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ABSTRACT

An important result from the mid nineties shows that any unitary evolution may be realized as a sequence of controlled-not
and one-qubit gates. This work surveys especially efficient circuits in this library, in the special case of evolutions on
two-quantum bits. In particular, we show that to construct an arbitrary two-qubit state from |00〉, one CNOT gate suffices.
To simulate an arbitrary two-qubit operator up to relative phases, two CNOTs suffice. To simulate an arbitrary two-qubit
operator up to global phase, three CNOTs suffice. In each case, we construct an explicit circuit and prove optimality in
the generic case. We also contribute a procedure to determine the minimal number of CNOT gates necessary to simulate a
given two-qubit operator up to global phase. We use this procedure to discuss timing a given Hamiltonian to simulate the
CNOT and to determine an optimal circuit for the two-qubit Quantum Fourier Transform. Our constructive proofs amount
to circuit synthesis algorithms and have been coded in C++.

1. INTRODUCTION

Recent empirical work on quantum communication, cryptography and computation1 resulted in a number of experimental
systems that can implement two-qubit circuits. Thus, decomposing arbitrary two-qubit operators into fewer gates from a
universal library may simplify such physical implementations. While the universality of various gate libraries has been
established in the past,2, 3 the minimization of gate counts has only been studied recently. Universal quantum circuits with
six, four and three CNOT gates have been found that can simulate an arbitrary two-qubit operator up to global phase.4–7

It has also been shown that if the CNOT gate is the only two-qubit gate available, then three CNOT gates are required.6–8

Many of these results rely on the Makhlin invariants9 or the related magic basis and canonical decomposition.10–13 Similar
invariants have been investigated elsewhere.14–16

Our work improves or broadens each of the above circuit constructions and lower bounds. Moreover, we consider
operators that can be simulated using fewer gates than are necessary in the worst case, which has not been done previously.
We rely on the Makhlin invariants,9 and simplify them for mathematical and computational convenience. We have coded
the computation of specific gate parameters in several hundred lines of C++ and note that it involves only closed-form
algebraic expressions in the matrix elements of the original operator (no matrix logarithms or exponents.) We articulate
the degrees of freedom in our algorithm, and our program produces multiple circuits for the same operator. This may
be useful with particular implementation technologies where certain gate sequences are more likely to experience errors.
Additionally, this paper contributes a lower bound for the number of CNOT gates required to simulate an arbitrary n-qubit
operator, which is tighter than the generic bound for arbitrary two-qubit operators.3, 17

We discuss gate counts for circuits both in terms of elementary and of basic gates. Both types are common in the
literature,3 but basic gates better reflect gate costs in some physical implementations where all one-qubit gates are equally
accessible. Yet, when working with ion traps, possible operations are better characterized by elementary gates; moreover,
Rz gates are significantly easier to implement than Rx and Ry gates.18 Our work uncovers another asymmetry, which is of
theoretical nature and does not depend on the implementation technology — a subtle complication arises when only CNOT,
Rx and Rz gates are available.

Our work shows that basic-gate circuits can be simplified by temporarily decomposing basic gates into elementary
gates, so as to apply convenient circuit identities summarized in Table 1. Indeed, our lower bounds and the n-qubit CNOT
bound above rely on these circuit identities. Additionally, temporary decompositions into elementary gates may help
optimizing pulse sequences in physical implementations.

The remainder of this paper is structured as follows. Section 2 discusses gate libraries, circuit topologies, and lower
bounds. Section 3 provides background on using invariants to classify two-qubit operators up to local unitaries. Section 4
classifies operators which can be simulated using only one CNOT, discusses preparing two-qubit states, and explains how



to time a given Hamiltonian to simulate a CNOT without using Trotterization.19 Section 5 classifies operators that can be
simulated using two CNOTs, proves optimality of circuits for the wire swap and two-qubit Quantum Fourier Transform,
and discusses simulation up to relative phase. Section 6 gives constructive upper bounds to match the lower bounds of
Section 2. We summarize our results in Section 7. Necessary background on unentangled states is developed in Appendix
A, and subtle complications caused by the lack of the Ry gate are discussed in Appendix B.

2. GATE LIBRARIES & LOWER BOUNDS

We denote the Pauli matrices by σx = |1〉〈0|+ |0〉〈1|, σy = i|1〉〈0|− i|0〉〈1|, and σz = |0〉〈0|− |1〉〈1|. We recall the Bloch
sphere isomorphism1 which identifies identifies a unit vector ~n = (nx,ny,nz) with σn = nxσx + nyσy + nzσz. Under this
identification, rotation by the angle θ around the vector~n corresponds to the special unitary operator Rn(θ) = e−iσnθ/2. It is
from this identification that the decomposition of an arbitrary one-qubit gate U = eiΦRz(θ)Ry(φ)Rz(ψ) arises.1 Of course,
the choice of y,z is arbitrary; one may take any pair of orthogonal vectors in place of~y,~z.

LEMMA 2.1. Let~n,~m ∈ � 3 ,~n ⊥ ~m, and U ∈ SU(2). Then one can find θ,φ, and ψ such that U = Rn(θ)Rm(φ)Rn(ψ).

In the case of~n ⊥ ~m, we have σnRm(θ)σn = Rm(−θ) and Rn(π/2)Rm(φ)Rn(−π/2) = Rp(φ) for ~p = ~m×~n. For conve-
nience, we set Sn = Rn(π/2); then Sz is the usual S gate, up to phase. In the sequel, we always take m,n out of x,y,z.

We denote by Cb
a the controlled-not (CNOT) gate with control on the a-th qubit and target on the b-th. We recall that Rz

gates commute past CNOTs on the control line and Rx gates commute past CNOTs on the target.

In this work we distinguish two types of gate libraries for quantum operators that are universal in the exact sense
(compare to approximate synthesis and the Solovay-Kitaev theorem.) The basic-gate library3 contains the CNOT, and
all one-qubit gates. Elementary-gate libraries also CNOT gate and one-qubit gates, but we additionally require that they
contain only finitely many one-parameter subgroups of SU(2). We call these elementary-gate libraries, and Lemma 2.1
indicates that if such a library includes two one-parameter subgroups of SU(2) (rotations about around orthogonal axes)
then the library is universal. In the literature, it is common to make assertions like: dim[SU(2n)] = 4n − 1. Thus if a
given gate library contains only gates from one-parameter families and fully-specified gates such as CNOT, at least 4n −1
one-parameter gates are necessary.3, 17 Such dimension-counting arguments lower-bound the number of Rx,Ry,Rz gates
required in the worst case.3

To formalize dimension-counting arguments, we introduce the concept of circuit topologies — underspecified circuits
that may have placeholders instead of some gates, only with the gate type specified. Before studying a circuit topology,
we must fix a gate library and thus restrict the types of fully-specified (constant) gates and placeholders. We say that a
fully-specified circuit C conforms to a circuit topology T if C can be obtained from T by specifying values for the variable
gates. All k-qubit gates are to be in SU(2k), i.e., normalized. For an n-qubit circuit topology T , we define Q(T ) ⊂ SU(2n)
to be the set of all operators that can be simulated, up to global phase, by circuits conforming to T . We say that T is
universal iff Q(T ) = SU(2n). In this work, constant gates are CNOTs, and placeholders represent either all one-qubit
gates or a given one-parameter subgroup of SU(2). We label one-qubit gate placeholders by a,b,c, . . ., and one-parameter
placeholders by R∗ with subscripts x, y or z.

We now formalize the intuition that the dimension of SU(2n) should match the number of one parameter gates.

LEMMA 2.2. Fix a gate library consisting of constant gates and finitely many one-parameter subgroups. Then almost all
n-qubit operators cannot be simulated by a circuit with fewer than 4n −1 gates from the one-parameter subgroups.

Proof. Fix a circuit topology T with fewer than ` < 4n − 1 one-parameter placeholders. Observe that matrix multi-
plication and tensor product are infinitely differentiable mappings and let f :

� ` → SU(2n) be the smooth function that
evaluates the operator simulated by T for specific values of parameters in placeholders. Accounting for global phase,
Q(T ) = � ξ2n

=1 Image(ξ f ). Sard’s theorem20 demands that Image(ξ f ) be a measure-zero subset of SU(2n) for dimension
reasons, and a finite union of measure-zero sets is measure-zero.

For a given library, there are only countably many circuit topologies. Each captures a measure-zero set of operators,
and their union is also a measure-zero set.

Circuit identities such as Rn(θ)Rn(φ) = Rn(θ + φ) can be performed at the level of circuit topologies. This identity
indicates that two Rn gates may always be combined into one Rn gate, hence anywhere we find two consecutive Rn place-
holders in a circuit topology T , we may replace them with a single one without shrinking Q(T ). Of course, Q(T ) does not



Circuit identities Descriptions
Ck

jC
k
j = 1 CNOT-gate cancellation

ω j,kω j,k = 1 SWAP-gate cancellation
Ck

jC
j
k = ω j,kCk

j CNOT-gate elimination

Ck
j ω j,k = ω j,kC j

k moving CNOT past SWAP
V jω j,k = ω j,kV k moving a 1-qubit gate via SWAP
σk

xC
k
j = Ck

j σ
j
xσk

x moving σx past CNOT control

Ck
j σ

j
z = σ j

zσk
zC

k
j moving σz past CNOT target

C j
kV j = V jC j

k for V = Rx(θ),Sx,σx moving x gates past CNOT target
C j

kV k = V kC j
k for V = Rz(θ),Sz,σz moving z gates CNOT control

Rn(θ)Rn(φ) = Rn(θ+φ) merging Rn gates.
~n ⊥ ~m =⇒ SnRm(θ) = Rn×m(θ)Sn changing axis of rotation

Table 1. Circuit identities used in out work. Superscripts indicate the wires on which a gate acts.

grow, either, since Rn(ψ) = Rn(0)Rn(ψ). We may similarly conglomerate arbitrary one-qubit gate placeholders, pass Rz

(Rx) placeholders through the control (target) of CNOT gates, decompose arbitrary one-qubit gate placeholders into RnRmRn

placeholders for n ⊥ m, etc. More circuit identities are listed in Table 1. We use these techniques and Lemma 2.2 to lower
bound the number of CNOT gates required to simulate an arbitrary n-qubit operator.

PROPOSITION 2.3. Fix any gate library containing only the CNOT and one-qubit gates. Then almost all n-qubit operators
cannot be simulated by a circuit with fewer than d 1

4 (4n −3n−1)e CNOT gates.

Proof. Enlarging the gate library cannot increase the minimum number of CNOTs in a universal circuit. Thus we may
assume the library is the basic-gate library. We show that any n-qubit circuit topology T with k CNOT gates can always be
replaced with an n-qubit circuit topology T ′ with gates from the {Rz, Rx, CNOT} gate library such that Q(T ) = Q(T ′) and
T ′ has k CNOTs and at most 3n+4k one-parameter gates. The proposition follows from 3n+4k ≥ 4n −1.

We begin by conglomerating neighboring one-qubit gates; this leaves at most n + 2k one-qubit gates in the circuit.
Now observe that the following three circuit topologies parametrise the same sets of operators: C2

1(a⊗b) = C2
1(RxRzRx ⊗

RzRxRz) = (Rx⊗Rz)C2
1(RzRx⊗RxRz) We use this identity iteratively, starting at the left of the circuit topology. This ensures

that each CNOT has exactly four one-parameter gates to its left. (Note that we apply gates in circuits left to right, but read
formulae for the same circuits right to left.) The n one-qubit gates at the far right of the circuit can be decomposed into
three one-parameter gates apiece.

COROLLARY 2.4. Fix an elementary-gate library. Then almost all two-qubit operators cannot be simulated without at
least three CNOT gates and fifteen one-qubit gates.

For elementary-gate libraries containing two out of the three subgroups Rx,Ry,Rz, we give explicit universal two-qubit
circuit topologies matching this bound in Section 6.

PROPOSITION 2.5. Using the basic-gate library, almost all two-qubit operators require at least three CNOT gates, and at
least basic nine gates total.

Proof. Proposition 2.3 implies that at least three CNOT gates are necessary in general; at least five one-qubit place-
holders are required for dimension reasons. The resulting overall lower bound of eight basic gates can be improved further
by observing that given any placement of five one-qubit gates around three CNOTs, one can find two one-qubit gates on
the same wire, separated only by a CNOT. Using the RzRxRz or RxRzRx decomposition as necessary, the 5 one-qubit gates
can be replaced by fifteen one-parameter gates in such a way that the closest parameterized gates arising from the adja-
cent one-qubit gates can be combined. Thus, if five one-qubit placeholders and three CNOTs suffice, then so do fourteen
one-parameter placeholders and three CNOTs, which contradicts dimension-based lower bounds.



3. BACKGROUND ON TWO-QUBIT ENTANGLEMENT

We show in Appendix A, Lemma 7.2, that any operator u ∈ U(2n) that maps unentangled states to unentangled states can
be written as gω for g ∈U(2)⊗n = { � n−1

i=0 ai : ai ∈U(2)} and ω a wire permutation. The unentangled two-qubit states |φ〉
are characterized by the property φT σ⊗2

y φ = 2(〈0|φ〉〈3|φ〉−〈1|φ〉〈2|φ〉) = 0. We use these facts to characterize SU(2)⊗2.

LEMMA 3.1. Let g ∈ SU(4). Then g ∈ SU(2)⊗2 iff gT σ⊗2
y g = σ⊗2

y .

Proof. For m a 2×2 matrix, mT σym = σy ·detm. For a,b ∈ SU(2), (a⊗b)T σ⊗2
y (a⊗b) = σ⊗2

y ·deta ·detb = σ⊗2
y . Con-

versely, suppose uT σ⊗2
y u = σ⊗2

y . Then for any unentangled state φ, we have 0 = φT σ⊗2
y φ = φT uT σ⊗2

y uφ = (uφ)T σ⊗2
y (uφ),

hence u maps unentangled states to unentangled states. Thus u = gω for some scalar λ, g ∈U(2)⊗2, and ω a wire permu-
tation. We compute ωT gT σ⊗2

y gω = σ⊗2
y · detg, hence detg = 1. By assumption, detu = detgω = detω = 1, but on two

qubits, the only wire permutation with determinant 1 is the identity.

The following useful facts derive from this observation.

PROPOSITION 3.2. (The Magic Basis10, 11) Let E = C2
1(Sz ⊗Sx). Then E−1SU(2)⊗2E = SO(4).

Proof. We compute: EET = σ⊗2
y . Therefore, uσ⊗2

y uT = σ⊗2
y ⇐⇒ uEET uT = EET ⇐⇒ (E−1uE)(E−1uE)T = I, and

hence u ∈ SU(2)⊗2 ⇐⇒ E−1uE ∈ SO(4).

We use χ[M] to denote the characteristic polynomial of M.

PROPOSITION 3.3. (The Makhlin Invariants9) Let u,v ∈ SU(4), and set U = E−1uE, V = E−1vE. Then there exist
a,b,c,d ∈ SU(2) such that (a⊗b)v(c⊗d) = u iff χ[UU T ] = χ[VV T ].

Proof. In light of Proposition 3.2, it suffices to show that there exist matrices x,y ∈ SO(4) such that xV y = U .

For P symmetric unitary, P−1 = P, hence [P+P,P−P] = 0. It follows that the real and imaginary parts of P share an
orthonormal basis of eigenvectors. As they are moreover real symmetric matrices, we know from the spectral theorem that
their eigenvectors can be taken to be real. Thus one can find an a ∈ SO(4) such that aUU T aT is diagonal. By re-ordering
(and negating) the columns of a, we can re-order the diagonal elements of auuT aT as desired. Thus if χ[UUT ] = χ[VV T ],
we can find a,b ∈ SO(4) such that aUU T aT = bVV T bT by diagonalizing both; then (V †bT au)(V †bT au)T = I. Let c =
V †bT au ∈ SO(4). We have aT bVc = U , as desired.

We note that since techniques exist to compute the spectral decomposition, one can effectively compute a,b,c,d.

COROLLARY 3.4. (The Canonical Decomposition13) Given any u ∈ SU(4), there exist a,b,c,d ∈ SU(2) and ∆ ∈ SU(4)
such that ∆ is diagonal in the Magic Basis and u = (a⊗b)∆(c⊗d).

To ease computation of the Makhlin invariants, we observe that (E−1vE)(E−1vE)T = E−1(vσ⊗2
y vT σ⊗2

y )E.

DEFINITION 3.5. We define γ on 2n×2n matrices by the formula u 7→ uσ⊗n
y uT σ⊗n

y .

PROPOSITION 3.6. Let a,b ∈ SU(2m),c ∈ SU(2n), g,h ∈ SU(2)⊗n, u,v ∈ SU(4), G = SU(2)⊗2.

1. γ(I) = I 4. γ(g) = I 7. u ∈ G ⇐⇒ γ(u) = I

2. γ(ab) = aγ(b)γ(aT )T a−1 5. γ(ag) = γ(a) 8. uG = vG ⇐⇒ γ(u) = γ(v)
3. γ(a⊗c) = γ(a)⊗ γ(c) 6. χ[γ(gah)] = χ[γ(a)]. 9. GuG = GvG ⇐⇒ χ[γ(u)] = χ[γ(v)]

10. There exists m,n,o, p ∈ SU(2) such that u is a scalar multiple of (m⊗n)v(o⊗ p) iff χ[γ(u)] = χ[±γ(v)].
Proof. (1), (2), and (3) are immediate from the definition. (4) can be checked explicitly for n = 1, and then the general

case follows from (3). For (5), note first that g ∈ SU(2)⊗n =⇒ γ(g) = I by (4). Then expressing γ(ag) and γ(a · I) using
(1) and (2), we see they are equal. For (6), we use (2), (4), and (5) to see that g,h ∈ SU(2)⊗n =⇒ γ(gah) = g−1γ(ah)g =
g−1γ(a)g thus χ[γ(gah)] = χ[γ(a)]. (7) and (8) are immediate upon changing to the Magic Basis, and (9) follows from
Proposition 3.3 as noted above. (10) follows from (9) and the fact that the only scalars in SU(4) are ±1,±i.

The following general technique can be used to compute γ(u). First, determine a circuit, C, simulating the operator u.
Given C, it is straightforward to obtain a circuit simulating σ⊗2

y uT σ⊗2
y : reverse the order of gates in C, and replace a given

gate g by σ⊗2
y gT σ⊗2

y . If g is a one-qubit gate, then σ⊗2
y gT σ⊗2

y = g†. For the CNOT, we note that σ⊗2
y C2

1σ⊗2
y = C2

1(σx ⊗σz)

and similarly σ⊗2
y C1

2σ⊗2
y = C1

2(σz⊗σx). Now, combine the circuits for u and σ⊗2
y uT σ⊗2

y to obtain a circuit simulating γ(u).



4. CIRCUITS WITH ONE CNOT GATE

PROPOSITION 4.1. Fix u ∈ SU(4). Then u can be simulated (up to global phase)

(i.) By a circuit with no CNOT gates iff χ[γ(u)] = (x+1)4 or (x−1)4.

(ii.) By a circuit with one CNOT gate iff χ[γ(u)] = (x− i)2(x+ i)2.

Proof. By Proposition 3.6.(10), u can be simulated up to global phase by one-qubit operators iff χ[γ(u)] = χ[±γ(I)] =
(x± 1)4. Similarly, u can be simulated up to global phase by one-qubit operators and a single CNOT gate iff χ[γ(u)] =
χ[±γ(C2

1

√
i)] or χ[γ(u)] = χ[±γ(C1

2

√
i)]. The global phase

√
i appears because 3.6.10 applies to elements of SU(4), whereas

detC2
1 = detC1

2 = −1. But χ[±γ(C2
1

√
i)] = χ[±γ(C1

2

√
i)] = (x− i)2(x+ i)2.

One-CNOT-circuits are the minimal solutions to the problem of simulating a matrix of which only one row (or column)
is specified. This arises when preparing states: if you want to transform the state |0〉 into the state |ψ〉, it suffices to simulate
any operator whose first column (in the computational basis) is |ψ〉.
PROPOSITION 4.2. For any u ∈ SU(4) and i ∈ {0,1,2,3}, there exists some u′

i ∈ SU(4) such that u′i can be simulated with
one CNOT and u′i|i〉 = v|i〉. For generic u, one CNOT is required to simulate any such u′

i.

Proof. We consider the case |i〉 = 0, the others are similar.

We claim that the orbits of the action of SU(2)⊗2 on the unit vectors in � 4 are classified by the quadratic form v →
ε(v) = 1

2 vT σ⊗2
y v. By Proposition 3.2 it suffices to check that the orbits of SO(4) on this set are classified by v→ vT v. Letting

v = vr + ivi, we see that vT v = |vr|2 −|vi|2 + 2ivT
r vi. Since we know v to be a unit vector, vT v encodes the magnitudes of

the real and imaginary parts of v, and the angle between them. Now it is obvious geometrically that if w is another unit
vector such that wT w = vT v, then there is some transformation in SO(4) taking v to w.

Now let v = u|0〉 be desired first column of the matrix. We begin by seeking an operator c ∈ SU(2) such that w =
(c⊗ I)|0〉 has the property that 〈0|w〉〈2|w〉− 〈1|w〉〈3|w〉 = ε(v). Clearly w1 = w3 = 0. By proper choice of c, we may
take w0,w2 to be any complex numbers whose squared lengths sum to unity. It follows that we can force w0w2 −w1w3 to
be any complex number of norm bounded by 1/2. Since v0v3 − v1v2 must be some such number, we can in fact find c as
desired. Now let w′ = C1

2w = w0|0〉+w1|1〉+w3|2〉+w2|3〉; by construction w′ has the property that ε(w′) = ε(v), hence
there exist a,b ∈ SU(2) such that v = (a⊗b)w′ = (a⊗b)C1

2(c⊗ I)|0〉 as desired.

Finally, we show that one CNOT is necessary in general. Any operator that can be simulated with no CNOTs is a
Kronecker product; hence v is unentangled and thus by Lemma 7.1, v0v3 = v1v2, which is in general false.

We point out the following practical application of Proposition 4.1, which somewhat simplifies an earlier account of
Hamiltonian timing.21 Given a Hamiltonian that can be timed to compute a CNOT modulo one-qubit gates, Proposition
4.1 can be used to finding the correct duration. Our example is a perturbation of σx ⊗σx: H42 = (0.42)I ⊗σz + σx ⊗σx

Recall that a CNOT can be constructed using one-qubit gates and some time-iterate of the Hamiltonian σx ⊗σx. However,
to handle the noise term, existing techniques resort to Trotterization, which implements exp(A+B) by separately turning
on A and B for short periods of time. Below we find a simpler, direct implementation of CNOT from H42. It is especially
interesting in light of concerns about the scalability of Trotterization.19

We compute γ(eiH42t) for uniformly-spaced trial values of t and seek out those values at which the characteristic poly-
nomial nears χ[γ(x)] = (x2 +1)2 = x4 +2x2 +1. Our implementation in C++ finds tCNOT = 0.80587 in twenty seconds on a
common workstation. Hence, we can produce a CNOT from H42 and one-qubit gates without Trotterization. Explicitly, for
a,b,c,d as given below, C1

2 = (a⊗b)eiH42tCNOT (c⊗d) with numerical precision of 10−6.

a = 1
2

(

1− i −1+ i
1+ i 1+ i

)

b =

(

−0.21503−0.976607i 0
0 −0.21503+0.976607i

)

c = 0.707107

(

−1 −1
1 −1

)

d =

(

0.152049+0.690566i 0.690566−0.152049i
−0.690566−0.152049i 0.152049−0.690566i

)

Further numerical experiments suggest that building a CNOT is possible whenever 0.42 is replaced by a weight w,
0 ≤ w ≤ 1. However, we have no analytical proof of this. Numerical experiments also suggest the impossibility of timing
the Hamiltonian HXY Z = σx ⊗σx + σy ⊗σy + σz ⊗σz so as to compute a CNOT. In other words, trying values of t in the
range −10 ≤ t ≤ 10 as above produced no candidate durations.



5. CIRCUITS WITH TWO CNOT GATES

PROPOSITION 5.1. Fix u ∈ SU(4). The following are equivalent: (i.) u can be simulated up to global phase by a circuit
with at most two CNOT gates (ii.) u can be simulated up to global phase by a circuit with exactly two CNOT gates (iii.)
χ[γ(u)] has all real coefficients. (iv.) tr[γ(u)] ∈ �

.

Proof. (iii ⇐⇒ iv). For M ∈ SU(N), χ(M) = ∏(x−λi), we have ∏λi = 1. Thus χ(u) =
(

∏λi

)

∏(x−λi) = ∏(λix−1).

It follows that the coefficient of xk is the complex conjugate of the coefficient of xN−k. In particular, for N = 4, the
coefficient of x2 is real and the coefficients of x3,x are tr(M) and its conjugate. Since the constant term and the x4 coefficient
are 1, we see χ(M) has all real coefficients iff tr(M) is real.

(ii ⇐⇒ iii). Since χ[γ(C2
1)] = χ[γ(C1

2)], it follows from Proposition 3.6.(9) that we may flip CNOTs by introducing one-
qubit gates. Explicitly, C2

1 = (H⊗H)C1
2(H⊗H), where H is the Hadamard gate. Thus u can be simulated using two CNOT

gates iff (p⊗ q)u(r⊗ s) = C2
1(a⊗ b)C2

1. We decompose a = Rx(α)Rz(δ)Rx(β) decomposition and b = Rz(θ)Rx(φ)Rz(ψ),
and pass Rx gates and Rz gates outward through the target and control of the CNOT gates. Thus we are left with (p′⊗
q′)u(r′⊗ s′) = C2

1 [Rz(δ)⊗Rx(φ)]C2
1 . By Proposition 3.6, this occurs iff χ[γ(u)] = χ[γ(C2

1 [Rz(δ)⊗Rx(φ)]C2
1)], and explicit

computation yields this to be (x + ei(δ+φ))(x + e−i(δ+φ))(x + ei(δ−φ))(x + e−i(δ−φ)). The roots come in conjugate pairs,
hence the polynomial has real coefficients; conversely if we know that χ[γ(u)] has real coefficients, then the roots come in
conjugate pairs; thus χ[γ(u)] is as above for some δ,φ.

(i ⇐⇒ ii). Explicit computation shows that tr[γ(C2
1)] = 0 and tr[γ(I)] = 4. It follows that circuits that require zero or

one CNOT gates can also be simulated using exactly two CNOTs.

COROLLARY 5.2. The usual implementation of the wire swap ω as C2
1C1

2C2
1 or C1

2C2
1C1

2 is optimal.

Proof. One checks directly that tr[γ(ω)] /∈ �
, so ω requires at least three CNOT gates.

COROLLARY 5.3. Consider the circuit in Figure 1 that implements the two-qubit Quantum Fourier Transform, F . This
circuit achieves the smallest possible number (3) of CNOTs and the smallest possible number (3) of one-qubit gates.

Proof. Since tr[γ(F )] /∈ �
, we see that F requires at least three CNOTs. We have a circuit containing three CNOTs

and three one-qubit gates; suppose that in fact two one-qubit gates would suffice. Suppose one occurred at each end of the
circuit; then the three CNOT gates in the middle would either cancel to a single CNOT, or form a wire swap. The first case
is a contradiction since we know F requires three CNOTs, and to rule out the second, it suffices to compute that χ[γ(F )] 6=
χ[±γ(ω)]. So, at least one edge of the circuit has an exposed CNOT. But this implies that one of F C2

1 ,F C1
2 ,C2

1F ,C1
2F can

be simulated with two CNOTs. Computing tr[γ] for each of these cases shows this to be impossible as well.

We make more precise the relationship of generic operators to two-CNOT operators in the following proposition.

PROPOSITION 5.4. For any u ∈ SU(4), one can find v ∈ SU(4) and an angle ψ such that v can be simulated by a circuit
containing two CNOT gates and uC1

2(I ⊗Rz(ψ))C1
2) = v.

Proof. We set ∆ = C1
2(I ⊗Rz(ψ))C1

2 and compute tr[γ(u∆)]. By Proposition 3.6, this is tr[γ(uT )T γ(∆)]. We compute
γ(∆) = ∆2, and obtain tr[γ(u∆)] = (t1 + t4)e−iψ +(t2 + t3)eiψ, where t1, t2, t3, t4 are the diagonal entries of γ(uT )T . To ensure
this number is real, we require tan(ψ) = Im(t1 + t2 + t3 + t4)/Re(t1 + t2 − t3 − t4). By Proposition 5.1, v = u∆ can be
simulated using two CNOTs.

In particular, every operator in SU(4) is the product of a diagonal operator and a two-CNOT operator. This allows the
following application for two-CNOT circuits. Suppose we are interested in simulating the operator u up to relative phase.
This situation occurs when we know in advance that immediately afterwards we will take a measurement with respect to
the computational basis, as such measurements kill relative phase. In this event, we cannot distinguish ∆u from u for ∆

Figure 1. A minimal circuit for the Quantum Fourier Transform on two qubits The circuit contains 3 one-qubit gates and 3 CNOTs, but
the one-qubit gates are broken up into elementary gates for specificity. Here, Tz = Rz(π/4) is the T gate1 up to a global phase.
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diagonal. Thus, we can replace u by the operator v = C1
2(I ⊗Rz(ψ))C1

2 , which can be simulated using two CNOTs. We
can also see that two CNOTs are in general necessary for simulation up to relative phase. If one CNOT were sufficient in
general, every two-qubit operator could be simulated by a one-CNOT circuit, followed by a diagonal computation. But an
arbitrary circuit of this form can be written as follows.

Rx

Rz

Rz

Rx

Rx

Rz s

h Ry

Rx

Rz

Rz

Rz

Rz

Rz

s

Even without cancelling redundant Rz gates, we know from Lemma 2.2 that this circuit cannot be universal.

PROPOSITION 5.5. An arbitrary two-qubit operator can be simulated up to relative phase by a circuit containing two
CNOTs. Two CNOTs are necessary for generic operators.

6. CIRCUITS WITH THREE CNOT GATES

We now construct universal two-qubit circuit topologies. We consider three different gate libraries: each contains the
CNOT, and two out of the three one-qubit gates {Rx, Ry, Rz}. We refer to these as the CXY, CYZ, and CXZ gate libraries.

In view of Lemma 2.1, one might think that there is no significant distinction between these cases. Indeed, conjugation
by the Hadamard gate transforms will allow us to move easily between the CXY and CYZ gate libraries. However, we
will see that the CXZ gate library is fundamentally different from the other two. Roughly, the reason is that Rx and Rz can
be respectively moved past the target and control of the CNOT gate, while no such identity holds for the Ry gate. While
the CXY and CYZ libraries each only contain one of {Rx, Rz}, the CXZ gate library contains both, and consequently has
different characteristics. Nonetheless, gate counts will be the same in all cases. We begin with the CYZ case, which has
been considered previously.5

PROPOSITION 6.1. 15 {Ry, Rz} gates and 3 CNOTs suffice to simulate an arbitrary two-qubit operator up to global phase.

Proof. Let v = C2
1(I⊗Ry(α))C1

2(Rz(δ)⊗Ry(β))C2
1 . We compute γ(v) in terms of α,β,δ. Using the technique described

in Section 3, we build a circuit to simulate γ(v).
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Here, R′
y = Ry(α), Ry = Ry(β), and Rz = Rz(δ). We now use the circuit identities from the 3rd section of Table 1 and

σiR j(θ) = R j(−θ)σi to push all the σi gates to the left of the circuit, where they cancel (up to a global phase of −1). All
one-qubit gates in the wake of their passing become inverted, and we obtain the following circuit.
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For invertible matrices, χ(AB) = χ(A−1(AB)A) = χ(BA). In view of the fact that we are ultimately interested only in
χ[γ(v)] we may move gates from the left of the circuit to the right. Thusly conglomerating R′

y gates and canceling paired
CNOT gates, we obtain. χ[γ(v)] = χ[C1

2(Rz(δ)⊗Ry(β))C1
2(I ⊗Ry(α))]. Since χ[B] = χ[A−1BA], we conjugate by I ⊗ Sx.

This fixes the CNOT gate and replace Ry gates with Rz: χ[γ(v)] = χ[C1
2(Rz(δ)⊗Rz(β))C1

2(I ⊗Rz(α))]

Now suppose we had set out to simulate an operator u. We ensure that the entries of the diagonal matrix C1
2(Rz(δ)⊗

Rz(β))C1
2(I⊗Rz(α)) match the spectrum of γ(u) by specifying α = x+y

2 , β = x+z
2 , and δ = y+z

2 for eix,eiy,eiz any three eigen-
values of γ(u). Then by Proposition 3.6.(9), one can find a,b,c,d ∈ SU(2) such that u = (a⊗b)C2

1(I ⊗Ry(α))C1
2(Rz(δ)⊗

Ry(β))C2
1(c⊗d). Thus, the circuit topology depicted in Figure 2-left is universal.

PROPOSITION 6.2. 15 {Rx, Ry} gates and 3 CNOTs suffice to simulate an arbitrary two-qubit operator up to global phase.
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Figure 2. Universal two-qubit circuit with three CNOT gates, and a total of 10 basic gates.3 The left circuit requires 18 gates from
{CNOT, Ry, Rz}, whereas the right circuit requires 18 gates from {CNOT, Rx, Rz}.

Proof. Conjugation by H⊗n fixes SU(2n) and Ry. It also flips CNOT gates (H⊗2C2
1H⊗2 = C1

2) and swaps Rx with Rz.

Unfortunately, no such trick transforms CYZ into CXZ. Any such transformation would yield a universal two-qubit
circuit topology in the CXZ library in which only three one-parameter gates occur in the middle. We show in Appendix B
that no such circuit can be universal and articulate there the implications of this distinction. Nonetheless, we demonstrate
here a universal two-qubit circuit topology with gates from the {Rx, Rz, CNOT} gate library that contains 15 one-qubit gates
and 3 CNOT gates.

PROPOSITION 6.3. 15 {Rx, Rz} gates and 3 CNOTs suffice to simulate an arbitrary two-qubit operator up to global phase.

Proof. Let u′ be the desired operator; set u = u′C1
2 . Choose v,ψ relative to u′, as in Proposition 5.4. By the proof of

Proposition 5.1, one can write v = (a⊗b)C1
2(Rz(θ)⊗Rx(φ))C1

2(c⊗d) for some a,b,c,d ∈ SU(2). Setting u(I⊗Rz(ψ))C1
2 =

v and solving for u gives the overall circuit topology in Figure 2-right.

Unlike the circuit of Figure 2-left, the circuit in Figure 2-right can be adapted to both other gate libraries. We can
replace c by Sz(S†

z c) and a by (aSz)S†
z , then use the Sz,S†

z gates to change the Rx gate into an Rz. A similar trick using Sx

can change the bottom Rz gates into Ry; this yields a circuit in the CYZ gate library. As in Proposition 6.2, conjugating by
H ⊗H yields a circuit in the CXY gate library.

Given an arbitrary two-qubit operator, individual gates in universal circuits can be computed by interpreting proofs
of Propositions 3.3, 3.6, 5.1, 6.1, 6.2, 6.3. By re-ordering eigenvalues in the proof of Proposition 3.3, one may typically
produce several different circuits. Similar degrees of freedom have been discussed elsewhere.5

7. CONCLUSIONS

Two-qubit circuit synthesis is relevant to on-going physics experiments and can be used in peephole optimization of larger
circuits, where small sub-circuits are identified and simplified one at a time. This is particularly relevant to quantum
communication, where protocols often transmit one qubit at a time and use encoding/decoding circuits on three qubits.

We have given constructive techniques to find small circuits for two-qubit operators. Specifically, we have shown
that one CNOT is necessary and sufficient to prepare an arbitrary two-qubit state from |0〉, two CNOTs are necessary and
sufficient for simulation up to relative phase, and three necessary and sufficient for simulation up to global phase. We have
also given formulae to determine how many CNOT gates are required to simulate a given two qubit operator. Lower bounds
use the circuit identities summarized in Table 1. In particular, Section 2 showss that n-qubit circuits require d 1

4(4n−3n−1)e
CNOT gates in the worst case.
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Appendix A

In this Appendix, we develop some basic results about unentangled states and operators that preserve them. Below, we use
& and | to indicate “bitwise OR” and “bitwise AND”. (For example, 0011&0101 = 0001, and 0011|0101 = 0111.)

LEMMA 7.1. The state vector |ψ〉 = ∑i ψi|i〉 is unentangled iff ψiψ j −ψkψl = 0 whenever i& j = k&l and i| j = k|l.
Proof. This is a special case of the Segre construction.22 We sketch a proof, for completeness.



(⇒) Assume |ψ〉 is unentangled. We note that to prove our claim, it suffices to show that ψiψ j can be described solely
in terms of i| j and i& j. So write |ψ〉 = (an−1|0〉+ bn−1|1〉)(an−2|0〉+ bn−2|1〉) . . .(a1|0〉+ b1). Expanding, we see that
ψiψ j is a product of the ai and b j with two elements of subscript k appearing for each k. Specifically, if i& j has a 1 as its
k-th binary digit, then bk appears twice; if i| j has a 0 as its k-th binary digit, then ak appears twice, and otherwise ak and bk

both appear.

(⇐) Conversely, suppose |ψ〉 satisfies the condition given. If |ψ〉 = 0, then it is clearly unentangled; if not then one
of the ψi is nonzero. Without loss of generality, suppose it is ψ0. We leave it to the reader to verify that in this case,
|ψ〉 = ψ0(|0〉+

ψ2n−1
ψ0

|1〉)(|0〉+ ψ2n−2
ψ0

|1〉) . . . (|0〉+ ψ1
ψ0
|1〉) and hence is unentangled.

LEMMA 7.2. Let u ∈ U(2n) map unentangled states to unentangled states. Then there exist g,g′ ∈ U(2)⊗n and ω a
permutation of wires such that u = gω = ωg′.

Proof. For 0 ≤ i < 2n, define Xi = σin−1 ⊗σin−2 ⊗ . . .⊗σi0 , where ik is the k-th binary digit of i and as usual σ0 = I,
σ1 = σx. Then Xi|0〉 = |i〉. We need the following three subclaims.

(1.) If |ψ(λ)〉 = λ|i〉+ |ψ〉 for some given 0 ≤ i < 2n and all scalars λ, then |ψ〉 = η|i′〉 for some scalar η and
0 ≤ i′ < 2n differing from i by at most one binary digit. Applying Xi to both sides, we may assume i = 0. Now let k be
any integer with more than one 1 in its binary expansion, then k can be written as l|m with l&m = 0. Then, from above,
ψ(λ)0ψ(λ)k = ψ(λ)lψ(λ)m. Expanding, this says that (ψ0 + λ)ψk = ψlψm. This can only hold for all λ if both sides are
zero; hence ψk = 0. Similarly, for 2r 6= 2s any integers which each have one 1 in their binary expansion, note 2r&2s = 0
and hence (ψ0 +λ)ψ2r|2s = ψ2r ψ2s , and at least one of ψ2r ,ψ2s must be zero.

(2.) Let u ∈ U(2n) map unentangled states to unentangled states, and fix |i0〉. Then, up to scalar multiplication, u
permutes the |i〉 which differ from i0 in one binary digit. Replacing u with XiuXi, we may assume i0 = 0. Now let 2t be
an integer with exactly one 1 in its binary expansion. Then λ|0〉+ |2t〉 is unentangled for any t, hence so is u(λ|0〉+ |2t〉
by assumption. Expanding out, we have λ|0〉+u|2t〉 unentangled for all λ, hence by (1), u|2t〉 = ηt |2t′〉 for some scalar ηt

and some t ′.

(3.) Let u ∈U(2n) map unentangled states to unentangled states, fix |i0〉, and fix |i〉 for all i differing from i0 by exactly
one binary digit. Then u fixes | j〉 for j differing from i0 by two binary digits. Replacing u by Xi0uXi0 , we assume i0 = 0.
So consider u|2s +2t〉, s 6= t. By (2), this must be a scalar multiple of |i〉 for i differing by one binary digit from 2s and by
one binary digit from 2t . There are two such numbers, |0〉 and |2s + 2t〉; but since u ∈ U(2n) and u|0〉 = |0〉, we cannot
have u|2s +2t〉 = |0〉. Finally, by Lemma 7.1, the state |ψ〉 = |0〉+ |2s〉+ |2t〉+ |2s +2t〉 is unentangled, whereas the state
u|ψ〉 = |0〉+ |2s〉+ |2t〉+η|2s +2t〉 is entangled unless η = 1.

Finally, we prove the lemma. Since |0〉 is unentangled, so is u|0〉, hence there exists k ∈ U(2)⊗n such that ku|0〉 =
|0〉. By (2.), ku|2t〉 = ηt |2s〉; observe that the scalars must have norm 1 and let h = (|0〉〈0|+ ηn−1|1〉〈1|)(|0〉〈0|+
ηn−2|1〉〈1|) . . . (|0〉〈0|+ η0|1〉〈1|). Then hku permutes the |2s〉, and we may choose an appropriate wire permutation ω
so that ωhku fixes the |2s〉. Finally, we induct: suppose all the |i〉, where 0 ≤ i < 2n has r or fewer 1s in its binary expan-
sion, are fixed by ωhku. Then every |i0〉 with i0 having r−1 digits 1 in its binary expansion satisfies the condition of (3),
and every j with r +1 digits 1 in its binary expansion differs from some i0 by two binary digits.

Thus ωhku is the identity, and u = ω−1(hk)−1. Clearly (hk)−1 ∈ U(2)⊗n and ω−1 is a wire permutation. Finally, we
observe that for any wire permutation ω and any g ∈U(2)⊗n, ωg = ωgω−1ω, and ωgω−1 ∈U(2)⊗n.

Appendix B

In this Appendix, we show that no 18-gate universal two-qubit circuit from the CXZ gate library can have 12 one-qubit
gates at the edges, as does the circuit in Figure 2-left. This result has consequences for peephole optimization of n-qubit
circuits, where decompositions like that in Figure 2-left are preferrable over that in Figure 2-right. For example, consider
a three-qubit circuit consisting of two two-qubit blocks on lines (i) one and two, (ii) two and three. If both blocks are
decomposed as in Figure 2-left, then the b gate from the first block and the c gate from the second block merge into one
gate on line two. However, no such reduction would happen if the decomposition from Figure 2-right is used.

We now formalize the above claims. The proof of Proposition 6.1 contains a universal generic circuit with three CNOT
gates and 15 Ry or Rz gates with the property that all but three of the one-qubit gates appear either before the first or after
the last CNOT gate. This is minimal.



PROPOSITION 7.3. Fix an elementary-gate library. There exist unitary operators U ∈ SU(4) that cannot be simulated by
any two-qubit circuit in which all but two of the one-qubit gates appear either before the first or after the last CNOT gate.

Proof. There are four places where the one-parameter gates can appear: at the left or right of the first or second line. If
more than three gates appear in one such place, conglomerate them into a single one-qubit gate, and decompose the result
into three one-parameter gates via Lemma 2.1. By this method, any two-qubit circuit can be transformed into an equivalent
circuit with at most 12 one-parameter gates on its sides. By Corollary 2.4, there exist operators that cannot be simulated
without 15 one-parameter gates; the remaining three must go in the middle of the circuit.

We have seen that for the CYZ and the CXY gate libraries, this lower bound is tight. We will show that this is not the
case for the CXZ gate library. Before beginning the proof, we make several observations about the CXZ gate library.

Note that conjugating a circuit identity by H ⊗H exchanges Rx and Rz gates, and flips CNOTs. Two other ways to
produce new identities from old are: swapping wires, and inverting the circuit – reversing the order of gates & replacing
each with its inverse. For example, one may obtain one of the commutativity rules below from the other by conjugating by
H ⊗H and then swapping wires.

s

h Rx

≡
Rx

s

h

s

h

Rz ≡ Rz s

h

When one CNOT gate occurs immediately after another in a circuit, we say that they are adjacent. When such pairs
of CNOTs share control lines, they cancel out, and otherwise may still lead to reductions as discussed below. We will be
interested in circuits which do not allow such simplifications. To this end, recall that Rx gates commute past the target of a
CNOT, and Rz gates commute past the control. Moreover, we have the following circuit identity: C1

2(Rx(α)⊗Rz(β))C1
2 =

C2
1(Rz(β)⊗Rx(α))C2

1 . We say that a given collection of one-qubit gates effectively separates a chain of CNOTs iff there is
no way of applying the aforementioned transformation rules to force two CNOT gates to be adjacent. For example, there is
no way to effectively separate two CNOTs of opposite orientation by a single Rx or Rz gate. This is illustrated below.

s

h

Rx h

s
≡

s

h

h

s

Rx

On the other hand, two CNOT gates of the same orientation can be effectively separated by a single Rx or Rz gate, as
shown below. Up to swapping wires, these are the only ways to effectively separate two CNOTs with a single Rx or Rz.
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s Rx

h

s

h

s

Rz h

s

PROPOSITION 7.4. At least four gates from {Rx, Rz} are necessary to effectively separate four or more CNOT gates.

Proof. Clearly it suffices to check this in the case of exactly four CNOTs. If three Rx, Rz gates sufficed, then one would
have to go between each pair of CNOT gates. Suppose all the CNOT gates have the same orientation, say with control
on the bottom wire. Then the first pair must look like one of the pairs above. In either case, we may use the identity
C1

2(Rx(α)⊗Rz(β))C1
2 = C2

1(Rz(β)⊗Rx(α))C2
1 to flip these CNOT gates, thus ensuring that there is a consecutive pair of

CNOT gates with opposite orientations. As remarked above, there is no way to effectively separate these using the single
one-qubit gate allotted them.

Denote by ωi j the SWAP gate which exchanges the i-th and j-th qubits. It can be simulated using CNOTs as C j
i Ci

jC
j
i =

ωi j = Ci
jC

j
i Ci

j. SWAP gates can be pushed through an elementary-gate circuit without introducing new gates. So, consider

a two-qubit circuit in which adjacent CNOT gates appear. If they have the same orientation (e.g., C2
1C2

1 or C1
2C1

2), then they
cancel out and can be removed from the circuit. Otherwise, use the identity C2

1C1
2 = C1

2ω12 or C1
2C2

1 = C2
1ω12 and push the

SWAP to the end of the circuit. We apply this technique at the level of circuit topologies and observe that since Q(T ω12) is



measure-zero (or universal) iff Q(T ) is. By the above discussion, we can always reduce to an effectively separated circuit
before checking these properties.

PROPOSITION 7.5. Almost all unitary operators U ∈ SU(4) cannot be simulated by any two-qubit circuit with CXZ gates
in which all but three of the Rx,Rz gates appear either before the first or after the last CNOT.

Proof. We show that any circuit topology of the form above can only simulate a measure-zero subset of SU(4); the
result then follows from the fact that a countable union of measure-zero sets is measure-zero.

The assumption amounts to the fact that only three gates are available to effectively separate the CNOT gates. By
Proposition 7.4 and the discussion immediately following it, we need only consider circuit topologies with no more than
three CNOTs. On the other hand, we know from Proposition 2.5 that any two-qubit circuit topology with fewer than three
CNOT gates can simulate only a measure-zero subset of SU(4). Thus it suffices to consider circuit topologies with exactly
three CNOT gates. Moreover, we can require that they be effectively separated, since otherwise we could reduce to a
two-CNOT circuit.

Three CNOTs partition a minimal two-qubit circuit in four regions. We are particularly interested in the two regions
limited by CNOTs on both sides because single-qubit gates in those regions must effectively separate the CNOTs. To this
end, we consider two pairs of CNOTs (the central CNOT is in both pairs), and distinguish these three cases: (1) both pairs
of CNOTs consist of gates of the same orientation, (2) both consist of gates of opposite orientations, or (3) one pair has
gates of the opposite orientations and the other pair has gates of the same orientation. In the second case, the CNOT gates
cannot be effectively separated, since each pair of gates with opposite orientations requires two one-parameter gates to be
effectively separated, and only three Rx, Rz gates are available. In the third case, two CNOTs with opposite orientations
must be separated by two one-parameter gates, leaving only one Rx or Rz to separate the pair with the same orientation.
Thus, the pair with the same orientation may be flipped, reducing to Case 1, as shown below.
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h
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Finally, consider the case in which all three CNOT gates have the same orientation. Each pair of consecutive CNOTs
must have at least one Rx or Rz between them, to be effectively separated. Thus one of the pairs has a single Rx or Rz

between its members, and the other has two one-qubit gates. We refer to these as the 1-pair and the 2-pair, respectively.

Suppose that the one-qubit gates separating the 2-pair of CNOTs occur on different lines. If either one-qubit can
commute past the CNOTs of the 2-pair, then it can move to the edge of the circuit; in this case Proposition 7.3 implies that
the circuit topology we are looking at can only simulate a measure-zero subset of SU(4) (one can show that two Rx, Rz gates
cannot effectively separate three CNOTs.) Otherwise, we use the identity C1

2(Rx(α)⊗Rz(β))C1
2 = C2

1(Rz(β)⊗Rx(α))C2
1 to

flip the 2-pair, and thus 1-pair now have opposite orientations. As there is only one one-qubit gate between them, this pair
is not effectively separated. For example:
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h
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h Rz

Rx s

h
≡

s

h

h

s
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Rx

Rz h

s

We are left with the possibility that all the CNOT gates have the same orientation and that the 2-pair’s one-qubit gates
appear on the same line. Both Rz, Rx must occur, or else we could combine them and apply Proposition 7.3 to show that
such a circuit topology can only simulate a measure-zero subset of SU(2n). Now, if RxRz appears between two CNOT gates
of the same orientation, then either the Rx or the Rz can commute past one of them. If the outermost gate can commute,
Proposition 7.3 again implies that the circuit topology simulates only a measure-zero subset of SU(2n). Thus the inner
gate can commute with the 1-pair. We have now interchanged the roles of the 1-pair and the 2-pair, thus by the previous
paragraph, the gate which originally separated the 1-pair must be on the same line as the commuting gate. Consequently,
all one-qubit gates are on the same line. The following circuit is the only possibility, up to inverting, swapping wires, and
conjugating by H ⊗H.



h

s Rx

h

s Rz Rx

h

s

Finally, we add the four one-qubit gates on the sides, decompose each into RxRzRx via Lemma 2.1, and observe that an
Rx gate can commute across the top and be absorbed on the other side. This leaves 14 one-parameter gates, and by Lemma
2.2, such a circuit topology simulates only a measure-zero subset of SU(4).
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