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Statistical modeling of storm-level Kp occurrences
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[1] We consider the statistical modeling of the occurrence
in time of large Kp magnetic storms as a Poisson process,
testing whether or not relatively rare, large Kp events can be
considered to arise from a stochastic, sequential, and
memoryless process. For a Poisson process, the wait times
between successive events occur statistically with an
exponential density function. Fitting an exponential
function to the durations between successive large Kp
events forms the basis of our analysis. Defining these wait
times by calculating the differences between times when Kp
exceeds a certain value, such as Kp > 5, we find the wait-
time distribution is not exponential. Because large storms
often have several periods with large Kp values, their
occurrence in time is not memoryless; short duration wait
times are not independent of each other and are often
clumped together in time. If we remove same-storm large
Kp occurrences, the resulting wait times are very nearly
exponentially distributed and the storm arrival process
can be characterized as Poisson. Fittings are performed
on wait time data for Kp > 5, 6, 7, and 8. The mean
wait times between storms exceeding such Kp thresholds
are 7.12, 16.55, 42.22, and 121.40 days respectively.
Citation: Remick, K. J., and J. J. Love (2006), Statistical
modeling of storm-level Kp occurrences, Geophys. Res. Lett., 33,
L16102, doi:10.1029/2006GL026687.

1. Introduction

[2] Because magnetic storms are potentially hazardous to
the infrastructure and activities of modern technological
systems [e.g., Allen et al., 1989; Boteler et al., 1998], their
prediction has long been a goal of the space science
community. Traditionally, predictions have been obtained
using data-derived, deterministic models [e.g., Joselyn,
1995; McPherron and Siscoe, 2004; Wing et al., 2005] that
produce excellent estimates of magnetic activity up to a few
days in advance. When forecasting the occurrence of storms
over time scales longer than a few days, however,
probabilistic modeling is needed. Here we derive a simple,
probabilistic forecast model for storm occurrence based on
the historical statistics of Kp data.

2. Data

[3] The K index quantifies disturbed magnetic-field ac-
tivity at an observatory by assigning a 3-hour range of the H
or D components to a quasi-logarithmic scale: 0 for the most
quiet to 9 for the most disturbed [Mayaud, 1980;
Rangarajan, 1989]. The corresponding planetary magnetic
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index, Kp, is the average of fractional K values at 13
subauroral observatories [Menvielle and Berthelier, 1991],
giving Kp values 0of 0, 0.3, 0.7, 1.0, 1.3, . .. et cetera. Two of
the source observatories are in the United States (FRD/
CLH, SIT), two in Canada (MEA, OTT/AGN), seven in
northern Europe (BFE/RSV, ESK, HAD/ABN, LER, LOV/
UPS, NGK/WIT, WNG), and one each in Australia (CNB/
TOO) and New Zealand (EYR/AML). Though the geo-
graphic distribution of sites is not even close to uniform, Kp
is a very robust measure and its utility has been amply
demonstrated [e.g., Thomsen, 2004] over the 73 years that it
has been continuously calculated and archived. Thus Kp is
ideal for long-term statistical characterization of planetary
magnetic disturbances.

3. Theory

[4] We examine the occurrences of magnetic disturbances
defined by Kp exceeding a given integer value, and the wait
times between such occurrences. How are these occurrences
statistically distributed? The Poisson process is a classical
stochastic model of a series of discrete and independent
events realized from a memoryless process [Cox and Lewis,
1966; Blumer, 1979]. The Poisson probability density
function (pdf) is

(\e)"e™
nl

pp(n[N) = (1)

where n is the number of events, \ is the rate of their
occurrence, and ¢ is a duration of time. Since the Poisson
distribution applies only to the counting of discrete events,
the cumulative distribution function (cdf) is the sum of the
probabilities over a range of counts, giving the probability
that n events, or less, will occur within time ¢
n —\t i
P(ap) =Y o)

i=0

(2)
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For wait times between events, n = 0, giving an exponential
pdf

Ppe(th) =xe ™™, 3)

where ¢ is now the wait time between successive events. If
the wait-time data are exponentially distributed, the best fit
will occur where X is the inverse of the mean wait time. The
cdf is the integral of the pdf over the time considered and
gives the probability of successive occurrences. Thus, the
probability of the occurrence of a subsequent event before
an elapsed time ¢ is

P(t]\) = /Otp(u)du = /0[ e Ndu=1-¢e. (4)
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Figure 1. Pdfs of wait times and exponentials determined by all data and, also, data with storm-time clumping removed
T-,: pdf of the wait times between occurrences (a) for Kp > 5, (b) with a threshold of Kp > 6, (c) for Kp > 7, and (d) for
Kp > 8. Solid line histograms are the data pdfs p(¢,). Dotted lines are the pdfs p.(¢|\,) determined using all the data. Dashed
lines are the pdfs p.(fX\>,) determined using Ts,. The vertical line denotes a wait time of two days.

These formulae form the basis of the analysis that
follows.

4. Results

[s] We first test to see if the wait times between storm
level Kp have an exponential distribution by comparing the
actual wait times with a theoretical, exponential function.
Using the Kp data between Jan 1 1932 and Dec 31, 2004,
the wait times #; between occurrences of storm level Kp
were calculated. Separate calculations were made for the
cases Kp > 5,6,7 and 8. Kp = 9 was omitted due to the low
number of events. In Figure 1 we show the pdfs p(t,) for the
actual wait times; the corresponding cdfs P(#;) are shown in
Figure 2. In Figures 1 and 2 we also show the exponential
pdfs p(¢f|\,) and cdfs P (z|\,) calculated using equations (3)
and (4) respectively, where \, is one over the mean wait
time. A summary is given in Table 1.

[6] With this simplistic but straightforward treatment, the
wait-time data distributions are not well fitted by exponen-
tial functions. The fits fail the Kolmogorov-Smirnov good-
ness of fit tests at a 99% confidence level [e.g., Press et al.,
1992], but the misfits are visually obvious as well. This
failure is due primarily to the disproportionate population of
wait times having durations of less than two days. This is
not surprising as large storms often have several 3-hour
periods with large Kp values, and their occurrences are
either consecutive, or separated by relatively short durations
of time. Multiple occurrences of large Kp values within a

single storm result in temporal clumping of short wait times.
Such clumping is contrary to a model that assumes
statistically independent data realized in time from a
memoryless process.

[7] Improved fits, also shown in Figures 1 and 2, are
obtained by modeling a subset of the data, T-,, which
contains only data with wait times greater than two days.
Instead of considering the occurrences of storm level Kp,
we are now considering the occurrences of storms having
high Kp levels. The storms may be of any length, but they
must be followed by at least 16 consecutive Kp readings
below the threshold value. Because we are excluding short
duration wait times, some of which are consistent with a
Poisson process, the mean wait times determined by
averaging the remaining data do not yield the proper
occurrence rates 1/X-,. We therefore treat -, as a model
parameter and estimate its value by maximizing the
Kolmogorov-Smimov goodness of fit to the T., data
subset. As T, contains only a fraction of the total data, we
rescale the data-derived pdf in order to compare it with the
new exponential. The resulting fits pass the Kolmogorov-
Smirnov test at the 99% confidence level and are visually
compelling as well. The mean wait times corresponding to
the fitted rates are given in Table 1.

5. Discussion

[8] Wait times of greater than two days are well fitted by
an exponential function. This implies, subject to caveats we
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Figure 2. Cdfs of wait times and exponentials determined by all data and, also, data with storm-time clumping removed
T~,: cdf of the wait times between occurrences with (a) Kp > 5, (b) Kp > 6, (c) Kp > 7, and (d) Kp > 8. Solid lines are the
data cdfs P(t;). Dotted lines are the cdfs P.(z|\,) determined using all the data. Dashed lines are the cdfs P.(f|\>»)
determined using T, and scaled using the factors in Table 1. The vertical line denotes a wait time of two days and shows
the percentage of the data that is not included in the T, subset.

will pursue in future work, that storm occurrence can be
considered to be a Poisson process, and this allows for
probabilistic prediction. In Figure 3 we show the pdfs
(Figure 3a) and cdfs (Figure 3b) for the exponentials
determined from T-,, whose occurrence rates are shown
in Table 1. The probabilities are different from those in
Figure 2, as those values where scaled for comparison with
the temporally clumped data. The continuous backward
extrapolation for wait times less than two days is included
as a logical estimate of the probabilities of independent
storm occurrences at these wait times. Since the end of a
wait time implies a storm occurrence, the wait time cdf
shows the probability that the quiet time will end and a
storm will occur. Thus the probability of at least one storm

Table 1. Mean and Model Wait Times for Storm-Level Kp
All Data (1/),), days T (1/A\r<»), days

Kp>5 221 7.12
Kp>53 3.05 9.85

Kp > 5.7 437 11.93
Kp>6 6.34 15.85
Kp > 63 8.81 23.01

Kp > 6.7 12.11 31.32
Kp>17 18.50 5491
Kp > 13 24.72 59.91

Kp > 17 36.09 76.62
Kp > 8 60.81 121.40
Kp > 83 84.03 164.31

Kp>5 a
Kp>6 3

Kp>7
L Kp>8 4

pe(t) (1/day)

Wait Time (days)

Figure 3. Exponential (a) pdf p.(f{\s,) and (b) cdf
Pt|{\>7) for Kp > 5, 6, 7 and 8.
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Figure 4. Poisson (a) pdf p,(n|x>»7) and (b) cdf P,(n|X\>,1)
for Kp > 5, 6, 7 and 8 where t = 1 year.

occurring in a given time duration, can be read directly from
Figure 3b. Because Poisson processes are memoryless, the
clock can be started at any time and need not be timed from
the occurrence of the last storm. The rates determined in
this work can also be used in the Poisson distribution,
equations (1) and (2), to determine probability of a number
of events occurring in a given timeframe. We show in
Figure 4a the probabilities for the occurrence of discrete
numbers of storms in one year, and in Figure 4b the
probability that there will be a given number of storms or
less, per year.

6. Future Work

[v] The statistical analysis conducted here assumes sta-
tionarity; that equation (1) is valid for Poisson processes
whose statistical properties do not change over time. How-
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ever, occurrence rates are known to vary with season and
solar cycle phase. Taking these variations into account
involves introducing a time dependent rate function X\(7),
where T specifies the cyclical phase. Other periodic modu-
lations, such as those associated with solar rotation are
worthy of additional investigation. By generalizing the
model to consider temporal nonstationarity, the statistical
nature of large Kp storm occurrence will be more fully
characterized, and the fits to the data will, almost certainly,
be improved.
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