z;; Z;(v) = 1 — x;(v). Define the ith
cofactor of f, denoted by Cof;(f), as the MTBDD that you would get by removing (or
ignoring) the ith bit of z;f, the elementwise product of x; and f. Similarly, define the ith
complemented cofactor of f, denoted by Cof;(f), as the MTBDD that you would get by

removing the ith bit of Z;f. Given these definitions f may be represented as sum of two

disjoint components: f = z;Cof;(f) + Z;Cof;(f). The updating step is then

fi=z: {(1 = 0;)Cof;(fi—1) + 0:CoL;(fiz1) } + z: { (1 — 0;)CoL;(fi—1) + 6:Cof; (fi1)} . (5)

Here, and in what follows, the constant time comparison cost of MTBDDs is used to
cache results of all calculations, so that if a set of calculations have been done once they
need not be performed again. The above algorithm performs convolutions efficiently, in
terms of taking advantage of cached calculations, and this caching makes a substantial

difference to the running time of the implementation of the algorithm.

_ 7 _
2.2. Bit reductions

The founder reduction of Kruglyak et al. (1996) and the founder couple reduction of
Gudbjartsson et al. (2000) are handled in a straightforward manner. For every reduction,
split the unreduced inheritance vector v into the bit that will be reduced, v, € B, and
the remaining unreduced bits v, € BY~!; v = v,v, € BY. Let 7 be the transformation
on BY~! that specifies the reduction. Then for every probability distribution p that can
arise based on genotype data and the assumptions made satisfies p(Ov,) = p(17(v,)) and
p(1v,) = p(07(vy)). Let p' be the reduced distribution, p'(v) = p(0v) = p(1n(v)), and define
7(p') by (n(p'))(v) = p'(7w(v)). Then convolving the reduced bit corresponding to 7 for

distribution f over the space of reduced inheritance vectors is a matter of calculating:

(1 - oﬂ)f + 07r7r(f)7 (6)
where 6, is the recombination fraction for the reduced bit.

For the founder reduction, m simply flips the bits corresponding to the meioses of the
founder. For the founder couple reduction, m swaps the bits corresponding to the children
of the founding couple, and flips the bits of their grandchildren. The implementation takes
advantage of the well known fact that if a founder has exactly two children then the reduced

bit may be dropped completely and instead the recombination intensity of the unreduced

bit doubled.

The convolution steps may be performed in almost any order. The only constraint
is that if two bits are swapped by a founder couple reduction, they must either both be
convolved before the founder couple reduced bit is convolved or both be convolved after the

founder couple reduced bit is convolved.

_ 8 _
2.3. Dropping unnecessary parts of convolved distributions

As demonstrated in equation (3), every convolved probability distribution is
subsequently multiplied by the singlepoint distribution at the marker that it is being
convolved to. For inheritance vectors, such that the value of the singlepoint distribution is
zero, the value of the convolved distribution at said inheritance vector will be multiplied
by zero. Therefore there is no need to calculate the value of the convolved distribution for
these inheritance vectors. Given which level of the distribution is being convolved, and
which levels have already been convolved it is straightforward to calculate which values of
the convolved distribution are going to be needed. Let z; be an MTBDD that is 1 if the
corresponding value of f; will be needed and 0 if it will subsequently be multiplied by zero

and will therefor not be needed. Then (5) is replaced by:

fi =z [{(1 = 0;)Cof;(fi—1) + 6:Cofi (fi—1) } + 7 { (1 — 6;)Cof; (fi—1) + 6:Cofi(fi—1) }]

Z; { (1 — 6;)Cof; (2;)Cof;(f;-1) + 6;Cof;(z;) Cof;(fi-1) } -
The second formulation illustrates how the unnecessary calculations can be dropped.

The z; indicator MTBDDs can be calculated through the following recursion algorithm.
If N is the last bit to be convolved and s is the singlepoint distribution that the convolved
distribution will be multiplied with, then define zy by:

0 if s(v) =0,
an(v) = v (8)

1 otherwise.

For 7 < N let

zi = Cofiy1(2i11) V Cofiy1 (2i41), 9)

where “V” is the or operator. For a reduced bit, whose reduction transformation is specified

by m, (9) is replaced by:

Zi = Zi+1 V 7T(Zz'+1). (10)

For the first few bits that are being convolved, typically, close to every value is needed.
But, for the later bits the amount of calculations saved becomes more substantial. The
savings achieved for the last bit convolved are independent of the order in which bits are
convolved. Interestingly the order in which bits are convolved may affect the amount of
calculations saved for other bits. For example if zy is equal to z, for some bit k, then it will
be best to convolve bit k first, because then the number of values that need to be calculated
are immediately cut in half. Figuring out the optimal order is a non-trivial task in itself.
In the software implementation, an algorithm based on greedily letting convolutions float
to the top, in a bubbling or sifting fashion, if the change of order reduces the size of the
indicator MTBDDs, is used. The best order found from a couple of starting positions is

then used in the actual convolution.

That the singlepoint distribution at a marker has value zero, for an inheritance vector,
means that the inheritance vector was inconsistent with the given genotypes. More complete
genotype information tends to lead to more inconsistent inheritance vectors, so that this

improvement relies on the completeness of genetic information.

2.4. Delaying the convolution of uninformative bits

Equation (7) shows how substantial savings occur when the singlepoint distribution
being convolved to is very informative. At the other extreme, when the singlepoint
distribution at a marker is very uninformative, savings are also possible. Assume that

bit number 7 in the inheritance vector at marker m is completely uninformative for the

_ 10 _
singlepoint distribution at marker m, or more precisely that

YUrm1Um2 - - - Uy € BY 2 P (Upm1Um2 - - - Uiy - - +» U |Gin) = P (Um1m2 - - -, Ui - - - » U |G
(11)
where ¥ is the complement of the bit. Then convolving bit 7 may be delayed. If the
recombination fraction between m — 1 and m is 6,,_1, 0,,_1 may be added to the next
recombination fraction. So that if the recombination fraction between m and m + 1 is 6,,,
we use recombination fraction 6/, = 0,, + 0,,—1 — 260,,0,,—1 instead of 6,, for bit ¢ when the
probability distribution is convolved from marker m to marker m + 1. This assertion is

proved in Appendix A.

2.5. Variable reordering and rounding

The level of compression of a probability distribution provided by a MTBDD depends
on the order of variables in the MTBDD. An important feature of MTBDDs, and in
particular the implementation of MTBDDs being used in the implementation, is that
efficient algorithms exist for improving the order of variables. The sifting algorithm of

Rudell (1993) is used to optimize variable ordering.

During the course of the convolution of a distribution, the growth of its representation

is monitored and the variables routinely reordered in order to improve compression.

The compression features of the MTBDD data structure depend on equalities existing
between values of the functions being represented. The amount of equivalences that exist
depend on how exactly values are stored in the MTBDD. The less exact the storage is, the
higher level of compression is achieved. By default, real values are stored with accuracy
corresponding to four significant digits, which we have found ample for our applications.

Our software implementation allows the user to control this level of accuracy.

_ 11 _
2.6. Completing uninformative convolutions

The delaying of convolutions makes a final step necessary before probability
distributions at any given marker become available. Before the final step the algorithm has
calculated [and r, the incomplete left and right probability distributions, and s, the single
point probability distribution at the locus. Split the inheritance vector v into bits v;, for
which s is informative, and v,, for which s is uninformative; v = v;v, and s(v;v,) = §'(v;).
The remaining convolutions are over the bits comprising v,. Denote the left recombination
fractions over these bits as 6, and the right recombination fractions over these bits as 6,.
The result of the final step is the probability distribution at the locus given all the available

genotypes, as shown in equation (1);

P (’U|G1, GQ, ey GM) X [(Tgl * Z)S(Tgr * ’f‘)] (’U) (12)

Some meioses are not directly interesting themselves. Typically these are meioses
occurring in unphenotyped individuals, included in the analysis to provide extra phase
information, such as unphenotyped children or siblings of affected individuals. Singling out
a bit, vy, corresponding to one such uninteresting meiosis, split v, into v,, and vy; v = VU, V;.

Then P (v|G1, Gy, ..., G) is not the distribution of interest, but rather
P (’l)iUw‘Gl, GQ, ceey GM) =P (’UZ'UwO|Gl, GQ, ceey GM) + P (Ui’l)w1|G1, GQ, ceey GM) . (13)

In this case it does not matter what values for the left and right recombination

fractions, 6}, and 0y,, for the uninteresting bit were used, as long as they conserve the

rt)
total genetic length of the correct recombination fractions 6;; and 6,;. That is to say
0, + 0y, — 20,07, = 0 + 0,4 — 20,,0,,. In particular it is sufficient to set either 8}, or 67, to

zero. The proof of this result is based on similar arithmetic as was used in the proof of the

validity of delaying convolving bits and is omitted.

An obvious benefit of this result is that fewer convolution steps need to be made

- 12 —

which is good in and of itself, but it also leads to a reduction in the complexity of the
resulting MTBDD. Another benefit is that, since bits in one of the distributions are not
convolved, some of its inheritance vectors may remain impossible (have probability zero),
and thus the dropping of unnecessary calculations may lead to savings. Which of the two
recombination fractions is made zero depends on which choice will lead to a smaller final

indicator MTBDD, thus minimizing the amount of calculations required.

2.7. Approximating the completion of uninformative convolutions

The final convolution of uninformative bits may be prohibitively expensive for
large problems. However, it is possible to approximate the completion of uninformative

convolutions through an approximation method based on the result in the previous section.

As in the previous section, split the inheritance vector v into v; and v,, where
s is informative for the bits in v;, but uninformative for the bits in v,. Denote the
final result of the convolution by p*, then the result of the previous section shows how
pi(vi) = >, p*(vivy) can be calculated efficiently. Given pj(v;) for all v; and € > 0, it is
possible to pick a threshold 7, such that

> piw)>1—e (14)
P (vi)>Te

and thus, by simply ignoring the v = v;v, having p?(v;) < 7., approximating p*(v) within

arbitrary precision.

When a locus has few informative bits, or indeed, is completely uninformative then
complexity may be reduced by selecting a few bits to convolved, and then treating them as
if they had been informative, truncating the space of inheritance vectors with non-trivial

probability mass and iterating.

- 13 —

3. Parametric peeling and score calculations

Parametric peeling is performed based on the Elston-Stewart algorithm. Only difference

is that intermediate and final results are MTBDDs instead of real numbers.

The score calculations are essentially the same as the ones described in Gudbjartsson
et al. (2000). In addition to the score functions described there, the wpc score function of
Commenges & Beurton-Aimar (1999), a general pairwise scoring function, and the parent
specific scoring functions (useful when studying imprinted disease) described in Karason

et al. (2003), are all implemented.

4. Viterbi algorithm based analysis

Two important types of analysis are based on the Viterbi algorithm (Viterbi (1967));
finding the most probable haplotype assignments given the genotypes (Kruglyak et al.
(1996)) and counting the minimum number of forced recombinations given the genotypes

which is very useful when performing genetic mapping (Kong et al. (2002)).

Counting the number of forced recombinations is achieved by replacing the singlepoint
distributions at each marker with an indicator function over inheritance vectors, which is
zero if the inheritance vector is incompatible with the observed genotypes at the marker,
and one if it is consistent. Also, all recombination distances must be set as one fixed
number, between zero and one half. Given these artificial single point distributions and
recombination fractions, the standard haplotyping version of the Viterbi algorithm can be

used to count the forced number of recombinations.

The classical implementation of the Viterbi algorithm involves storing all intermediary
most probable paths up until every given marker (Rabiner (1989)). This approach saves

time in the backtracking phase of the algorithm, but at the cost of a substantial amount of

— 14 —

memory. At the larger bit sizes the amount of memory required becomes prohibitive. In
our implementation we have chosen to trade speed for memory usage, in order to be able to

tackle these larger problems, and redo some calculations in the backtracking phase.

Implementing the Viterbi algorithm based on MTBDDs is very similar to the
implementation of the multipoint linkage analysis algorithm for MTBDDs; essentially
summations are changed to maximizations. The savings obtained when inheritance vectors
are incompatible with genotype information carry over, as do the bit skipping savings.
Interestingly, the completion step is substantially less expensive, as the approximation
procedure described above for the linkage analysis completion step translates into an exact

procedure for the Viterbi algorithm.

_ 15 _
A. Proof of bit-skipping

Let [,,_1 be the probability distribution over inheritance vectors at marker m — 1,
given all genotype data to the left of, and at, m — 1. Let s,, be the singlepoint distribution
over inheritance vectors at marker m. Assume that s,, is completely uninformative about
the last bit in the inheritance vector (in the sense of equation 11); if we split inheritance
vectors v, into the first N — 1 bit and the last bit, v = vyvy, then Yoy : 55, (v70) = s, (vf1).

Assuming there are no bit reductions, the transition matrices 7,,_; and 7T, also factor:
Tn-1(v,w) = Tna(vpon, wywn) = Tym1(vs, wy)Ts,_, (vn, wy),
Tn(v,w) =Th(vpvy,wpwy) =Tpm(ve, we) Ty, (v, wy),
where Ty(v,w) is 1 — 6 if v = w and 6 if v # w. We show that
T % (T1 % 1) = Sm) =Ty % (Tr_y % ln1) = Sm), (A1)
where T} = Ttm-1To, 1), = Tm Ty, and 0 = 0,1 + 0., — 26,,_16,,,.

Straightforward calculations using (2), the uninformativeness of s, on the last bit, the

above factorizations of transition matrices, and reordering of sums gives:

(T % (Trn—1 * lm—1) - 8m)) (Wpwn) =

> T (v, wp) Ty, (vn,) (Tonet * b)) (0400) S (vy0N) =

’UfUN
D T (g, wp) Ty, (on, wn)sm(Vpon) D Trnorp (g,) T,y (i, 08l (puy) =
VFUN Ufun

D Tonp (g, we) s (0p0) T, (g, v)1 (wpun) D T, (v, W) Ty, _, (un, vN).-
vf,ufuN UN

But the inner sum is simply equal to Ty (uy, wy):

Uy = Wy : Zw Ty, (vn,wn)Ty,,_, (un,on) = (1 = 0m) (1 — Opp1) + 01 =1 — 0

un 7é wy - Z,UN Tgm (UN,U)N)Tgm_l (’LLN, UN) = (1 — Qm)ﬁm,l —+ Om(l — Om,l) = 0’.

— 16 —

Substituting the inner sum with Ty (uy, wy) and going back through (2) readily yields (A1).

The above proof ignores bit reductions (the founder reduction and the founder couple
reductions) because having shown that skipping a bit is valid when there are no reductions,
it must be remain valid when there are reductions. The only caveat is for bits that are
swapped in the founder couple reductions. For these the pair of bits that are swapped must
both be uninformative for the skip to be valid. Note that, in particular, skipping is valid

for the reduced bits.

17—
REFERENCES

Abecasis, G. R., Cherny, S. S., Cookson, W. O., & Cardon, L. R. 2001, Nature Genetics,
30, 97

Andersen, H. R. 1997, An Introduction to Binary Decision Diagrams (Lecture notes,

Technical University of Denmark)

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A., & Somenzi,
F. 1997, Formal Methods in Systems Design, 10, 171

Bryant, R. E. 1986, IEEE Transactions on Computers, 8, 677

Clarke, E., Fujita, M., McGeer, P., Yang, J., & Zhao, X. 1993, International Workshop on
Logic Synthesis, XX, XX

Commenges, D. & Beurton-Aimar, M. 1999, Genetical Epidemiology, 17 Suppl 1, S515
Elston, R. C. & Stewart, J. 1971, Human Heredity, 21, 523

Gudbjartsson, D. F., Jonasson, K., Frigge, M. L., & Kong, A. 2000, Nature Genetics, 25, 12
Idury, R. M. & Elston, R. C. 1997, Human Heredity, 47, 197

Karason, A., Gudjonsson, J. E., Upmanyu, R., Antonsdottir, A. A., Hauksson, V. B.,
Runasdottir, E. H., Jonsson, H. H., Gudbjartsson, D. F., Frigge, M. L., Kong, A.,
Stefansson, K., Valdimarsson, H., & Gulcher, J. R. 2003, Am J Hum Genet., 72, 125

Kong, A., Gudbjartsson, D. F., Sainz, J., Jonsdottir, G. M., Gudjonsson, S. A., Richardsson,
B., Sigurdardottir, S., Barnard, J., Hallbeck, B., Masson, G., Shlien, A., Palsson,
S. T., Frigge, M. L., Thorgeirsson, T. E., Gulcher, J. R., & Stefansson, K. 2002, Nat
Genet., 31, 241

— 18 —

Kruglyak, L., Daly, M. J., Reeve-Daly, M. P., & Lander, E. S. 1996, American Journal of
Human Genetics, 58, 1347

Lander, E. S. & Green, P. 1987, Proc Natl Acad Sci U S A., 84, 2363
Markianos, K., Daly, M. J., & Kruglyak, .. 2001, Am J Hum Genet., 68, 963
O’Connell, J. R. 2001, Human Heredity, 51, 226

O’Connell, J. R. & Weeks, D. E. 1995, Nat Genet., 11, 402

Rabiner, L. R. 1989, Proc IEEE, 77, 257

Rudell, R. 1993, in ICCAD ’93: Proceedings of the 1993 IEEE/ACM international

conference on Computer-aided design (IEEE Computer Society Press), 4247

Viterbi, A. J. 1967, IEEE Trans Informat Theory, IT-13, 260

This manuscript was prepared with the AAS I#TEX macros v5.2.

- 19 —

b 5 o

5 & 6

Fig. 1.— A binary tree and its corresponding MTBDD. Both represent a real valued function

over B®. Each of the three levels corresponds to one bit. If the solid edge is traversed, the
value of the underlying bit is 0, and if the dotted edge is traversed the value of the bit is 1.

The function can also be represented by the vector [1, 2, 1, 2, 1, 2, 0, 0].

