A Quantum Algorithm Detecting Concentrated Maps

April 23, 2004

Isabel Beichl, Stephen Bullock, and Daegene Song

Mathematical and Computational Sciences Division,
National Institute of Standards and Technology, Gaithersburg, MD 20899-8910
Correspondence: Stephen.Bullock@nist.gov

Abstract

We consider an arbitrary mapping f : {0,..., N -1} — {0, ..., N —1} for N = 2",
n some number of quantum bits. Using N calls to a classical oracle evaluating
f(z) and an N-bit memory, it is possible to determine whether f(x) is one-to-one.
For some radian angle 0 < 0 < 7/2, we say f(z) is 0-concentrated iff e>7/(@)/N
eilYo—0:%0+0] for some given 1y and any 0 < £ < N — 1. This manuscript presents
a quantum algorithm that distinguishes a 6-concentrated f(z) from a one-to-one
f(z) in O(1) calls to a quantum oracle function Uy with high probability. For 0 <
0 < 0.3301rad, the quantum algorithm outperforms the obvious classical algorithm
on average, with maximal outperformance at 6 = % sin~! % ~ 0.1620rad. Thus, the
constructions generalize Deutsch’s algorithm, in that quantum outperformance is
robust for (slightly) nonconstant f(z).

1 Introduction and Context

In recent years, much progress has been made in the study of quantum computation
[4, 6]. In 1985, David Deutsch illustrated the early implication of computational speed-
up of quantum algorithms [2]. Deutsch considers a mapping with two inputs and two
outputs. Using quantum superposition, he shows that a single call to a quantum oracle
allows one to determine whether such a function is one-to-one, in comparison to two
classical evaluations of the function. Several years later, Deutsch and Jozsa generalized
the algorithm to allow for multiple inputs and two outputs[3] [6, §1.4.4]. Specifically,
they describe a multi-argument function as balanced if its image holds two elements and
the preimage of each is the same size. Deutsch and Jozsa’s algorithm then distinguishes
between a constant and balanced function using a single quantum oracle call. Further
generalizations [1] distinguish between functions which are constant and map onto the set

of /!N roots of unity, 2 < £ < N.

This note presents a variant of such algorithms. Specifically, suppose that given is a
function f : {0,1,2,...,N —1} — {0,1,..., N — 1}, where N = 2" is a power of two.
This is convenient as N = 2" is the dimension of the data-state space of n-quantum bits
[6]. Let w = e*/N be the (2”)1Jh root of unity, and choose ¢y € [0,27). We say such an
f(x) is B-concentrated about vy if and only if

w!@ € exp(ify — 0,99 +60]), YVO<z<N-1 (1)

We say f(z) is f-concentrated iff there exists a 1)y so that Equation 1 holds. Using
N — 1 bits and N evaluations of the function (classical oracle calls,) we may determine
with certainty whether f(z) is one-to-one. Suppose instead one has a quantum oracle
U; encoding an f(z) which is known to be either constant or concentrated. We here
present an algorithm which uses O(1) calls to Uy to distinguish between these cases, with
arbitrarily high probability.

To describe Uy, we breifly review quantum data spaces; cf. [6, 5]. The state of a string
of quantum bits is encoded as a vector (ket) in a complex Hilbert space, say |y € H. For
qubit-states, the usual convention is that the one-qubit state space is H; = spanc{|0), [1)}
carrying the usual Hermitian inner product. The n-qubit state space is then the N = 2"
tensor (Kronecker) product

H, =spanc{|b) ® |by) ®---® |b,) ; bj € Fy = {0,1},1 < j < n} (2)

The abbreviation [b1bs ...b,) for |b;) @ |by) @ ---|by,) is typical, and the Hermitian inner
product is that induced by the tensor structure. At times, we further abbreviate the
bit-string b1bs . ..b, within the ket by the associated integer, i.e. the binary expansion.
Explicit description of the oracle also makes it simpler to take 2n to be our number of
quantum bits. We then refer to a first register and a second register, according to the
tensor decomposition H2n =H, ® H,. For the remainder, by a local state we mean not
a full tensor [1) = @32 [1);), |1/Jj> € H; but rather a data state which is local to each

rengter ‘1/}> |¢1> ® |¢2>: |¢J> € Hna .7 = 1) 2.
Given this, the conventions for the quantum oracle box are as following. The oracle
Uy effects a unitary transformation of Hs, which linearly extends

Urlo)ly) = [2)ly ® f(=)) (3)

where y @ f(z) denotes y+ f(z) mod N and the tensor symbols have been supressed. Our

quantum algorithm then requires O(1) calls to U; and O(n?) two-qubit gates otherwise
to distinguish with probability arbitrarily close to one between the cases

e f(x) is one-to-one.
e f(x) is f-concentrated.

Hence the quantum algorithm in this sense outperforms a classical device using O(N)
classical oracle calls to determine whether f(z) is one-to-one with certainty. However,
consider instead a probabilistic classical computer, capable of evaluating f(z) on a given
random z, 0 < z < N — 1. With a single oracle call, such a classical probabilistic
computer is likely to detect f(z) is not #-concentrated with probability 1 — %. Hence
f(z) is one-to-one, by hypothesis. Making use of a single quantum oracle call, our quantum
algorithm 1dent1ﬁes any one-to-one functlon with certainty, and it correctly identifies a
f-concentrated f(z) Wlth probability cos?f. Taking f(x) one-to-one or f-concentrated,
each with probability 2 3, further demonstrates that the quantum algorithm outperforms
the classical probabilistic algorithm on average for 0 < # < 0.3301rad, with maximal
quantum outperformance at 6 = %sin_1 % ~ 0.1620rad.

2 Algorithms Determining f(z) is 1-1

A Classical Deterministic Algorithm

This section applies to any f : {0,1,---,N — 1} — {0,1,---, N — 1}, whether N = 2"
or not. In the sequel, choosing N = 2™ makes possible small quantum Fourier transform
circuits, i.e. efficient quantum implementations of the Fourier transform of Z/NZ.

To determine whether f(z) is one-to-one, proceed as follows. We suppose a classical
oracle capable of evaluating f(z) and a memory block of size N bits.

Initialize each memory bit to O
for(j=0; j<=N-1; ++j)
{ Use oracle to compute f(j)
if[(bit # f(j)) == 1 1
{ report not 1-1
end }
Assign 1 to bit f(j) }
report 1-1

Moreover, note that there can not exist any oracle-based algorithm which determines
whether f(z) is one-to-one while only using N — 1 or fewer calls to the classical oracle
which evaluates f(z).

A Probabilistic Algorithm

Since the quantum algorithm will only decide between the one-to-one and #-concentrated
cases with probability very close to one, we also consider competitive probabilistic classical
algorithms. For simplicity, suppose now f(z) is either one-to-one or f-concentrated about
0, i.e. ¥y = 0 in Equation 1. Given a random number generator, the following algorithm
is immediate:

Choose a random 0 <z < N —1
Evaluate f(z)
if [w/®) & exp(i[—0, 0])]
report f(z) is 1-1
else
report f(z) is likely concentrated

The probabilistic algorithm fails if and only if f(z) is one-to-one and yet w/(®) € exp(i[—6, 4]),

roughly with probability 1 — £ for n large.

™

Quantum Algorithm

Henceforth, suppose N = 2", a quantum data space Hs,, and a quantum oracle Uy per
Equation 3. We now specify the quantum algorithm. Continue to view Hs, = H, @ H,-

References to the first register refer to the first tensor factor while references to the second
register refer to the second. The adjective local refers to the tensor decomposition into
n-qubit registers.

To distinguish a concentrated from a one-to-one f(z):

1. Prepare the first register as |0)®" and the second as [1)®". Thus the original data
state is |®) = |®1) ® [Do) = |0)®"(1)®™.

2. Let w = e*™/N _for N = 2". As is well-known, there is a quantum circuit, polynomial
in size in n, which implements the quantum Fourier transform map: F : H,, — H,

linearly extending |y) +— \}—Z;V o W¥?|2). Apply F to the second register, for
D)a = FIN — 1) = e SV w)2).
1

3. Recall the one-qubit Hadamard gate given by H = \f > k—o(=1)*|5)(k|. Then
apply H®" to the first register, with the result that

®n

} 2 2) (1)

Thus the first register now holds an equal superposition of all states. As preparation
for the next step, we also note the full data state:

1) = (HI0)*" = [Z=(0)+ 1)]

N—-1N-1

[®1) ® [P2) = Zzw Y|z)]y) ()

z‘OyO

4. We next apply the quantum oracle Uy. The possibly nonlocal result is

N—-1N-1 N-1N-1
9,8,) = Uy 3 3wy = = 3. S e lye f@) (6)
z=0 y=0 waO

Note that a single call to Uy implicitly uses every value of f(x) for a state in full
superposition, such as |®;).

5. In fact, the above data state is local. For fix any x = x4, and label z = y — f(zo)-
Then Z;V:_Ol w ¥y & f(x0)) = .0, w?H@0)|2). As this is true for all z, we have

1 N—-1N-1 1 N-1
|<I)1,(I>2> — N ; ;w z+f m)‘x (Zw m)|x) (\/—N ;w—z‘z>>

(7)

The next step is to disregard the known data |®,) in the second register.

6. Apply a Fourier transform to the retained register for

N—-1N-1 N-1N-1

Z Z wH @)y = (Z w!@0)) + = Z Z w™ @]y (8)

z‘OyO yle

7. Measure the probability that |®;) is |0). Per the |0---0) coefficient of Equation 8,

2

Prob(@l) == |00...0)> = ‘%NZ_IM@ (9)

We briefly comment on the quantum computational resources consumed. Besides the
2n-qubits, O(n) local computations and two n-qubit Fourier transforms are required. The
latter require O(n?) gates [6].

This algorithm is capable of distinguishing a one-to-one f(x) from a #-concentrated

f(x) with high probability if # < 7. For one will never observe [1)) == [00---0) if

f(z) is one-to-one, while we prove below this happens with probability cos?# if f(z) is 6-
concentrated. Hence, to distinguish any one-to-one f(z) from a f-concentrated f(z) using

Uy with probability 1 — ¢, run at least 7" independent trials of the above for € > sin?? 9.

In terms of ¢, as logsin® < 0 we demand T’ > 18
ogsin @

3 Proof of correctness

Correctness from the algorithm follows from the following proposition. To see this, recall
the formula of Equation 9 for Prob(|®;) == |00...0)).

Proposition: Let f: {0,1,...,N -1} - {0,1,..., N — 1}, N = 2" be f#-concentrated,
and continue to denote w = e*™/N. Then

(f(z) is one-to-one) = (szwf(m = O) (10)

Hence, the |0) coefficient of the output [®;) is 0 if f(z) is one-to-one. On the other hand,

N-1
(f(x) is concentrated) = (‘ Z w/@| > N cos? 6) (11)
=0

Proof: First, recall that as an N th 1ot of unity, w = €™/ solves z¥ — 1 = 0. Then

o VN —1= (z—l)(Z;-V:_Olzj)
o w#1
e For f(z) one-to-one, Z;.V:_Ol Wi = Z;,V:_Ol W)

Thus Equation 10 follows.
Suppose on the other hand that f(z) is concentrated. Then we must always have
wlW=Wo = g, + 4b; for 1 per Equation 1, and moreover cosf < a; < 1. It follows that

‘Ziv:_ol wf@)| = \/(Z;V:_Ol a;)? + (Z;V:_Ol bj)? > Z;-V:_Ol a; > Ncosf. This concludes the
proof of Equation 11. O

4 Average performance per oracle call

We finally compare the probabilistic classical algorithm with the quantum algorithm
above, allowing each a single oracle call. For simplicity we suppose ¥, = 0 in Equa-
tion 1; this hypothesis favors the classical algorithm. Also for simplicity, we suppose f(z)
is equally likely to be either concentrated or one-to-one.

Thus, f(z) is either either one-to-one (event O) or #-concentrated (event C) with
probability % Suppose the classical probabilistic algorithm makes one oracle call and then
guesses f(z) is concentrated if w/(® lies within the sector exp(i[—6, 6]) and one-to-one else.
If f(x) is f-concentrated, then the classical algorithm always makes a correct guess (event
G¢.) In the one-to-one case, the probability of a correct guess is approximately 1 — %. So

Prob(G¢) = Prob(G¢|O)Prob(O) + Prob(G¢|C)Prob(C)
(1- ;)(1/2) +(1(1/2) (12)

1=

Q

If multiple oracle calls are allowed, it will help to recall x from previous trials and force

the oracle to evaluate new values. However, as N = 2" is expected to be large, this is a
minor consideration, and 1 — (%)e is approximately the probability of making a correct
guess after /-trials.

In contrast, consider the quantum algorithm. It guesses f(z) is concentrated if
|00 - - - 0) is observed and guesses one-to-one else. Thus, in contrast to the classical algo-
rithm, the quantum algorithm never fails if f(z) is one-to-one. If f(z) is concentrated,
then the quantum guess if correct (event Gg) with probability at least cos? #. Thus

Prob(Gg) = Prob(Gg|O)Prob(O) + Prob(Gg|C)Prob(C)
> (1)(1/2) + (cos® 0)(1/2)

Thus the appropriate comparison of the probabilistic and quantum algorithms is given
by Prob(Gg) > Prob(Gc), i.e. for which 6 do we have cos?§ > 1 — £? Hence as asserted

the maximum outperformance Prob(Gg)—Prob(G¢) occurs at § = £ sin™ £ ~ 0.1620rad,
with outperformance of the quantum algorithm whenever 0 < 6§ < 0.3301rad.

Acknowledgements We are grateful to Francis Sullivan and Michael Robinson for very
helpful discussions.

References

[1] D.P. Chi, J. Kim, and S. Lee, Initialization-free generalized Deutsch-Jozsa algorithm,
J. of Phys. A - Math. and General 34 (2001) 5251-5258.

[2] D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum
computer, Proc. R. Soc. Lond. A 400 (1985) 97-117.

[3] D. Deutsch and R. Jozsa, Rapid solutions of problems by quantum computation, Proc.
R. Soc. Lond. A 439 (1992) 553-558.

[4] A. Ekert and R. Jozsa, Quantum computation and Shor’s factoring algorithm, Mod.
Rev. Phys. 68 (1996) 733-753.

[5] S. Gudder, Quantum Computation, this MONTHLY 110 (2003) 181-201.

[6] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cam-
bridge Univ. Press, 2000.

(13)

