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a b s t r a c t

Managing large medical image databases has become a challenging task as more medical images are

produced and stored in digital format. Computer-aided decision support for content-based image

retrieval (CBIR) is an essential tool for medical image management. This paper presents a novel hybrid

relevance feedback (RF) system for shape-based retrieval of spine X-ray images. A new shape similarity

architecture includes separate retrieval and feedback modes to solicit user’s opinion for refining

retrieval results. A unique short-term memory approach is implemented to avoid repeated request for

user’s feedback on the same, already approved, and retrieved relevant images. An automatic weight

updating scheme is developed to present the images on which it is best for the user to provide feedback.

Incorporating all these unique features, the proposed RF retrieval system is able to reduce the gap

between high-level human visual perception and low-level computerized features. Experimental results

show overall retrieval accuracy improvement of 22.0% and 17.5% after the second feedback iteration for

retrieving spine X-ray images with similar osteophytes severity and type, respectively.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Image retrieval [1–5] and content-based image retrieval (CBIR)
[6–12] have been seen as a solution to managing large media
collections. Research on medical image retrieval, however, is fairly
recent [13–21]. With the increasing use of diagnostic medical
imaging for training and research, efficient and effective image
retrieval has become critical to medical image database manage-
ment. Early CBIR research has focused on exploiting effective
image features such as color, shape, and texture [6,7] or
determining similarity [9–11]. Techniques extracting ‘‘high level’’
visual characteristics in the query image and computing similarity
in terms of ‘‘low level’’ features result in a semantic gap or
discrepancy between the two levels of representation. This
semantic gap has been observed in the performance of most
image features and similarity measurement methods used in CBIR
systems. User feedback has been analyzed and employed to
address this issue in image retrieval applications [22–28]. This
issue, however, is more pronounced in medical image retrieval
applications because medical images of the same anatomy but
with different pathologies often exhibit very subtle differences
that lead to different opinions even among experts.
ll rights reserved.
Research efforts have sought to utilize CBIR methodologies to
study a collection of 17,000 digitized spine X-ray images from the
second National Health and Nutrition Examination Survey
(NHANES II) which is maintained by the US National Library of
Medicine (NLM) [29–33]. This collection is considered a key
resource supporting research on the prevalence of osteoarthritis
and musculoskeletal diseases. Our previous research efforts in
CBIR techniques for spine X-ray images [29–31] have broadly
focused on techniques for measuring shape similarity. Color and
texture features often used in other CBIR systems are generally
irrelevant for spine X-rays because they fail to capture the
pathologies of interest. Although these shape matching techni-
ques demonstrate promising results, they operate under the
implicit assumption that a single set of fixed weights for a
weighted similarity measurement is sufficient to express desired
characteristics of various queries. Relevance feedback (RF) is
considered a natural extension that could address this drawback
as well as the common semantic gap issue mentioned previously.

The fundamental concept of RF is to establish interactions
between the user and retrieval system and to refine retrieval
based on feedback provided by the user. There are two types of
image retrieval systems, target search and category search. A target
search system searches for a specific target image in the database.
A category search system, on the other hand, seeks a certain
number of images that are similar to the query (target). Ideally, a
category search system retrieves the images that are most similar

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2008.12.029
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to the query’s ‘‘class’’, e.g. pathology, type, or modality, which is
our focus of this work.

There are many different RF algorithms published in the
literature in recent years. Most of them were developed for
specific applications. Probability estimation for calculating image
similarity was proposed [21,25,34,35]. Feedback from the user was
used to update the weights or re-estimate the probability.
Bayesian rule was also used to estimate the probability of each
image being the user’s query [9,21,24]. The probability was
conditioned on all feedback history from the user and updated
globally during each feedback iteration [9]. The resulting system
was quite sophisticated and the updating process was computa-
tionally expensive and proportional to the size of the image
database. An alternative to this non-parametric Bayesian ap-
proach, expectation maximization (EM) has also been used to
estimate statistical parameters such as the mean and the variance
of the user’s target distribution, given the assumption that the
distribution is Gaussian [26]. The EM algorithm was applied to a
maximum likelihood function chosen to make most images
appear in the medium likelihood area.

Optimal adaptive learning is another approach employing RF
that appears in the literature [10,21]. In [10], adaptive filters were
used to imitate the human vision system. Least mean square and
recursive least square algorithms were both proposed to approx-
imate the optimal Wiener filter solution. The user’s feedback was
used as the ground truth to guide the algorithm to the optimal
solution. Support vector machine (SVM) has also been used for
active learning algorithms [4,5,21,36–39] to select the most
informative images to query a user and learn the user’s similarity
preference for the next retrieval iteration [4]. Historical feedback
data from the users have been used to learn effectively the
correlation between low-level image features and high-level
concepts using a so called soft labeled SVM [37].

Another important aspect of RF is image selection strategy that
selects images for the user to provide feedback. Image selection
strategy is actually crucial to the performance of a RF-based image
retrieval system. Some approaches selected only images that were
most similar to the user query for user feedback [14,22,24,25].
However, as the retrieval accuracy for a specific query increases
from iteration to iteration, a large overlap between the selected
image sets is inevitable and results in ‘‘over-learning’’. They also
ignore useful information that can be obtained from the feedback
regarding negative images, or irrelevant images retrieved by the
system.

Generally speaking, RF is designed to bridge the semantic gap
for enhancing performance. Users manually label positive and
Fig. 1. Landmark points and a sample image: (a) radiolo
negative feedbacks to construct a classifier for later accurate
retrieval [35,40]. Tao et al. [41] pointed out that the assumption of
treating positive and negative feedbacks equally is not appropriate
because two groups of training feedbacks have very different
properties. They proposed an orthogonal complement analysis to
solve this problem. Onoda et al. [39] proposed a unique one class
SVM based method using only non-relevant information to
retrieve relevant documents efficiently. A region segmentation
based feedback process was proposed to estimate correspondence
among regions in the feature space to separate relevant regions
from irrelevant regions [42,43].

We proposed a novel linear weight-updating RF algorithm and
applied it to spine X-ray image retrieval in [31]. Like most other RF
approaches, new parameters (weights) intended to enhance the
query expression are calculated after each feedback iteration, with
refined retrieval results limited to those obtained by conventional
CBIR using the new parameters. The work described herein
contributes to spine X-ray image retrieval by proposing and
evaluating a novel hybrid image retrieval approach based on CBIR
and weighted shape matching that employs RF and feedback
history.

This paper is organized as follows: Section 2 briefly introduces
the shape similarity measure developed for vertebral image
retrieval using RF. The improved linear weight-updating RF
approach that employs short-term memory (STM) is introduced
in Section 3. Section 4 details the hybrid approach of combining
RF and CBIR for X-ray retrieval. Section 5 uses expert-established
ground truth to evaluate the proposed algorithm, and the paper
concludes in Section 6.
2. Shape similarity in spine X-ray images

Pathologies found in spine X-ray images that are of interest to
the medical researchers are generally displayed along the
vertebral boundary. These pathologies include anterior osteo-
phytes (AO), intervertebral disc degeneration and resulting disc
space narrowing, subluxation, and spondylolisthesis. Work pre-
sented in this paper focuses on AOs which are bony protrusions
along the anterior, inferior and superior edges of the vertebra.
These pathologies are expressed as protruding ‘‘corners’’ in the
sagittal view. Fig. 1(a) shows a schematic, depicting landmark
points of interest to medical researchers, including AOs, and
Fig. 1(b) shows an example image from NHANES II collection that
is cropped around a vertebra with superimposed boundary and
landmark points.
gist-marked 9-point model, (b) an example image.
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The proposed hierarchical retrieval model for our application is
shown in Fig. 2. The overall dissimilarity between the query shape
and a candidate shape in the database is determined along the
two paths labeled WSM and PSM. WSM is a label for all similarity
measures that match the whole shapes, while PSM identifies
partial shape matching methods. As seen from bottom up, there
are three hierarchical levels: the component level, the representa-

tion level, and the method level. One method can utilize multiple
feature representations, and one representation can be computed
from multiple components. For example, three representations
are used by the WSM method: Geometric properties, Fourier

descriptor (FD), and Procustes distance. The geometric properties

representation consists of the two feature components elongation

and compactness. A weight (w) is associated with each component,
representation, and method, and the overall dissimilarity is
calculated hierarchically as a weighted sum.

For clarity, the following expressions compute dissimilarity.
(Similarity is often expressed as 1-dissimilarity). For example, for
the PSM method, dissimilarity is calculated as

DPSM ¼W21DDP þW22DFD þW23DPro (1)

where

DDP ¼W211Dlen þW212Dang þW213Dmer (2)

DFD is the L2 distance between two fourier descriptor vectors
representing two partial shapes and DPro is the Procrustes distance
between two sets of shape data points. In Eq. (2), Dlen, Dang, and
Dmer are the length dissimilarity, angle dissimilarity, and merging
dissimilarity between two partial shapes, respectively. (A more
detailed explanation of these dissimilarity measurements can be
found in [31].) Similarly, dissimilarity for WSM methods is
calculated as

DWSM ¼W11DGP þW12DFD þW13DPro (3)

where

DGP ¼W111Delo þW112Dcom (4)

Delo is the elongation dissimilarity between two whole shapes,
while Dcom is the compactness dissimilarity between two whole
shapes. The overall dissimilarity is then calculated as the
weighted sum:

DOverall ¼W1DWSM þW2DPSM (5)

Dissimilarities on each level are normalized to be in the range of
(0, 1). Weights represent the relative importance of the corre-
sponding component, representation, and method. These weights
can be adjusted through RF to reflect user preference on different
components, representations, and methods.
3. Relevance feedback

For shape-based retrieval systems like that described in the
previous section, weight-updating approaches are preferred for
relevance feedback.

3.1. Review and analysis

Like most statistical RF approaches, Rui’s method [22] requires
prior statistical information for all images in the database. During
each iteration, the N objects that are most similar to the query are
simply displayed to the user for feedback. According to his or her
perception, the user assigns each of these N objects to one of the
five categories: highly relevant, relevant, no opinion, non-relevant,
or highly non-relevant. A numerical score (positive, negative, or
zero) is then assigned to each image corresponding to its assigned
category. Two different weight-updating approaches are taken for
the feature and component levels. For the feature level, weights
are updated by adding the newly assigned score to the original
weights. For the component level, weights are updated as the
reciprocal of the standard deviation of the component similarity
value sequence from the relevant set specified by the user.

Given that the overall operation of our retrieval model is
similar, it would seem reasonable to apply Rui’s weight-updating
scheme to our spine X-ray application. However, statistical
information is difficult if not impossible to obtain for PSM, given
the fact that there are unmanageably large number of possible
partial queries that could be specified as query by the user. In
addition, the dissimilarity measure used in PSM always depends
on the specific query and thus has to be calculated on the fly.

Another issue is that it is common for one component that is
able to differentiate the relevant set from the irrelevant set to have
a larger deviation within the relevant set than a second
component that cannot achieve the same level of differentiation.
Therefore, weight-updating using the reciprocal of standard
deviation is not ideal in some cases. Furthermore, weights for
the feature level and the component level are updated indepen-
dently, but this is both inefficient and ineffective. Suppose, for
example, that a given feature does not perform well according to
the user’s feedback, and thus is assigned a lower weight during
the weight-updating process. If the independently updated
components of the feature happen to be assigned weights that
make the feature a better indicator of the user perception, the
logical conclusion is that the feature itself should have been
assigned a higher weight.

3.2. Image selection for feedback

The proposed retrieval system has two modes: Mode R
(Retrieval) and Mode F (Feedback). Mode R retrieves and displays
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Fig. 3. Mode F: positive and negative examples.
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the images most similar to the user’s query, while Mode F displays
the images and waits for user feedback. It is important to keep
Mode R and Mode F independent since they employ different
image selection schemes. The ultimate goal is to retrieve images
that best match the user’s query as well as preference. It is desired
for the retrieval system to have a distinct ‘‘Mode R’’ to display the
end results.

Fig. 3 shows 20 positive and 10 negative examples that await
user feedback in Mode F. Fig. 4 illustrates the procedure for
selecting examples for one specific query. The STM is refreshed
when a new query is presented. Images in the database are ranked
in Mode R in the order of increasing dissimilarity based on
low-level image features. In the first feedback iteration, the top
20 matches from Mode R are all selected as positive examples for
Mode F and stored in STM for recordkeeping. In subsequent
iterations, only top matching images that have not been reviewed
by the user in Mode F (and therefore not previously recorded in
the STM) are stored in STM and output to Mode F for feedback.
This approach ensures that top matching images in the database
are selected as positive examples for feedback just once, thus
avoiding repeated requests for user feedback on the same images.

Mode F also includes negative examples that are selected from
images that have a high dissimilarity with the specific query. In
our current system, 10 examples are chosen, beginning with the
200th ranked image in the last retrieval and continuing
sequentially. As with the positive examples, the STM stores a
record of negative examples shown to the user so that each is
reviewed at most once. The inclusion of both positive and negative
examples enhances the opportunity to make corrections in the
event of severe misses on the positive matches while retaining
sufficient feedback information on the positive matches.

3.3. Weight-updating scheme

The mechanism used to provide RF should be simple to
allow the system to be used by practitioners not trained in
CBIR concepts but capable of making visual judgments. In Mode F,
the user is required only to express one of the three opinions for
each image: the image is relevant, the user is not sure, or the image
is irrelevant. The default opinion on positive examples is set to
‘‘relevant’’, while for negative examples it is set to ‘‘irrelevant’’.

We illustrate the operation of the new weight-updating
scheme by describing it in detail at the component level (weights
for the other two levels are updated in a similar fashion). First,
assume that the dissimilarity values of a given component for the
relevant and irrelevant sets are distributed as shown in Fig. 5. In
an ideal case, the dissimilarity ranges for the relevant and
irrelevant sets that do not overlap, which means that this
component perfectly reflects the user’s preference. Otherwise,
for all the images in the relevant set, the range of dissimilarity
values is obtained and denoted as; min_R, max_R. It is very likely
that a dissimilarity value dIR of one of the images from the
irrelevant set obtained from user’s feedback lies within the range
(min_R, max_R). Thus, an ambiguous range of dissimilarity values
occurs, as shown in Fig. 5. We define a difference related to this
ambiguous range as:

Dif ¼ dIR �max_R (6)

so that the sign of Dif indicates the occurrence of an ambiguous
range between relevant image set and an image from the
irrelevant image set in the following manner:

Dif40 no ambiguity occurs

Difo0 an ambiguity occurs (7)

note that only max_R is needed for calculating the overlapping
range, since the dissimilarity values from irrelevant set usually
would not go beyond min_R.

Suppose a representation consists of N components and the
weights associated with these components are Wi, i ¼ 1,2,y,N.
Every image marked as irrelevant by users is evaluated and for
every occurrence of an ambiguous range in the component level,
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Fig. 5. The distribution of the dissimilarity values of a given component.

20 Positive 

Examples  

…

…

…

10 Negative 

Examples

Mem #1 

Mem #2 

Mem #3 

…

…

…

Short-Term Memory (STM)
query

Examples in Mode F

If input has not been
stored in STM, store
it and display it for
user feedback

CBIR results

Rank #1 

Rank #2 

Rank #3 

…

…

…

Rank #M

Rank #1Rank #2…

RF
Learning Algorithm 

Refine the CBIR
results

Reset when a new query
is presented

Fig. 4. Image selection scheme with short-term memory.

X. Xu et al. / Neurocomputing 72 (2009) 2259–2269 2263
each weight is updated once according to

Wi ¼Wi þ max
j

Dif i�Dif j40

Dif i � Dif j

maxi;jfjDif ij; jDif jjg

jWi �Wjj

max Wi;
1

2
ðWi þWjÞ
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8>><
>>:

9>>=
>>;

þ max
j

Dif i�Dif jo0

Dif i � Dif j

maxi;jfjDif ij; jDif jjg

jWi �Wjj

max Wi;
1

2
ðWi þWjÞ

� �
8>><
>>:

9>>=
>>;

(8)

where Difi is calculated in the same way as in Eq. (6) but with the
distribution of the dissimilarity values of a component in the
current representation.

This approach updates the weights ‘‘dependently’’ by compar-
ing the ambiguous ranges of different components, Difi�Difj, and
the value of their corresponding weights, |Wi�Wj|. For instance, in
order to update W1, a sequence of values Dif1�Dif2, Dif1�Dif3,y,
Dif1�DifN are calculated. If Dif1�Difj is positive, it indicates that
the ith component creates a smaller ambiguous region (a bigger
separation between the relevant and irrelevant sets) than the jth
component. Therefore, the ith component deserves a higher
weight than the jth component. In this case, our method
calculates the positive value

Dif 1 � Dif j

maxfjDif 1j; jDif jjg

jW1 �Wjj

max W1;
1

2
ðW1 þWjÞ

� �

to be added to W1. Instead of adding a random value (e.g., 1 or 2),
the term |Wi�Wj| serves as the base of weight-incremental unit so
that the increment is at the level of existing weights. However, in
order to provide a gradual increase in the weights and to avoid
large fluctuations, a denominator max{W1,1/2(W1+Wj)} is em-
ployed to provide a more stable incremental unit. The coefficient
of the incremental unit is based on Dif1�Difj, and calculated as
(Dif1�Difj)/max{|Dif1|, |Difj|} in a similar manner as the incre-
mental unit. The value based on the second term of Eq. (8) is
calculated for each component which satisfies Dif1�Difj40. The
maximum value is then chosen to be added to W1. If Dif1�Difj is
negative, an analogical explanation holds for the third term in
Eq. (8), except that a minimum negative value will be added to W1.

Based on the above discussion, our weight-updating approach
compares the ambiguous ranges of all components of a certain
representation and updates the weights based on existing weight
values and the sizes of the ambiguous regions. This dependent
updating of weights is essential in the overall operation of our
system; it ensures that the weights reflect the true importance of
each component. The weights associated with the representation
and method levels are updated using the same approach (as that
of the component level discussed above) by observing every
occurrence of an ambiguous range in the corresponding dissim-
ilarity level.

A bottom-up approach is employed during the weight-
updating procedure as shown in Fig. 6. Specifically, the weights
of the components are updated first, and then the dissimilarity
value of the corresponding representation is updated using
the new weights for its components. Once the weights of all the
components are updated according to the user feedback, the
dissimilarity values of all the representations are updated as well.
Therefore, instead of using the old dissimilarity values of the
representations, the weights of the representations are updated
by analyzing the new and updated dissimilarity values. This
bottom-up approach addresses the disadvantages of Rui’s method
which updated the weights of all levels independently.
4. Hybrid approach based on CBIR and RF

4.1. Visual perception

As previously noted, in most RF approaches, the final retrieval
results during any iteration come directly from the refined CBIR
retrieval results. As noted in the literature (see [9,22,25,26]), this
approach to incorporating RF provides a performance improvement
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over traditional CBIR techniques. However, this approach implicitly
assumes that a single set of weights exists (for example, the set of
all weights shown in Fig. 2 for calculating dissimilarity) for each
query and for each user that can retrieve all the possible good
matches to the query in the database. This assumption is not
supported by the results of practical experiments.

The human vision system is very complicated, and the concept
of ‘‘similarity’’ is subjective and imprecise. Research has explored
what the concept of ‘‘similarity’’ means to humans [12,44–46].
Due to the subjective nature of the human vision system, different
users can perceive the same image differently, with differences
ranging from slight to significant. Moreover, the same user can
perceive the same image from multiple aspects such as color or
shape. Thus, a single set of weights (parameters) that favors either
color or shape will not be able to retrieve images that match both
criteria. Therefore, no matter how many feedback iterations the
user attempts, typical RF algorithms will not refine the CBIR
retrieval results to include both.

This argument is easily extended to medical images such as the
spine X-ray images we consider, despite the fact that only shape is
employed as a meaningful feature for spine X-ray image retrieval.
Consider, for example, the three spine shapes in Fig. 7. If we
consider the part of each shape highlighted in red as the region of
interest, both matches a and b could be considered as good
candidate matches to the query. Match a is similar to the query in
its local angle characteristics but not the overall shape. In contrast,
match b is a good match based on overall shape similarity but not
based on local angle details. This underscores the multiple aspects
employed by the human vision system. One set of optimal weights
(parameters) is unlikely to reflect multiple aspects of visual
perception.
4.2. Hybrid approach

Traditional RF approaches usually employ RF information only
from the current iteration to refine the CBIR results, which
become the retrieval results after each feedback iteration. In these
schemes, RF from the current iteration (without STM) is fed
directly into the weight-updating process and the final retrieval
results are provided directly by the refined CBIR results. Thus,
although they employ RF, traditional approaches are not able to
accommodate the differences in perspective embodied in the
human vision system as discussed in the previous section.

Feedback history has been employed in some previous designs
to enhance the retrieval capabilities [37,47–48]. In [47], a high-
dimensional feature vector was used to represent each lung
image, and the images were initially retrieved based on an
unweighted K nearest-neighbor method. A decision tree, which
classifies each image to be either relevant or irrelevant, was
constructed or trained with the knowledge of all RF history gained
on the current query. The decision tree, in turn, returned all the
images classified as relevant from which another K images closest
to the query were retrieved for further feedback. Similarly, [37,48]
employed feedback history for training purposes. In contrast, we
propose to directly contribute feedback history to the refined
retrieval results for each iteration.
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Table 1
AO severity grading criteria.

Severity Slight Moderate Severe

Features No narrowing or a o151 angle by the osteophyte

from the expected normal anterior face of the

vertebra or protrusion’s length being o1/5 of

vertebra width (traction) or height (claw)

Mild narrowing or an (151, 451) angle by the

osteophyte from the expected normal anterior

face of the vertebra or protrusion’s length being

(1/5,1/3) of vertebra width (traction) or height

(claw)

Sharp/severe narrowing or an X451 angle by the

osteophyte from the expected normal anterior

face of the vertebra or protrusion’s length being

41/3 of vertebra width (traction) or height (claw)
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As the retrieval model in Fig. 8 shows, our proposed design
includes STM that is reset at the beginning of each query. During
each feedback iteration, the images selected for Mode F and the
user’s corresponding RF are recorded in the STM. Thus, instead of
using the feedback information from only the current iteration,
we use all available RF—including feedback from prior iterations
stored in the STM—for the updating of weights. Since the STM for
the image selection mechanism proposed in Section 3.2 stores all
positive images selected for Mode F and records those images
classified by the user as positive example matches, the same STM
can also be used for the purpose of updating weights.

A new set of weights can be obtained during each iteration
using the weight-updating formula proposed in Section 3.3
according to the RF information stored in the STM. The CBIR
results are then refined using the new set of weights. Instead of
using only the refined CBIR results as the final retrieval results, the
final results are a combination of both the refined CBIR results and
the positive RF stored in the STM (corresponding to the two paths
entering the ‘‘final retrieval results’’ block in Fig. 8). Since the STM
stores positive example matches that have been selected by the
user, these images should be included as good matches in the final
retrieval results. In fact, the top 20 matches in the final results
could come from the STM if it contains 20 positive example
matches for the current query. (This is somewhat unlikely; the
user is likely to have been satisfied with the retrieval results
before 20 images with positive feedback are stored in the STM.)
This hybrid approach is more reasonable than typical RF
approaches because it does not overlook the desirability, the
efficiency, and arguably the necessity of including in the final
retrieval results the best of all images retrieved by the system and
approved by the user.

The intermediate images in the STM that received positive
feedback from the user are likely from the results of different
iterations. Since the weights are updated in each iteration, these
images correspond to multiple, distinct set of weights. Therefore,
by granting priority for these images to be included in the final
retrieval results, our hybrid approach provides matches retrieved
using multiple sets of weights rather just those retrieved using the
final weights. The hybrid approach better reflects the multiple
aspects of the human vision system.
5. Experimental results

5.1. Ground-truth establishment

The data set used to evaluate the effectiveness of the hybrid
scheme consists of a total of 888 shapes generated from 207
spinal X-ray images (107 cervical and 100 lumbar films) selected
from the NHANES II collection. Each vertebral shape boundary
consists of 36 points consistently segmented with the first point
at the posterior superior ‘‘corner’’ (Point 1 in the 9-point model).
A set of 21 shapes were selected as queries for experiments.

To evaluate our approach, it was necessary to establish the
ground truth and to interpret the shapes. Two classification
schemes for AOs were chosen to establish the ground truth. One is
the Macnab classification [49–51]. Two types of osteophytes are
adapted from the Macnab classification: claw and traction. A claw
spur rises from the vertebral rim and curves towards the adjacent
disk. It is often triangular in shape and curved at the tips.
A traction spur protrudes horizontally with moderate thickness,
but does not curve at the tips or extend across the inter-vertebral
disk space. The second classification is a severity grading system
defined by medical experts and consistent with reasonable
criteria for assigning severity levels to AO. Three severity levels
are defined: slight, moderate, and severe. The criteria listed in
Table 1 were developed based on [52].

By combining the two classification schemes, six categories of
pathology can be established. Three examples of these categories
are shown in Fig. 9. The ground truth of each selected X-ray image
is based on the observations of a medical expert and recorded in a
table. An example is shown in Fig. 10. For each shape, both the
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Fig. 9. Some examples of the Macnab classification and osteophyte severity grades.

Fig. 10. Ground truth table.

Table 2
Ground truth statistics.

Inferior claw Inferior traction Superior claw Superior traction

Severe 70 C/12 L 28 C/13 L 12 C/16 L 21 C/3 L
Moderate 92 C/8 L 53 C/26 L 1 C/12 L 20 C/31 L

Slight 79 C/24 L 24 C/91 L 3 C/2 L 57 C/58 L

Normal 89 C/295 L 318 C/337 L

*C ¼ Cervical, L ¼ Lumbar.
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anterior inferior and superior corners were classified and recorded
separately. As with any medical diagnosis, the classification must
be regarded as an opinion. While necessary for our evaluation,
caution must be taken in considering this set as a gold standard.
Ideally, a ground truth set should be developed through some
form of consensus from multiple experts, taking observer
variability into consideration. The development of a large ground
truth set is an ongoing project at NLM.

Once the ground truth was established, it became clear that
the six categories of pathologies do not occur with the same
frequency in the database. Most of the shapes in the database
belong to the ‘‘slight’’ severity categories, and there are very few
samples for several other categories. A complete summary of the
category distribution for the ground truth data is given in Table 2.
‘‘Normal’’ samples are those classified to be of slight severity
without any of the Macnab types. Because of the subtle
differences within the ‘‘slight’’ severity level, normal shapes are
considered to be in the same category as any ‘‘slight’’ shape,
although a slight claw shape is considered to be in a different
category than a slight traction shape. In Table 2, the categories
which have fewer than 10 samples in the database are in boldface,
and those having between 10 and 19 samples are in italics.
Regardless of severity, superior claw appears rarely in the
database.
5.2. Experimental results and performance evaluation

Based on Table 1, 24 queries were selected for evaluation. Each
query was a unique combination of severity level (slight,
moderate, or severe), Macnab type (claw or traction), osteophyte
location (superior or inferior), and image types (cervical or
lumbar). However, queries belonging to the three boldfaced
categories in Table 2 were excluded from the experiments because
of their low representation in the database. For all 21 remaining
queries, we performed two independent sets of evaluations as
shown in Table 3, based on either severity or type. For the severity
column, a shape was considered to be a good match if it had the
same severity level as the query according to the ground truth.
Therefore, during the RF process, such shapes were marked as
‘‘relevant’’ and all others were marked ‘‘irrelevant’’. In this case,
the RF from the user was independent of Macnab type. The
corresponding approach was taken to obtain the results in the
Type column: retrieved images matching the type of the query
were generally classified as ‘‘relevant’’, and others were deemed to
be ‘‘irrelevant’’. However, normal shapes were marked as
‘‘relevant’’ to any slight shape, even though slight claw shape
was still considered ‘‘irrelevant’’ to slight traction shape in the
query.

For both sets of testing, i.e. severity and type, up to
two iterations of RF were conducted. For each query, the top
20 matches were retrieved for study. The retrieval accuracy

percentage was calculated for each feedback iteration. In the
Severity column, the accuracy is defined as the percentage of the
shapes among the top 20 matches with the same severity level as
the query; in the Type column, the accuracy is defined as the
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Table 3
Accuracy results: hybrid approach.

Severity (RF insensitive to type, position, and location) Type (RF insensitive to severity, position, and location)

Severe (%) Moderate (%) Slight (%) 21 queries (%) Claw (%) Traction (%) 21 queries (%)

Without feedback 47.14 48.33 85.00 60.75 74.44 79.55 77.25

After 1st feedback iteration 55.71 62.50 97.14 72.25 82.78 90.45 87.00

After 2nd feedback iteration 68.57 79.17 100 82.75 88.89 99.55 94.75

Overall improvement 21.43 30.84 15.00 22.00 14.45 20.00 17.50

Table 4
Accuracy results: hybrid approach without ‘‘Negative Examples’’ in RF.

Severity (RF insensitive to type, position, and location) Type (RF insensitive to severity, position, and location)

Severe (%) Moderate (%) Slight (%) 21 queries (%) Claw (%) Traction (%) 21 queries (%)

Without feedback 47.14 48.33 85.00 60.75 74.44 79.55 77.25

After 1st feedback iteration 57.43 62.50 97.86 73.75 82.33 88.59 85.50

After 2nd feedback iteration 65.71 75.83 99.29 80.50 88.39 98.59 93.50

Overall improvement 18.57 27.50 14.29 19.75 13.95 19.04 16.25

Table 5
Accuracy results: original weight-updating approach.

Severity (RF insensitive to type, position, and location) Type (RF insensitive to severity, position, and location)

Severe (%) Moderate (%) Slight (%) 21 queries (%) Claw (%) Traction (%) 21 queries (%)

Without feedback 47.14 48.33 85.00 60.75 74.44 79.55 77.25

After 1st feedback iteration 54.83 58.50 92.43 64.50 79.03 83.27 81.75

After 2nd feedback iteration 59.47 66.75 97.29 73.68 84.49 91.33 88.23

Overall improvement 12.33 18.42 12.29 12.93 10.05 11.78 10.98
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percentage of the shapes in the top 20 matches with the same
Macnab type as the querys. In both the severity and type columns,
the results are presented for each category as well as for all
21 queries. For instance, in the severity column, the average
accuracy percentages are shown for all of the severe, moderate,
slight, and 21 queries, respectively. Similarly, in the Type column,
the accuracy results are calculated for all the claw, traction, and
21 queries, respectively.

For comparison, we conducted experiments independently
using the following three approaches: the proposed hybrid
approach, the hybrid approach without ‘‘negative examples’’ in
the RF process, and our original approach based solely on our
weight-updating scheme. Experimental results are shown in
Tables 3–5, respectively. In both sets of experiments (severity
and type), the proposed hybrid approach showed significant
improvements in just two feedback iterations. The overall
improvement for the severity test was 22.00% with 82.75%
accuracy percentage after the second feedback iteration. The
overall improvement for the type test was 17.50% with a high
94.75% accuracy percentage after the second feedback iteration.

When negative examples are excluded from the RF process,
Table 4 shows a slightly lower improvement after the second
feedback iteration compared with the results in Table 3. However,
in severity tests, the exclusion of ‘‘negative examples’’ seemed to
produce higher retrieval accuracy after the first iteration. There-
fore, more experiments are needed to determine conclusively the
role of negative examples. The new hybrid approach clearly
outperformed the original weight-updating approach, as a
comparison of Tables 2 and 5 makes clear. The overall improve-
ment percentage of the hybrid approach was almost twice of that
of the original weight-updating method.

It is worth noticing that the accuracy percentage was
inevitably reduced due to the fact that some categories (italicized
in Table 2) have fewer than 20 samples in the database. To some
extent, this explains why the overall accuracy percentage for
severe queries is lower than that of slight qeuries. In some cases,
RF showed no improvement in the second or even the first
feedback iteration because of the lack of sufficient samples. Thus,
we expect that our results would improve if we were able to test
our approach on a more comprehensive database. Further
experiments will be performed once a large ground truth set is
established at NLM.

The precision measured here is for the retrieval system as a
whole, which is the combination of the matching algorithm and
RF process, rather than the matching algorithm alone. Because of
the nature of the proposed hybrid approach, i.e. the number of
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retrieved relevant images increases from iteration to iteration
with user feedback, the ‘‘precision’’ and ‘‘recall’’ will in fact
increase in a similar manner. Although there exists a more
complete method to evaluate the performance of a retrieval
system [53], using only ‘‘precision’’ measurement for this
evaluation is sufficient.
6. Conclusion

In this paper, we present a new relevance feedback (RF)
approach for building an image retrieval system for the second
National Health and Nutrition Examination Survey (NHANES II)
spine X-ray database that is maintained by the US National Library
of Medicine (NLM). This novel hybrid approach directly utilizes
feedback history and the modified CBIR results through RF. A new
RF technique using short-term memory (STM) to store feedback
history is developed. Through the use of an STM, we also propose
an image selection scheme that significantly improves the
efficiency and effectiveness of soliciting user’s RF. A new
weight-updating method which analyzes feedback information
from the user to refine CBIR results is also introduced. We discuss
human visual perception to demonstrate the advantages of this
hybrid approach. For the two sets of experiments (severity and
type), the overall improvement was 19.75% with an 88.75%
average accuracy percentage. We achieved 100% retrieval accuracy
for six queries which have sufficient representations in the
database. Our approach offers significant potential for a shape-
based medical image retrieval system requiring user interaction.

Building a more comprehensive database is a primary goal of
future work. More experiments can be conducted with a better
database and reliable ground truth to evaluate our new approach.
In addition, combining CBIR with semantic information
(i.e., classification labels such as severity and type) will likely
improve retrieval accuracy even further. Our ultimate goal, of
course, is to integrate this new approach into a web-based spine
X-ray image retrieval system maintained by NLM.
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