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[1] We consider the nonstationary, statistical modeling of the occurrence in time of large Kp geomagnetic
storms over the course of multiple solar cycles. Previous work showed that wait times between storms can
be represented by an exponential density function, consistent with the realization of a Poisson process.
Here we also assume a Poisson process, but to account for solar cycle modulation of storm likelihood, we
assume an occurrence rate given by a parametric constant plus a simple sinusoidal function of time.
Parameter estimation is accomplished using maximum likelihood, yielding good fits to the Kp data. We
find that the relative phase between storms and sunspots depends on storm size. We quantify previous
observations that small storms tend to occur during the declining phase of the solar cycle, while large
storms tend to occur very close to solar maximum. We predict average wait time between storms and the

storm occurrence rate up through the year 2018.

Citation: Love, J. J., K. J. Remick, and D. M. Perkins (2007), Statistical modeling of storm level Kp occurrences: Solar cycle

modulation, Space Weather, 5, 512005, doi:10.1029/20065W000287.

1. Introduction

[2] Itis an important and well-known observation that
the likelihood of geomagnetic storm occurrence is not
constant in time; storm occurrence is modulated by solar
cycle activity [e.g., Garrett et al., 1974; Echer et al., 2004].
Qualitatively, it has been recognized that storms of various
magnitudes are most likely to occur during the declining
phase of the solar cycle [Chapman and Bartels, 1962,
pp- 371-372; Gorney, 1990, p. 321], but that the very largest
storms tend to occur around the solar cycle maximum
[Chapman and Bartels, 1962, p. 379; Gorney, 1990, p. 321].
Since large magnetic storms are potentially hazardous to
the activities and infrastructure of our modern, techno-
logically based society [e.g., Carlowicz and Lopez, 2002;
Bothmer and Daglis, 2007; Thomson, 2007], it is important
to quantify this observation so that useful statistical pre-
dictions can be made [e.g., Feynman and Gu, 1986; Lanzerotti,
2007]. Previously, Remick and Love [2006] showed that storm
occurrences, defined in terms of exceedances of chosen Kp
thresholds, can be described as realizations of a Poisson
process. While this allows for probabilistic predictions, a
constant occurrence rate was assumed in their analysis.
Here we generalize the statistical model, quantifying the
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effects of the solar cycle. This allows us to make realistic
predictions of solar-cycle-modulated, storm occurrence
likelihood.

2. Data

[3] The data used in this study are derived from the Kp
index time series. The Kp index quantifies planetary-scale,
disturbed magnetic field activity over a 3-h period as
measured at 13 subauroral observatories [e.g. Mayaud,
1980; Menvielle and Berthelier, 1991; Love and Remick,
2007]. Individual Kp values range from 0, 0.3, 0.7, 1.0, 1.3,
et cetera (or, under another notational convention: 0y, 0.,
1_, 1y, 1,, et cetera) during quiet times, up to a maximum
of 9 for the most disturbed periods. Since its conception
[Bartels, 1932], Kp has provided a temporally uninterrupted
measure of magnetic activity over approximately seven
solar cycles. Although the index does not have the under-
pinnings of a physical model, it is widely used in the
assessment of space weather conditions [e.g., NOAA Service
Assessment Team, 2004]. Therefore because of the longevity
of its time series and its obvious utility we choose to use
the Kp index for our statistical analysis of the long-term
variation of storm occurrence likelihood. The Kp time
series used here starts on 1 January 1932, near the end
of solar cycle 16, and ends on 31 December 2006, around
the completion of solar cycle 23.

[4] There are many ways to define and study magnetic
storm occurrences over time. One way, which is appeal-
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Figure 1. Number of Kp threshold exceedances as a
function of Kp exceedance level. The squares show the
number for all the data over the 75 a of the Kp time
series. The circles show the number of winnowed data,
where those with associated wait times of less than 2 d
have been removed. The number of winnowed data
effectively represent the number of magnetic storms.

ingly simple, is to define a storm occurrence as the
moment in time when Kp exceeds a chosen threshold.
With a long time series of Kp data, this definition can be
used to construct a population of discrete storm occur-
rence times that can be analyzed statistically. With this in
mind, let us examine the proposed storm definition closely.
Consider a series of times defined by a chosen Kp exceed-
ance threshold: t;, t;,1, tiso, tiss, - - - . These occurrence times
define an associated set of wait times, that is, durations
from one exceedance until the next: 7;, Ti11, Tisvo, Tisz, ---,
where 7; = tj; — t;, and which we may also express
symbolically as a correspondence 7; < (tj, tj1). In their
analysis of a similar time series, Remick and Love [2006]
concluded that wait times of 2 d or less primarily repre-
sented repeated, causally related, and statistically depen-
dent, intrastorm occurrences, while wait times of greater
than 2 d represented interstorm occurrences that could be
well described as statistically independent. The need to
draw such an arbitrary distinction (2 d) is not surprising.
We are attempting to model storm occurrences as a series
of discrete events realized in probability over a long
period of time, even though over short periods of time
the evolution of a storm, or more generically, continuous
durations of magnetic activity, are better described in
terms of deterministic physics. Inevitably, there is some
degree of overlap between the two paradigms and their
timescales.
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[5] Whereas Remick and Love [2006] concentrated only
on the wait times 7; between storm occurrences, without
making any explicit modeling of the solar cycle modula-
tion of storm occurrences, here we seek to make such a
modeling and this means that we need to consider both
wait times 7; and occurrence times ;. Since we can
express, without ambiguity, each correspondence between
these quantities as 7; < (t;, t; + 7;), then our data set can be
completely described by the pairings (1, t,), (Tis1, tir1),
(Tis2, tix2), ... For consistency with Remick and Love we
adopt the 2-d cutoff criterion for the interstorm occurrence
wait times. Specifically, suppose, for example, that 7,,1 < 2
d, then upon winnowing we have the data pairs (7 t;),
(Tiza, tiz2), (Tixs, tizs), .... For convenience of notation,
however, after winnowing we reassign the subscripts
identifying the data pairs: (75 t;), (Tiz1, tiv1), (Tivo, ti2), -
Henceforth, we refer to a winnowed and relabeled data
set as D=, where ¢ is the wait time cutoff level (2 d for
consistency with Remick and Love).

[6] Looking at the data in general terms, in Figure 1 we
show the number of occurrences N as a function of Kp
exceedance threshold, both for the complete Kp data set
and the winnowed data set. Isolated exceedances are very
unlikely, especially for smaller thresholds; once we have a
Kp exceedance this is usually quickly followed by several
more. Therefore enforcement of the 2 d cutoff obviously
reduces the number of data considerably. With winnow-
ing, the number of event times for Kp > 5 (Kp > 8) is
reduced from 12357 (448) to 2440 (174). We take the
winnowed occurrence times as those of magnetic storms,
and we list their number in the second column of Table 1.
In practice it is difficult to consider the statistics of small
data sets, and for this reason in this study we do not
consider threshold greater than Kp = §; specifically, for the
75-year (a) Kp time series there are only 23 storms exhibit-
ing Kp = 9 and we have found that this is too few data to
make a meaningful estimate of the needed parameters.

[7] In Figure 2 we show the time series of all the
(unwinnowed) Kp > 5 data, the winnowed storm occur-
rence rates defined for different Kp exceedances, and the
corresponding sunspot numbers, all since 1932 up to the
end of 2006. Displayed in this way, the solar cycle modu-
lation of storm likelihood defined for Kp > 5 or 6 is not
particularly pronounced, and the situation for for Kp > 7
or 8 is obscured by the statistical jitter that results from the
relative rarity of large storms. An objective statistical
analysis is required in order to quantify the solar cycle
modulation of storm level Kp occurrences.

3. Theory

[s] A Poisson process is a probabilistic model that can
be used to statistically describe the occurrence in time of
discrete random events. The basic properties of a Poisson
process are (1) stationarity, the probabilities that describe
the process do not change in time, (2) orderliness, the
likelihood of two events occurring simultaneously is neg-
ligible, and (3) memorylessness, the occurrence likelihood
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Kp> N a (per year) b (per year) bla w (radians per year) T, (years) o (radians)
5.0 2440 46.092 14.290 0.310 0.600 10.469 —0.152
5.3 2000 34.640 11.336 0.327 0.603 10.420 —0.012
5.7 1591 25.726 8.980 0.349 0.604 10.405 0.060
6.0 1242 19.149 7.864 0.411 0.598 10.499 0.063
6.3 920 13.628 5.998 0.440 0.597 10.526 0.136
6.7 665 9.571 4.676 0.489 0.599 10.491 0.301
7.0 502 7.075 3.665 0.518 0.596 10.542 0.230
7.3 356 4.944 2.922 0.591 0.599 10.489 0.440
7.7 260 3.523 2.247 0.638 0.595 10.558 0.311
8.0 174 2.286 1.466 0.641 0.592 10.607 0.374

*The model phase ¢ is defined such that time starts on 1 January 2000; thus the rate parameter would be A(t) = a + b sin(w (t — 2000) + ), where

t is the year date of interest expressed as a real number.

of an event is independent of the occurrence of previous
events [e.g., Cox and Lewis, 1966; Blumer, 1979; Ross, 2003].
The realization of a stationary Poisson process yields wait
times 7 between temporally ordered, statistical events
having positive duration (0, co) and which can be
described by exponential probability density function
(pdf),

pe(IA) = re ™, (1)

where ) is a constant average occurrence rate. From this
density function we determine the wait time mean,

T = /000 7';79(7'|/\)d7':§7 (2)

as well as the variance of the wait times about the mean,
I 2 1
os = [T —T]"pe(TI\, c)dr = F (3)
0

Correspondingly, the Poisson density function can be used
to quantify the number of events n occurring with a time
window 1,

n_ it
polny = Ve @)

From this we determine the occurrence rate mean,
% n_
_ (A)"e "
n-—=— HEZO HT == )\t7 (5)

as well as the variance of the occurrence rate,

(At)e M

aizi[n—ﬁ]zT:At. (6)

As a stochastic model the Poisson process has found
numerous practical applications, including in the analysis
of telephone switchboard traffic, where each incoming
telephone call is considered to be an independent
statistical event, and in the analysis of radioactive decay,
where each emission of a photon or particle from the
radioactive source material is considered to be an
independent statistical event.

[9] In our case, where we seek to use a winnowed Kp
data to describe the solar-cycle-modulated statistics of
magnetic storm occurrences, the idealized Poisson-process
model must be slightly modified. For now, let us put aside
the issue of nonstationarity, and consider first the affects
of winnowing on the statistical analysis. Assuming that
events are well described by a winnowed data set D,
then the wait times between events are defined over a
truncated domain (c, o), and the pdf of the wait times has
the form

pe(TI\, ) = ee (7)

which, we note, is properly normalized,

/0C Pe(TIA, 0)dr = 1. (8)

With (7) we easily calculate the winnowed data (inter-
storm), wait time mean,

00 Y
7(c) = / pe(r|A, O)dr g%. 9)

Note that

7(c) = T as ¢ — 0; (10)
in other words, the winnowed data, wait time mean
approaches the Poisson wait time mean as the level of

truncation (c) is reduced. This highlights an important
point: we should be careful in interpreting . Independent
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Figure 2. The 75-a time series of data used in this analysis: (a) raw, unbinned, and unwinnowed,
Kp > 5 values, (b) binned occurrence rates (storms per year) as determined for the exceedances
Kp >5,Kp > 6, Kp > 7, Kp > 8, and the model occurrence rate mean, equation (22); a vertical axis
multiplicative separation factor has been applied for presentation clarity, (c) average sunspot
numbers. The solid oscillatory line shown for each Kp exceedance corresponds to the model
occurrence rate mean, equation (22).
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of the actual data being used A describes the mean
occurrence rate for Poisson events, equation (2). Since we
have chosen to exclude short wait times, \ is not, strictly
speaking, the occurrence rate for our winnowed data,
equation (9), although the distinction disappears as the
number of excluded events approaches zero. The wait
time variance for the winnowed data is easily calculated,

o2(c) = /oc [T = 7Ppe (7|, €)dr = % (11)

which we note is identical to the Poisson result (3). The
truncated exponential density function (7) has found
application, for example, in the analysis of the waiting
times for pedestrians wanting to cross a road having a
busy flow of automobile traffic, and where the spacing
between cars is exponentially distributed; the pedestrians
will only cross when there is a minimum spacing
(c) between cars [e.g., Feller, 1971, p. 378]. In a geophysical
context, the truncated exponential density function has
been used in the analysis of earthquake occurrence wait
times, but where the occurrence times of numerous
earthquake aftershocks have been removed since they
are not statistically independent of the primary earth-
quake [e.g., Kijko and Sellevoll, 1992].

[10] In contrast to the situation for wait times of winn-
owed data, the corresponding statistical description of
occurrence rate is comparatively more difficult. This is
due to the nature of the winnowing itself. Removing (7;, ;)
for 7; < ¢ has an obvious affect on the distribution of the
wait times, but the affect on the accompanying event times
t; is much less straightforward. Indeed, the mathematical
expression for what might be called the modified Poisson
density function, p,(n|) t, ¢), and which corresponds
rigorously to the truncated exponential density func-
tion po(7|\ ¢), is exceedingly complicated; see, for
example, Feller [1971, p. 469, equation (2.6)] where a
non-closed-form expression is given. Therefore we
have not made, in the manner of equations (5) and
(6), a straightforward calculation of occurrence rate
mean and variance for a winnowed data set D~
Fortunately, for the case of the occurrence rate mean
the mathematical difficulties are easily circumvented.
Consider, for a moment, the proportion of all Poisson
events which are retained after winnowing, that is,
those for which 7 > c. This proportion corresponds to
a partial cumulative integration over the untruncated
density function (1),

/ b pe(T|N)dr = e (12)

With this and equation (5) we obtain the occurrence rate
mean for a winnowed data set,

n(c) = e At (13)
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We note that
n(c) - nasc—0; (14)

the winnowed data, occurrence rate mean approaches the
Poisson, occurrence rate mean as the level of truncation (c)
is reduced. Unfortunately, we have not been able to derive
an expression for occurrence rate variance. However, on
the basis of the basis of the results (9), (11), and (13), we
speculate that winnowed data, occurrence rate variance
would be of the form

0,2

2(c) =~ e™ AL, (15)
where m is an integer; we will not pursue the determina-
tion of an explicit expression for o3(c) any further.

[11] Turning now to the matter of nonstationarity, for all
but the very largest of magnetic storms the wait time mean
7 is relatively short compared to the period of the solar
cycle T;. Therefore when considering a window of time
t such that ¢ < 7 < t <« T,, the statistics of storm
occurrence is only weakly nonstationary. Storm statis-
tics can be described in terms a nonstationary Poisson
rate function A(f) whose time-dependence is secular.
With this we have, approximately, the nonstationary
pdf for wait times between storm occurrences,

Pe(Ti|A(t),€) = A(t:)e™ exp{— ()i} (16)

Alternatively, we could, with an equal degree of accu-
racy, use

pe(7i|)\(t)7 C) ~ /\(i’i + Ti)e)‘c EXp{—)\(i}' + 7'1')7'1'}. (17)

It is reasonable to use an average compromise between
these two expressions,

Pe(Ti|A(f),c) ~ )\(ti)eAC exp{—A(t)Ti}

+

NI N =

)\(i’,’ + Ti)eAC exp{—/\(ti + 7'1')7',‘}. (18)

More accurate and more complicated representations
of the nonstationary (nonhomogeneous) occurrence
statistics can be obtained by using integrations over
time of the rate function [e.g., Cox and Lewis, 1966; Ross,
2003]. For our purposes, the relative simplicity of (18) is
appealing and it is sufficiently accurate for the statis-
tical analysis we conduct here.

[12] We choose to test whether or not the solar cycle
modulation of storm likelihood can be modeled by the
simple time-dependent Poisson rate function:

A(t) = a + bsin(wt + @), (19)
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Figure 3. One complete model cycle of the cyclically averaged, phase-binned wait time mean
M,(7), equation (24), and occurrence rate mean M;(n), equation (25), each shown as solid line
histograms, centered on the maximum of storm likelihood as determined by the statistical model,
for exceedances of (a, ) Kp > 5, (b, f) Kp > 6, (c, g) Kp > 7, (d, h) Kp > 8. The smooth lines show the
model wait time mean 7(t, c¢), equation (21), and occurrence rate mean 7(t, c), equation (22). Also
shown as dotted line histograms in each window are the average sunspot numbers.
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Figure 4. Binned absolute wait time errors e;(7) and occurrence rate errors ei(n), equations (26)
and (27), plotted as histograms over a complete model cycle for exceedances (a, e) Kp > 5, (b, f) Kp > 6,

(c,g)Kp>7,(d, h)Kp > 8.

with the parameter a being a constant, b the modulation
amplitude, w the solar cycle frequency, and ¢ the phase.
By making this parameterization we are assuming that
recent solar cycles are well characterized as periodic. Of
course, this is only an approximation, one meant to
summarize the majority of the variability of magnetic
activity over the course of the past 75 a. Still, we

acknowledge the obvious: Kp has exhibited noticeable
differences from one solar cycle to another; see Figure 2.
Indeed, the waxing and waning of sunspot number, which
represents a proxy measure for solar activity that can
initiate magnetic storms, also deviates from simple
periodicity. These days, complicated programs are often
used to try to predict exactly how active the coming solar
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Table 2. Error Analysis Summary for Different Kp Exceedance Thresholds

Kp> e(7) (days) R(e(7)) (days) (1) R(r(1)) e(n) (per year) R(e(n)) (per year) 7(n) R(r(n)) Pks
5.0 —0.099 1.561 —0.013 0.135 —2.458 5.046 —0.064 0.141 0.026
5.3 0.051 1.935 0.001 0.137 —1.364 4171 —0.043 0.140 0.110
5.7 0.371 3.471 0.015 0.177 —0.667 3.459 —-0.023 0.162 0.007
6.0 0.255 3.552 0.008 0.141 —-0.315 2.195 —0.009 0.121 0.009
6.3 1.112 6.162 0.022 0.156 —0.128 1.856 —0.006 0.154 0.015
6.7 1.967 11.304 0.031 0.199 —0.041 1.728 —0.002 0.203 0.068
7.0 3.918 19.888 0.039 0.227 0.012 1.361 0.003 0.230 0.087
7.3 4.396 33.429 0.023 0.255 0.021 1.198 0.014 0.233 0.037
7.7 6.876 48.921 0.030 0.306 0.071 1.034 0.021 0.288 0.187
8.0 2.359 67.185 0.022 0.317 0.100 0.561 0.024 0.361 0.284

cycle will be [e.g., Svalgaard et al., 2005; Dikpati et al., 2006].
For a tractable statistical analysis some degree of statio-
narity is a practical choice. With (19) we are allowing for
an extremely simple type of nonstationarity (sinusoidal
modulation). The parameters describing rate function
modulation are themselves assumed to be stationary; (g,
b, w, @) do not change over the entire 75-a time span of the
Kp data. This might seem to be a stringent set of
assumptions, but the success (or failure) of our model
can be judged, in retrospect, once the data have been
fitted.

[13] Our approach is to be contrasted with that of
Wheatland [2000], who analyzed the nonstationary statis-
tics of solar flares occurrences. He accommodated mod-
ulation by dividing the solar cycle into multiple short
intervals, and then performing independent parameter
estimations using data within each of the intervals.
Wheatland’s method works well when many data are
available within each interval. On the other hand, our
continuous model allows us to analyze the relatively
fewer number of data recording large magnetic storms.
Moreover, by assuming that the modulated rate function
is described by a stationary set of parameters we can
make time-dependent predictions.

[14] Model parameters are estimated, and the wait time
data are fitted, by using the pdf (18) to construct a
likelihood function,

=

£ =y Lpeire.o. (20)

I
-

where N is the number of winnowed wait times in D=°. £
is maximized by conducting a numerical search over
parameter space (a, b, w, ¢) using a simplex computer
routine (““amoeba’” [Press et al.,, 1996, p. 404]).
Comparisons of the data with model wait time mean
(9) and number (13) can be accomplished using the
time-dependent Poisson rate A(f) in place of the
stationary Poisson rate ), which is reasonable assum-

ing, once again, that events occur relatively frequently
compared to the timescale of the solar cycle.

4. Results

[15] Numerical values of the model parameters, the
result of maximum likelihood estimation, are given in
Table 1 for different Kp exceedance thresholds. With these,
the stationary mean wait time (9), and the modulated
Poisson rate function (19), we calculate the model nonsta-
tionary, storm wait time mean

e/\(t)c

b

T(t,¢) (21)

With the stationary occurrence rate mean (13), we
calculate the model nonstationary, occurrence rate mean

At c) ~ e X)L (22)

Both of these quantities can be compared, now, with the
data D, which we accomplished by averaging the data
over multiple solar cycles. We count the number of
magnetic storms that fall into phase bins defined by w
and ¢. Specifically, we divide the period

Ts=— (23)

into a set of N bins. (Here we choose Ny = 20 so that each
bin is slightly more than a half a year in width. It is
important to recognize, however, that we are using the
frequency w that comes from the maximum likelihood
estimation to define the bin width. The estimation itself is
independent of any binning or averaging of the data, and
we have not forced any preconceived period or frequency
onto the estimation or onto the display of the results.)
Then, we accumulate interstorm wait times and storm
numbers within each bin according to the phase of the
storm time, mod(wt;, 27), with storm time ¢ being in the
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Figure 6. One complete model cycle of the cyclically
averaged, phase-binned wait time standard deviation
Si(7), from equation (33), shown as solid line histo-
grams, centered on the maximum of storm likelihood
as determined by the statistical model, for exceedances
of (a) Kp > 5, (b) Kp > 6, (c) Kp > 7, (d) Kp > 8. The
smooth lines show the model wait time standard
deviation o7(t, ¢), from equation (32). Also shown as
dotted-line histograms in each window are the average
sunspot numbers.
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same bin as t + mT,, where m is any integer. For the k™ bin
the storm wait time mean is

Mi(7) = Z%k Z 7, (24)
]

where it is understood that the summation is over the Ny
wait times within the k™ bin. We estimate the storm
occurrence rate directly from the data by counting the
number of storms within each bin. For the k™ bin the
storm occurrence rate is

_ NiNg

My (n) = Ty (25)

where T, is the total time span of the Kp time series (75 a).
In Figure 3 we show, for different Kp exceedances,
histograms of the cyclically averaged storm wait time
mean and occurrence rate means within each bin, together
with the model wait time mean (21) and occurrence rate
(22). Here we also show the average sunspot number,
binned according to the model parameters w and ¢ As
expected, storm occurrence rate decreases (increases) as
the Kp threshold is increased (decreased); large storms are
rarer than small storms, something that is perfectly
obvious.

[16] Figure 3 also shows some additional important, and
less obvious, relationships. Note, for example, that the
modulation for Kp > 5 (Figures 3a and 3e), which includes
many small storms, is relatively flat, b/a is small, and that
the maximum likelihood for storm occurrence clearly
occurs on the declining phase of the solar cycle. On the
other hand, with increasingly large Kp exceedance thresh-
olds the relative amplitude of the modulation b/a
increases, and the phase ¢ shifts so that for the largest
storms, Kp > 8 (Figures 3d and 3h), the likelihood of storm
occurrence is more tightly correlated with sunspot number.
The amount of time that the maximum of storm likelihood
occurrence lags the sunspot maximum decreases from
about 3 a for Kp > 5 to about 1 a for Kp > 8. This quantitative
result is consistent with the qualitative observations made
in the past.

[171 We now consider the errors associated with com-
parisons of our model and the mean quantities of the data
D~*. For each bin k having a center time of 3, we calculate
the absolute residual errors,

ex(t) = Mk(T) - ?(ﬁkv(:% (26)

ex(n) = Mg(n) — n(fy, c), (27)

and the corresponding relative residual errors,

"0 =y 2
re(n) = ﬁzi(kn)c) : (29)
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(c) Kp > 7, (d) Kp > 8. The smooth lines show the model cdf P.(7|\(f)), equation (34). A horizontal
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five phase bins we have also given the Kolmogorov-Smirnov probability pxs, which we note is

greatest for the exceedance (d) Kp > 8.
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Figure 8. Predictions over the course of the coming
solar cycle for (a) the magnetic storm, wait time mean
7(t, c¢), equation (21), and (b) magnetic storm, occur-
rence rate mean 7(t, c), equation (22) for different Kp
exceedance thresholds.

These quantities are plotted as cyclically averaged histo-
grams in Figures 4 and 5, where we see that both e, and 7y
do not show significant systematic bias or unmodeled
coherent variation over the course of a solar cycle
modulation. Therefore we conclude that our statistical
model is a relatively complete description of the mean
data. In Table 2 we give the averages of the residual errors
taken over the Nj bins,

Glaxt e

k

Since the € are much smaller than (say) the rate function
parameter a, and since the 7 are much smaller than 1,
we conclude that our statistical model is a relatively
unbiased description of the mean data. The root-mean-
square values of the residual errors,

Ll
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are given in Table 2. Note that the average absolute
error in the rate function, R(e), decreases (increases) as
we consider larger (smaller) Kp exceedance thresholds.
This is expected since there are, for example, many
more magnetic storms having Kp > 5 than Kp > 8. On
the other hand, the average relative error shows the
opposite functional relationship, with R(r) increasing
(decreasing) as we consider larger (smaller) Kp ex-
ceedance thresholds. The large number of magnetic
storms having Kp > 5 gives associated averages for
each bin which display less statistical jitter than, for
example, the smaller number of storms for Kp > 8. We
conclude that our statistical model is a relatively
accurate description of the mean data.

[18] Next, we consider the variance of wait times of D=°.
With the parameters given in Table 1, the stationary value
for the variance of the wait times (11), and the modulated
Poisson rate function (19), we calculate the model nonsta-
tionary, wait time variance

1
N(t)

0'72_(1', ) =~ (32)

We estimate the storm wait time variance by accumulat-
ing, as before, data within bins and then calculating the

quantity

S0 =5 3 [~ 7oL 33)
]

where, once again, [y is the center time of bin k and the
summation is over the N, storms within the k" bin.
Results are shown in Figure 6 for different Kp excee-
dances. The model wait time standard deviation o.(t, ¢)
fairly successfully fits the wait time standard deviation of
the data Si(7), but we acknowledge a slight underestima-
tion of the model standard deviation.

[19] As the final part of the presentation of our results,
we compare the shape of the wait time data distribution
with that of our model. This is comparatively straightfor-
ward for the case of stationary statistics. Indeed, Remick
and Love [2006] did just that, plotting the stationary cumu-
lative exponential distribution against the winnowed wait
time data, but without considering the affects of solar cycle
modulation. For the nonstationary, solar-cycle-modulated
model considered here we compare the cumulative den-
sity functions (cdfs) of binned subsets of the wait time data
with the modulated model cdfs. First we note that over the
course of a modulation period T; the rate function A(f)
attains a maximum (minimum) value of a + b (a — b), and
values of \(t) intermediate to these extrema occur twice
per cycle. Therefore in considering theoretical cdfs, which
are a function of the rate function, it is sufficient to
consider only half a period T;/2; anything longer would
be repetitious. We divide the half period into N = 5 bins,

.o 3
each denoted by a centered phase: {; 35, etc. We accu-
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Table 3. Predictions for the Wait Time Mean 7(f, c) and the Occurrence Rate Mean #(t, c) for Magnetic
Storms Over the Course of the Coming Solar Cycle and for Different Kp Exceedance Thresholds

Kp>5 Kp=>6 Kp=>7 Kp>8
Year 7 (days) 71 (per year) 7 (days) 71 (per year) 7 (days) 71 (per year) 7 (days) 7 (per year)
2007 13 27 34 11 109 3 443 1
2008 14 27 32 11 93 4 317 1
2009 12 30 26 14 66 6 197 2
2010 11 35 21 18 49 7 136 3
2011 9 39 17 21 40 9 108 3
2012 9 43 16 23 36 10 99 4
2013 8 43 16 23 37 10 105 3
2014 9 42 17 21 43 9 126 3
2015 10 38 20 18 55 7 176 2
2016 11 33 26 14 77 5 278 1
2017 13 29 32 11 103 4 422 1
2018 14 27 34 11 105 3 408 1

mulate the wait times 7; within these bins, assigning a
wait time once to the bin for the first associated storm
time t; and once to the bin for the second associated
storm time t;,,, and, at the same time, taking account of
the fact that storm time ¢ would be in the same bin as
mT — t, where m is any integer. We sort the wait times
within each bin and plot them as a cumulative for
comparison with the cdf of the nontruncated, exponen-
tial density function,

Pe(rA(B) ~ A(®) / e Mgy 1 _eNOT (34
JO

In Figure 7, we see that at some points in the solar cycle
there are noticeable differences between the data and
the model. Still, the overall agreement between the
data and the model is reasonably good; most of the
statistical signal in the wait time data is being modeled.

[20] For each Kp exceedance and for each bin we have
calculated the Kolmogorov-Smirnov probability pgs
(“ksone” [Press et al., 1996, p. 619]), giving the probability
that the data could conceivably have been drawn from a
population consistent with the model distribution. We
present the individual values for pxs in Figure 7, and in
Table 2 we give the average probability pxs for each Kp
exceedance threshold. In all cases pis is relatively small
(«1). While we would obviously prefer values of pis
that approach unity, for our purposes, the Kolmo-
gorov-Smirnov test is overly stringent. Consider, for
example, the case for Kp > 8, for which pgs = 0.284. This
means that there is a 0.716 probability that the data
could have been realized from a population given by a
hypothetical statistical model that is different, in an
unknown way, from our simple model. The Kolmo-
gorov-Smirnov test does not provide any guidance for
which of the alternative, better-fitting models, among

the infinity that are available, should be used in place
of ours. It seems reasonable to conclude that the data
D=° are the realization of a statistical model that is only
slightly different from our model. Although there is
certainly room for improvement, since our statistical
model is motivated more by simplicity and phenome-
nology than it is by physics, we consider the results
presented here to be an indication of success.

5. Interpretation

[21] One of the most important conclusions of this study
concerns the timing of small and large magnetic storm
occurrence relative to the phase of the solar cycle. Why
would the most likely occurrence of small (large) storms
come during the declining phase (maximum) of the solar
cycle? One possible explanation is the difference in helio-
physical drivers of small versus large magnetic storms.
Small storms are associated with both coronal mass ejec-
tions and high-speed streams from coronal holes, with
high-speed streams tending to initiate storms during the
declining phase of the solar cycle [Echer et al.,, 2004, and
references therein]. On the other hand, large storms are
primarily associated with coronal mass ejections [Richardson
et al., 2001], and these occur most frequently at solar
maximum.

6. Predictions

[22] Using the model wait time mean 7(f, ¢), equation
(21) and occurrence rate mean 7(t, c), equation (22), we
can predict the occurrence statistics of magnetic storms
over the course of the coming solar cycle; results are
shown in Figure 8 and specific numbers are given in
Table 3. We offer these results with the hope that the
space weather community can make practical use of
the statistical model presented here. It appears that
2012 will be a big year for big magnetic storms.
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