

NGDA Ingest System
 Architecture and Development Guide

March 2006

 1

1 Introduction... 3

1.1 Intended Audience .. 3
1.2 Definitions, Acronyms, and Abbreviations .. 3
1.3 References... 4

1.3.1 Informational References.. 4
1.3.2 Technical References.. 4

2 Ingest as Part of NGDA .. 4
2.1 NGDA in Brief.. 5
2.2 NGDA System Architecture ... 5

2.2.1 Diagram: NGDA as a Whole .. 6
3 Requirements Specification .. 7

3.1 General Requirements... 7
3.2 Product Functions ... 7

3.2.1 Data Gathering.. 7
3.2.2 Compatibility with Archive Object templates .. 8
3.2.3 Mapping data to Archive Object components .. 8
3.2.4 Identifier Mapping .. 8
3.2.5 Output of completed data.. 8
3.2.6 Use of configuration files.. 8

3.3 User Classes, Characteristics, and Environments... 9
3.3.1 User Classes.. 9
3.3.2 User Characteristics .. 9
3.3.3 User Environments.. 9

3.4 Assumptions and Dependencies ... 9
3.5 System Use Cases ... 10

3.5.1 Primary Use Case.. 10
4 Ingest System Architecture... 10

4.1 Ingest Workflow ... 10
4.1.1 Diagram: End to End Ingest Workflow .. 12

4.2 Software Architecture ... 13
4.2.1 Diagram: Bulk Ingest Software Architecture ... 15
4.2.2 Diagram: Bulk Ingest Software Flow-of-Control..................................... 17

4.3 Data structures and classes.. 18
4.3.1 ArchiveObjectIngestComponent... 18
4.3.2 DatabaseInterface (Interface).. 18
4.3.3 DatabaseWriter ... 19
4.3.4 DataHandler .. 19
4.3.5 DataPackage.. 19
4.3.6 DataPool (Interface).. 20
4.3.7 FilePool ... 21
4.3.8 IngestEngine ... 21
4.3.9 IngestFilter (Interface) .. 21
4.3.10 IngestVariable ... 22
4.3.11 MySQLDatabase... 22
4.3.12 OutputWriter (Interface) ... 22

 2

4.3.13 PathComponent... 23
4.3.14 RegularExpressionFilter ... 23
4.3.15 RemoveLeadingTextFilter ..23
4.3.16 RemoveTrailingTextFilter .. 24
4.3.17 VariableComponent .. 24
4.3.18 VariableComponentFilter (Interface).. 24
4.3.19 XMLLoader .. 25

4.4 UML Diagrams ... 25

 3

1 Introduction

1.1 Intended Audience

 This is a technical document, aimed at developers. In it, the details of the ingest
system will be covered in great detail, including such aspects as flow-of-control and API
definitions. A developer seeking to maintain, extend, or expand the functionality of the
ingest system should find helpful information within this document.
 It is assumed that the reader is technically proficient, with a working knowledge
of Java and class diagrams. Topics such as XML and database connections are discussed,
but passing knowledge of these topics should be sufficient to get some use out of this
document.

1.2 Definitions, Acronyms, and Abbreviations
ADL: The Alexandria Digital Library. A system for performing spatial searches on
geospatially referenced data. The Alexandria Digital Library system is one method of
access for information residing in the Archive.

Archive/The Archive: An installation of the software developed on the NGDA project.

Archive Object: The logical unit of storage in the Archive. An Archive Object is
described by the NGDA Data Model. As a rule, an Archive Object consists of at least
one component and a manifest. Any further requirements are left purely as policy
decisions. As per the NGDA Data Model, Archive Objects are implemented as simple
directory structures described by a manifest. Please see the NGDA Data Model for
details.

Archive Object Component: The files that compose an Archive Object are referred to as
components.

Archive Object Manifest: An XML document that details the content and structure of an
Archive Object. Every Archive Object must have a self-descriptive manifest file at the
object’s root level. Please see the NGDA Data Model for more details.

Archive Object Template: An XML document that specifies a class of Archive Object.
All Archive Objects adhering to a particular template will have identically named
components and have the same internal structure.

Configuration File/Configuration XML/Ingest Configuration: An XML file created by
the user of the ingest system. The configuration file contains all the necessary
instructions to configure and run the ingest process.

 4

Format Registry: An archival system for storing thorough, semantic definitions for file
formats. The goal of the Format Registry is to capture as much information about a file
format as possible and preserve it for the future. Sufficient information should allow for
the creation of file-reading software long after existing readers have faded into
obsolescence.

NDIIPP: National Digital Information Infrastructure Preservation Program. A Library of
Congress funded initiative aimed at developing strategies for the long-term support and
preservation of digital data.

NGDA: The National Geospatial Digital Archive. A project funded by the Library of
Congress through an NDIIPP grant. Sometimes used in place of “the Archive”, as
defined above.

NGDA Data Model: A set of rules and specifications governing the structure of Archive
Objects and interactions with the Archive. The NGDA Data Model defines precisely
what comprises an Archive Object, and provides specifications for the template, manifest,
and ingest files. Please visit the NGDA Data Model link provided in the “References”
section of this document for more details.

1.3 References

1.3.1 Informational References
NDIIP website:
http://www.digitalpreservation.gov

NGDA website:
http://www.ngda.org

1.3.2 Technical References
Ingest Configuration Language Reference
(Fix link later)

NGDA Data Model:
http://www.alexandria.ucsb.edu/~gjanee/ngda/data-model/

2 Ingest as Part of NGDA
 The ingest system is but a component of the overall NGDA architecture. In order
to fully understand the real purpose and role of the system, it is necessary to take a step
back and view it in light of the NGDA architecture as a whole.

 5

2.1 NGDA in Brief
 The National Geospatial Digital Archive was created as a grant project under the
National Digital Information Infrastructure Preservation Program. The goal of the
NDIIPP was to fund a number of cooperative investigations into the problems
surrounding long-term data preservation.
 The NGDA system is the result of work completed under the NDIIPP grant. Like
all other NDIIPP projects, the NGDA system has a particular focus on data preservation.
But additional constraints make the NGDA system unique. For one, the system is
focused on the unique problems surrounding the storage and searching of geospatial data,
thus meeting the “geospatial” promise of the project’s name. Secondly, the NGDA
system places extra emphasis on “semantic” preservation. The system’s answer to the so-
called “100-year problem”—that is, how do you read a particular file one hundred years
after it was produced, given the inevitable change in technology—is the creation and
archiving of a Format Registry.
 While the Format Registry helps the contents of the archive resist obsolescence,
the archive itself must also handle this implacable force. For this reason, the archive
system is designed around a series of APIs and specifications. In this way, each and
every component of the system can be discarded and re-implemented as time passes.
Data can be migrated from storage system to storage system. All of these changes can be
handled without violating the integrity of the archive, so long as the APIs and data
models are adhered to. This document discusses is the current implementation of those
APIs and specifications.
 The system as discussed in this document is the culmination of the first 18 months
of work under the NGDA grant. The architecture shown reflects the project’s early focus
on a local archive system. The long-term goals for the archive involve interoperability
with other NDIIPP projects as well as other installations of the archive. Future
improvements to the architecture should reflect this fact.

2.2 NGDA System Architecture
 The NGDA system is a conglomerate, composed of several subsystems designed
to perform specific tasks. One reason for this structure is the desire to resist obsolescence,
as discussed above. Functionality is compartmentalized and interactions handled through
strictly defined specifications, in order to allow components to be easily swapped out. As
the structure of the system is discussed, please see the diagram (section 2.2.1) to get a
visual representation of how the various components interact.
 The central component of the NGDA system is the archive server. The server
deals directly with the underlying storage system, allowing data to be inserted or removed
as needed. The server ensures that data inserted into and removed from the archive
adheres to the NGDA data model. It guarantees that Archive Objects adhere to the
templates that they claim to follow. It brokers all data exchanges, and as such, is the one
component that all parts of the archive must deal with.
 A number of consumers derive their information from the server. Two of these,
the “simple web interface” and the “Format Registry interface”, acquire information
directly from the server. The simple web interface is an interface that allows a user to
browse the archive as a file system. This is easily accomplished, as the NGDA Data

 6

Model dictates that Archive Objects should be stored as simple (if strictly structured)
directories. The Format Registry interface is another simple interface that allows the user
to browse a specific (and important) subset of archived data, the archive’s format registry.

2.2.1 Diagram: NGDA as a Whole

 7

 Another set of “more advanced” consumers exist as well. These interfaces exist
to offer advanced functionality such as searching. Since both the NGDA Data Model and
the archive server emphasize simplicity, neither natively support the sort of extended
metadata that searching requires. This is where the metadata mapper comes into play.
 The metadata mapper is a system that trolls over items stored in the archive. It
uses a set of modules that allow it to recognize certain types of metadata within Archive
Objects. When the mapper finds an object with a supported type of metadata, it attempts
to map that metadata to a predefined set of fields required by a search interface. The
exact details of how this mapping is carried out are dictated by another set of modules,
which handle all interactions with the middleware behind that interface. In essence, the
metadata mapper ingests data from the archive into specialized access services.
 The additional access interfaces supported by the metadata mapper and illustrated
on the diagram are an important part of the NGDA system. These systems perform
indexing and allow for queries to be made against the holdings within the Archive.
While these interfaces store their own information on the collections within the Archive,
they are merely catalogues. Requests for objects must still be made to the archive server.
 Ultimately, all of these interfaces are meaningless if there is no data for them to
access. This is where the ingest system comes into play. The ingest system takes
information from a data source, processes and packages it, and adds items into the
Archive. The remainder of this document deals in detail with the specifics of the ingest
system, a piece of software written for the bulk loading of data in to the Archive. It
should be noted that the ingest system in this document is not intended to be the end-all
be-all ingest system for the Archive—any program adhering to the proper API can ingest
to the Archive, and indeed sometimes special applications warrant a more fine-tuned
approach—but is simply a solution to the Archive’s ingest problems.

3 Requirements Specification

3.1 General Requirements

The ingest system was designed using the following as guiding principles:

• The ingest system must be widely applicable.
• The ingest system must be extensible.
• The ingest system should be tuned toward bulk loading- it should load, easily,

large numbers of mostly-homogenous Archive Objects.

3.2 Product Functions
The ingest system must provide the following functionality:

3.2.1 Data Gathering

 The ingest system must be able to connect to and gather information from a data
source. The information gathered must be in the form of discrete files, as this is the only

 8

type of data that the Archive has any conception of how to store. If ‘raw’ data sources
are used, conversion routines must be specified to transform the data acquired into
discrete files.

3.2.2 Compatibility with Archive Object templates

 The ingest system must be compatible with the NGDA data model concept of
object templates. The ingest system must support the assignment of data to elements
defined within Archive Object templates.

3.2.3 Mapping data to Archive Object components

 The ingest system must be able to map gathered files to the correct Archive
Object component. The ingest system must be able to base such mappings on the
identifier given to the file, the contents of the file, or both. The ingest system must solve
this problem in a way that is compatible with “bulk loading”, meaning that large sets of
files must be mapped as readily as small sets or single objects.

3.2.4 Identifier Mapping

 The ingest system must be able to map gathered files to the correct Archive
Object identifier. Since multiple Archive Object components are tied together only by
the Archive Object identifier, this functionality is vital. Identifiers must be constructible
from a combination of plain text and information gleaned from gathered files.

3.2.5 Output of completed data

 The ingest system must output its finished data to an intermediary between itself
and the Archive.

The data output to this location must include (at least) the following information:

• The location of the file to be loaded to the Archive.
• The identifier of the Archive Object that this file is a component of.
• The name of the component this file represents.

3.2.6 Use of configuration files

 The ingest system must be operable through the creation of XML-based
configuration files. These configuration files must allow the user to select and configure
the implementations for the above-listed program functionality.

 9

3.3 User Classes, Characteristics, and Environments

3.3.1 User Classes

There are two major potential classes of user for the ingest system: data providers, and
the archive itself.

 The data provider class of user is composed of any person working outside of the
archive who is responsible for getting data into the archive. Content producers and
accumulators (such as those operating state data clearinghouses) are the most likely
candidates for this class.

 The archive also makes up a class of user for this system, as circumstances may
require that ingest of a collection be performed by the archive itself. It is assumed that
this class will be the most common user in practice.

3.3.2 User Characteristics

 In general, we can safely assume that users have few resources to devote to the act
of archiving. We make this assumption because archiving as an act generates no
immediate or obvious payoff, meaning that potential resources are often allocated
elsewhere.

3.3.3 User Environments

 It is anticipated that users will be operating the system in a wide variety of
environments. Cross-platform support is therefore a derived requirement.

3.4 Assumptions and Dependencies

Assumptions:

• It is assumed that the user has a set of distinct files to load into the Archive; if
instead the user has data that must be processed and separated into individual files,
it is assumed that they have disk space on which to store generated files until they
can be loaded to the Archive.

• It is assumed that the user has a high-speed internet connection through which
their system can interact with databases.

 10

• Adequate metadata exists for the files being loaded to the Archive. The definition
of the term adequate in this context depends entirely on the policies of whatever
individual archive the items are being ingested to.

Dependencies:

• The ingest system uses Java as a cross-platform solution. It is assumed that the
user is operating on a platform for which Java is available.

• The ingest system will not load any data into the archive without the use of a
separate data loading utility. Therefore the system is dependent upon the data
loading utility.

3.5 System Use Cases

3.5.1 Primary Use Case
1. User has created and uploaded a collection template to the Archive.
2. User creates an ingest configuration file.
3. User initiates ingest system, directing it to use the configuration file produced

in (2.).
4. Once ingest has completed, user runs separate programs to guarantee ingest

success and load data into the Archive.

3.5.1.1 Alternate Paths

 3a. If there is a problem with the user’s configuration file, the user is notified
 with an error message. The user re-edits the configuration file and returns
 to step (3.).
 4a. If the user is not satisfied with the results found in (4.), the user re-edits
 the configuration file and returns to step (3.).

4 Ingest System Architecture

4.1 Ingest Workflow

 As can be seen in the NGDA Architecture diagram (NGDA As a Whole, Section
2.2.1), the ingest system does not exist in a vacuum. It is a component of a larger,
overarching system. In a similar manner, the software this document details is only part
of a larger ingest workflow. To understand how the ingest system is structured and how
it operates, it is important to understand the tools and events that surround its use.
 The ingest process begins with data. At some point, a human being must examine
an existing set of data to determine if it belongs in the Archive. During this process, the

 11

person will note details about the data, and form a preliminary idea of what should
constitute an Archive Object. They may notice details about lineage and other inter-file
relationships. The individual must also take stock of the existence of metadata, both at
the object level and the collection level. Assuming that they are confident that they have
a collection of achievable data, they move on to the next step in the process: creating a
template.
 Template creation amounts to the formalization of the work completed by the user
thus far. The idea of the template is to create a specification that describes the items in
the collection. Using the NGDA Data Model, the user specifies what components each
Archive Object should possess. In collections where individual items may vary slightly,
‘optional’ components can be defined. For more information about templates, the NGDA
Data Model should be consulted.

 12

4.1.1 Diagram: End to End Ingest Workflow

 After a template has been created, the user must upload the file to the Archive.
Templates are treated in a special manner during upload, and so are ingested into the
Archive in a different way than normal items. However, it should be noted that once they
are placed within the Archive, templates are stored in the same manner as any other
Archive Object. When a template is ingested into the Archive, it is checked against the
Data Model for validity. Assuming that the template is accepted and ingests successfully
into the Archive, the user can move on to creating an ingest configuration file.

 13

 In the earlier parts of the workflow, the user created a collection template in order
to define the structure of the objects within the collection. In creating the ingest
configuration file, the user specifies how that structure should be filled with actual data.
This is a process that requires the user to define many different parameters, such as what
data sources to use, how data should be mapped to components, etc. Entries in the
‘components’ segment of the configuration file correspond directly to entries in the
collection template.
 Once the user has completed the configuration file (or just partially completed
it—the user needs only complete a subset of the components of the object as a whole),
the user can invoke the ingest software. The software uses the configuration file as a set
of instructions for determining how data-loading, component-mapping, and the writing of
processed data should proceed. If any errors exist in the configuration file, an error
message is printed and any processing aborts. The user must correct the issue and re-run
the ingest program before proceeding. If the process runs without any errors being
generated, the user can proceed. The ingest software outputs data into a database (unless
directed to do otherwise), where it can be used in later steps.
 The next step in the process is the status check. This allows the user to get a view
of the Archive Objects that the ingest program has assembled. It can be useful to check
the status of a partially-completed ingest; the user can ensure that several components are
indeed mapping to the same Archive Object identifier. Users can also identify ‘problem’
data, such as outliers and other items that simply do not map to the correct identifier. The
user can use this information to refine their mapping or to make corrections to the data
itself. If the user has finished the configuration file and as such has complete Archive
Objects, they can proceed to the final step in the process: data loading. If not, they can
return to the configuration file armed with the knowledge that the status check has
provided.
 The final step in the ingest process is data loading, which is the physical process
of copying data into the Archive. The data loading program takes the information
generated by the ingest software and uses it to generate Ingest files, as per the NGDA
data model. The Ingest files are submitted to the Archive, along with the files to be
copied. (It is important to note that this process will fail if files have been moved or
renamed between the operation of the ingest software and the data loading software!)
The Archive reads the Ingest file as a set of instructions, and uses it to create a new
Archive Object. This process repeats for all of the Archive Objects to be created. When
the final object has loaded, the ingest process is complete.

4.2 Software Architecture

 Now that we have described what role the software plays in the overall workflow,
we will narrow our focus to the software that this document is supposed to describe.
 Perhaps the easiest way to explain the architecture of the ingest software is by
comparing it to a factory. The basis for this comparison comes from examining what
both of these entities do. Both begin with a ‘raw’ material, run several processes and
transformations, and output a regular, well-structured product.

 14

 If the bulk ingest software is a factory, than the IngestEngine class would be the
manager’s control booth. The IngestEngine class is responsible for organizing all other
components of the ingest system, and is responsible for directing flow-of-control in the
program as a whole. As the configuration file is being loaded, items are added and
registered to the system through the IngestEngine. The IngestEngine then oversees the
rest of the process, initiating the loading of data from data sources and the processing of
data in the rest of the system.
 If the IngestEngine is the control booth of this factory, then the rest of the
components of the system make up an assembly line. This assembly line begins with
data sources. The system can take input from one or more data sources, which represent
the raw materials to be used in the ingest process. These resources are marshaled into the
system through a generic interface—the DataPool interface.
 The DataPool interface allows the rest of the ingest software to deal with data
sources in an abstract way. It operates by iterating through the set of items residing in the
data source, allowing data items to be loaded into memory one at a time. The DataPool
class is one of the modular classes within the bulk ingest software, meaning that different
modules can be written to handle different data sources. To continue the factory analogy,
the Data Pool is a generic box that travels through the rest of the process, allowing raw
materials from any source to be handled in the same way.
 Each DataPool is tied to a DataHandler. A DataHandler is a middleman between
the DataPool and any interested ArchiveObjectIngestComponent. It takes the next data
item from the DataPool (encapsulated by a DataPackage), and passes it to each
ArchiveObjectIngestComponent that subscribes to it. The term ‘subscription’ is used to
indicate that an ArchiveObjectIngestComponent might derive data from a particular
DataPool. A DataHandler would be something like a programmed forklift in the bulk
ingest factory, moving data from the DataPool and offering it to the various
ArchiveObjectIngestComponents.
 The ArchiveObjectIngestComponent represents its own mini assembly line. Each
of these ‘assembly lines’ correspond to a component in a finished Archive Object. When
data is passed to it from a DataHandler, it is evaluated by an IngestFilter. If the
IngestFilter determines that the data being examined should be mapped to this particular
component, the data is allowed to proceed down the assembly line. If not, the data is
rejected, and the assembly line halts until appropriate data is found. It should be noted
that the IngestFilter is another modular segment of the ingest software, so modules with
varying criteria can be dropped in to determine if a particular file or piece of data should
map to a component.
 Once a piece of data has passed the IngestFilter, it can proceed through the rest of
the processes tied to the ArchiveObjectIngestComponent. These are tied to the idea of

 15

4.2.1 Diagram: Bulk Ingest Software Architecture

Key: Light blue ovals: interfaces/modules. Green boxes: Logic/flow of control. Grey-blue boxes:
convenience abstractions.

 16

identifier mapping—that is, tying a particular component to an Archive Object-level
identifier. In the factory analogy, the next step is to process the contents of the ‘data box’
passed along and produce a label that dictates where it should be shipped. The accuracy
of this label is vital, because if it is incorrect items will be ‘shipped’ incomplete or with
incompatible components.
 The IngestVariable is responsible for performing the identifier mapping for a
piece of data. It combines a template string with information gleaned from the data at
hand. In this way, a user can build up an identifier with a common prefix and combine it
with a variable postfix to create a unique identifier. To return to the shipping label
analogy, the IngestVariable begins with a label that says “Arizona %cityname%
%Address%”. The Arizona portion is constant, while the two parts enclosed in
percentage marks are overwritten by information taken from the data at hand.
 These identifier pieces are built up using VariableComponents. For each part of
an identifier that needs to be substituted in, there is a VariableComponent that generates
the needed data. Each VariableComponent might get its data from a different source. It
could reach into the file header and pull out some piece of information. It could examine
the identifier that came with the data, such as the filename. Or it could use some piece of
information in the file to cross-reference it with a database. The details are unimportant,
because the VariableComponent class is another modular piece of the bulk ingest
software. The only requirement is that the information returned must be a string. The
VariableComponent class, then, serves the purpose of a machine that generates pieces of
labels for items moving through the assembly line. Before those labels can be attached,
however, one more bit of processing can occur.
 The ComponentFilter exists to refine the strings retrieved by the
VariableComponent. This allows the VariableComponent to define a general method for
creating data based off the file at hand, while specific refinements such as stripping off or
reformatting data can be performed separately. In the factory, the ComponentFilter is a
machine that reads and refines the label pieces generated by the VariableComponent and
returns the cleaned up segments to the IngestVariable.
 As the data is finally labeled, it is passed to its final stop on the assembly line: the
OutputWriter. The OutputWriter is a modular class that allows the ingest process to
output to any destination. To fit in to the Ingest System Workflow discussed above,
however, the OuptutWriter outputs to a database. The values it writes include the
identifier assigned to the data, the component that it represents, and the path to the data.
The data itself remains unmoved and uncopied. The factory has merely indexed and
organized it; another process must come and move it to the Archive. But nonetheless, we
have reached the end of the ingest assembly line.

 The next page contains a diagram detailing the process explained above. Places
where modular code comes into play are clearly indicated.

 17

4.2.2 Diagram: Bulk Ingest Software Flow-of-Control

 18

4.3 Data structures and classes

4.3.1 ArchiveObjectIngestComponent

 An ArchiveObjectIngestComponent represents a component, or single file, of a
completed ArchiveObject.

 Each ArchiveObjectIngestComponent(AOIC) has a 'path' that dictates where in
the ArchiveObject it should go. This means that it directly corresponds to an entry in a
collection template.

 The AOIC receives files, runs them through filters to determine if the files
actually belong in the component slot that they represent. The AOIC then maps the item
to the correct item identifier by processing the file's name or contents.

4.3.2 DatabaseInterface (Interface)

The DatabaseInterface is a helper interface that is not directly a part of the bulk
ingest system architecture. It was created to allow a database to reside in memory and be
used by multiple objects. It also has allowed generic modules to be written in other parts
of the program- such as the OutputWriter derived DatabaseWriter.

Currently, MySQLDatabase is the only class implementing this interface. This
may change as necessary.

4.3.2.1 API

public String getSingleValue(String tableName, String keyColumn,
 String keyValue, String retrieveColumn) throws Exception;

 String tableName- The name of the table to affect
 String keyColumn- The name of the primary key’s column.
 String keyValue- The primary key for a database entry.
 String retrieveColumn- The name of the column you are interested in retrieving
 data from.

 Retrieve a single value from a database. This value corresponds to the
entry in retrieveColumn in the row where the entry in keyColumn equals
keyValue.

public void insert(String tableName, String[] values) throws Exception;

 String tableName- The name of the table to affect.
 String [] values- The values to insert into the database.

 19

 Insert a new row into the database. Implementations will probably need
some initialization to configure the layout of the columns to be inserted to, as well
as the name/location of the primary key.

public void update(String tableName, String keyColumn, String keyValue,
 String [] values) throws Exception;

 String tableName- The name of the table to affect
 String keyColumn- The name of the primary key’s column.
 String keyValue- The primary key for a database entry.
 String[] values- The values with which to update the row.

 Update the entries in a row in the database. The new values to use reside
in the array values. The row to update is selected by finding the entry where
keyColumn equals keyValue.

public void initializeTable(String tableName) throws Exception;

 String tableName- The name of the table to affect with this DatabaseInterface.

 Initialize the DatabaseInterface. Create any needed connections any
initialize any private variables.

4.3.3 DatabaseWriter

A helper class that implements the OutputWriter interface. The DatabaseWriter
class is used to write the results of ingest into a database. The DatabaseWriter class
makes use of the DatabaseInterface abstraction to relieve the user from worrying about
things like database query or update syntax.

4.3.4 DataHandler

 Class responsible for tying ArchiveObjectIngestComponents to the DataPools that
supply them with ingest information. More specifically, this class allows multiple
ArchiveObjectIngestComponents to use a single DataPool, for situations where multiple
components of a single object might come out of the same filesystem.

 This class is also used to specify storage options for Files produced by the
retrieveContent method of DataPools. This allows for the local storage of content that
requires real processing work for their production.

4.3.5 DataPackage

 20

The DataPackage is a conveinence abstraction. Rather than pass around a full
DataPool object, the lighter-weight DataPackage is used. The DataPackage carries two
basic pieces of information: the local identifier for the file retrieved from the DataPool,
and a link to the DataPool itself.

 When an actual File needs to be generated, the DataPackage calls upon the real
machinery of the fully-implemented DataPool object that spawned it. This “just-in-time”
file generation is useful in situations where s file might safely be ignored based solely on
its local identifier.

4.3.6 DataPool (Interface)

Generic interface for acquiring data from a data source and feeding it to the ingest
process. The DataPool guarantees that the only type of item that the ingest process need
to concern itself with is discrete files. Any other data must first be converted by the
DataPool into a file if it is to be placed in the Archive.

4.3.6.1 API

DataPackage next();

 As an iterator, retrieve the next DataPackage from this DataPool. The first
call to this method should ‘set’ the iterator to the first DataPackage—no item
should be skipped.

DataPackage retrieve(String identifier);

 String identifier- The local identifier of the DataPackage to be retrieved.

 Retrieve a DataPackage by its local identifier. In some cases, this method
may need to be stubbed out (if, for example, data is being retrieved by a stream.)
But at the moment I can’t guarantee that such a strategy wouldn’t break the rest of
the functionality. Will need to check that later.

File retrieveContent(String identifier);

 String identifier- The local identifier of the DataPackage/file of interest.

 Retrieve the File indicated by identifier.

4.3.6.2 Development Notes
 I should really look into forcing this interface to implement/derive from the
Iterator class, since some of the limits/functionality are linked...

 21

• next() MUST return null ONLY when the DataPool has iterated through all items
that it stores.

• The first call to next() MUST not skip any items in the implementing DataPool.
In other words, the first call to next() should point the iterator at the first item to
be returned.

• retrieve() MUST NOT disrupt the iterator model used by next().
• When generating DataPackages for a content consumer, it is suggested that the

'asFileId' or 'asFile' parameter used in creating the DataPackages be a unique
identifier for the file. While this isn't vital- the DataHandler will detect and take
simple corrective measures for duplicates- it will make the ingest operations faster
and make the locally stored files neater.

4.3.7 FilePool

An implementation of the DataPool class that creates DataPackages from files in a
file system. The local identifier assigned to each file is the full path of the file in the file
system. Uses a stack-based recursion model for navigating the file system. The FilePool
will recursively navigate subdirectories and produce any files present at or below the root
directory provided at instantiation.

4.3.8 IngestEngine

The IngestEngine is the central class that ties together and drives the ingest
process.

 A number of DataHandlers are registered to the IngestEngine. Then a number
of ArchiveObjectIngestComponents- one for each component that will
eventually appear in the Archive Object- are registered to those
DataHandlers through the IngestEngine.

Finally, the IngestEngine runs each DataHandler in series. These DataHandlers
call upon the DataPool objects they encapsulate, iterating through the DataPackages that
those DataPools produce. Each new DataPackage is dispatched to any
ArchiveObjectIngestComponent registered to the DataHandler.

The files are then examined by each individual AOIC, and ingested or rejected
saccordingly.

4.3.9 IngestFilter (Interface)

 The IngestFilter is an interface, not a class. The role of the IngestFilter is to
determine whether or not a file being processed by the ingest system should be mapped to
a particular component. The interface is open-ended, allowing any sort of constraints

 22

upon the contents of a DataPackage to be implemented. The IngestFilter returns true if a
file maps to the filter’s associated component.

4.3.9.1 API

public boolean approve(DataPackage data);

 DataPackage data- The data package to be tested by this IngestFilter.

 This method should examine the DataPackage and determine if it indeed
maps to the component associated with this filter. Any implementation should
return true when data does correspond to the associated component, and false
otherwise.

4.3.10 IngestVariable

 This class is meant to allow the construction of values during the ingest process
from the DataPackage being examined.

 This is used to create the identifiers that map all components to a single
Archive Object. It can also be used to gather information from inside files during ingest,
or from the context surrounding those files, so that potentially important information can
be preserved.

 When creating Archive Object identifiers, it is important to remember that
different components depend on this mapping to form a complete object. If components
of what should be a single object map to even slightly different identifiers, the system
will recognize them as different objects entirely. Without a correct mapping, the
components effectively form separate objects.

4.3.11 MySQLDatabase

 The MySQLDatabase class is an implementation of the DatabaseInterface
interface. It allows database operations to be performed on MySQL-compliant databases.
On instantiation, it creates and holds a connection with a running database.

 Through the use of the DatabaseWriter, (itself an implementation of the
OutputWriter interface) data can be written to the database represented by the
MySQLDatabase class. A DataPool could be implemented to read from it as well.

4.3.12 OutputWriter (Interface)

 23

 The OutputWriter is an interface, not a class. The OutputWriter exists to allow
the system to output to different locations, be it databases or flat files. The current
workflow for the ingest system as a whole depends on data being written to a database,
but other workflows could be devised. It is for this reason that this interface exists.

4.3.12.1 API

The following methods must be implemented by any class adhering to the OuputWriter
interface:

public boolean write(String key, String value, String varName);

 String key- The Archive Object identifier assigned to an item.
 String value- The location of the file to be ingested to the Archive.
 String varName- The full path of the component this item belongs to.

 The write method takes the data accumulated during the ingest process
 and writes it somewhere for later use in the ingest process.

public boolean write(String key, String value);

 Technically, this method is deprecated.

4.3.13 PathComponent

 A VariableComponent used for capturing information from the path of a file. Can
be used in any scenario where the DataPackage uses a path as an identifier. The
PathComponent class implements the VariableComponent interface.

4.3.14 RegularExpressionFilter

 The RegularExpressionFilter is an IngestFilter that tests the local identifier of a
DataPackage against a regular expression to determine whether the file it represents
should be mapped to a particular component. The user of the class may choose between
two behaviors of the filter: approving the DataPackage when the local identifier matches
the regular expression, or approving it when it does not match the regular expression.

4.3.15 RemoveLeadingTextFilter

 The RemoveLeadingTextFilter class implements the VariableComponentFilter
interface. It allows the user to strip off a prefix by selecting a marker. Either single
characters or sub-strings can be used as markers. Anything before the marker will be
discarded, while the rest of the string will be returned unchanged.

 24

4.3.16 RemoveTrailingTextFilter

 The RemoveTrailingTextFilter class implements the VariableComponentFilter
interface. It allows the user to strip off an unwanted postfix by selecting a marker. Either
single characters or sub-strings can be used as markers. Anything after the marker will
be discarded, while the rest of the string will be returned unchanged.

4.3.17 VariableComponent

 The VariableComponent class is stubbed class meant to be extended and fully
implemented. A VariableComponent should exist for every variable part of an identifier
as constructed by an IngestVariable. The VariableComponent represents a procedural
method for generating portions of an identifier.

4.3.17.1 API

The following methods must be implemented by any class extending the
VariableComponent class:

public String evaluate(DataPackage data)

DataPackage data- The DataPackage you are attempting to generate an identifier
for.
 In classes that exend this one, this method should run some operation on
data, and return a String for substitution into an IngestVariable. Since the only
argument to this method is the DataPackage, other methods should handle set-up
and configuration of the component.

4.3.18 VariableComponentFilter (Interface)

 The VariableComponentFilter is an interface, not a class.
VariableComponentFilters allow a user to refine the Strings returned by a
VariableComponent. This additional filtering is necessary when the results returned by a
generally-implemented VariableComponent need additional processing.

4.3.18.1 API

String filter(String input);

 25

 String input- The string returned by a VariableComponent during identifier
 creation.

 Process the String input. Return an altered version as a String. The
 specifics of the alteration are of course dependent on the implementing class.

4.3.19 XMLLoader

 The XMLLoader loads ingest configuration files and creates the data structures
necessary to run the ingest process. It effectively translates the ingest configuration
language into instructions on how to run the bulk ingest software.
 The XMLLoader is special because it allows the user to specify the use of
different code modules.

4.4 UML Diagrams

 Please see the following pages for a UML diagram of the architecture as
discussed above.

