NIST Interagency Report 7502
N g (Second Public Draft)
National Institute of

Standards and Technology
U.S. Department of Commerce

The Common Configuration
Scoring System (CCSS).
Metrics for Software Security
Configuration Vulnerabilities

(DRAFT)

Karen Scarfone
Peter Mell

The Common Configuration Scoring

NIST Interagency Report 7502 System (CCSS): Metrics for Software
(Second Public Draft) Security Configuration Vulnerabilities
(DRAFT)

Karen Scarfone
Peter Mell

COMPUTER SECURITY

Computer Security Division

Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899-8930

June 2009

U.S. Department of Commerce
Gary Locke, Secretary
National Institute of Standards and Technology

Dr. Patrick D. Gallagher, Deputy Director

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

Reports on Computer Systems Technology

The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology
(NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s
measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of
concept implementations, and technical analysis to advance the development and productive use of
information technology. ITL’s responsibilities include the development of technical, physical,
administrative, and management standards and guidelines for the cost-effective security and privacy of
sensitive unclassified information in Federal computer systems. This Interagency Report discusses ITL’s
research, guidance, and outreach efforts in computer security and its collaborative activities with industry,
government, and academic organizations.

National Institute of Standards and Technology Interagency Report 7502 (Draft)
42 pages (Jun. 2009)

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by the
National Institute of Standards and Technology, nor is it intended to imply that the
entities, materials, or equipment are necessarily the best available for the purpose.

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

Acknowledgments

The authors, Karen Scarfone and Peter Mell of the National Institute of Standards and Technology
(NIST), sincerely appreciate the contributions of the Forum of Incident Response and Security Teams
(FIRST) Common Vulnerability Scoring System (CVSS) Special Interest Group members and others in
reviewing drafts of this report, including Kurt Dillard, Robert Fritz, Tim Grance, Ron Gula, Dave Mann,
Doug Noakes, Jim Ronayne, Murugiah Souppaya, and Kim Watson. Special thanks also go to Chuck
Wergin and Dan Walsh, analysts for the National Vulnerability Database (NVD), for testing the proposed
scoring system by scoring many configuration entries with it, as well as reviewing several drafts of this
report. The authors are also grateful for the contributions of Elizabeth Van Ruitenbeek of the University
of Illinois at Urbana-Champaign in shaping and refining the NIST approach to vulnerability measurement
and scoring.

Portions of this report are based on the official Common Vulnerability Scoring System (CVSS) standard®
from the CVSS Special Interest Group; on NIST Interagency Report (IR) 7435, The Common
Vulnerability Scoring System (CVSS) and Its Applicability to Federal Agency Systems?; and on draft
NIST IR 7517, The Common Misuse Scoring System (CMSS): Metrics for Software Feature Misuse
Vulnerabilities®.

Abstract

The Common Configuration Scoring System (CCSS) is a set of measures of the severity of software
security configuration issues. CCSS is derived from CVSS, which was developed to measure the severity
of vulnerabilities due to software flaws. CCSS can assist organizations in making sound decisions as to
how security configuration issues should be addressed and can provide data to be used in quantitative
assessments of the overall security posture of a system. This report defines proposed measures for CCSS
and equations to be used to combine the measures into severity scores for each configuration issue. The
report also provides several examples of how CCSS measures and scores would be determined for a
diverse set of security configuration issues.

Audience

This report is directed primarily at information security researchers, particularly those interested in
vulnerability measurement or security automation; security product vendors; and vulnerability analysts.
The report is also intended to make organizations aware of the existence of CCSS and illustrate how they
could use CCSS once repositories of measures and scores are publicly available.

http://www.first.org/cvss/cvss-guide.html
2 http://csrc.nist.gov/publications/PubsNISTIRs.html
3 http://csrc.nist.gov/publications/PubsNISTIRs.html

http://www.first.org/cvss/cvss-guide.html
http://csrc.nist.gov/publications/PubsNISTIRs.html
http://csrc.nist.gov/publications/PubsNISTIRs.html

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

Table of Contents

1. Overview of Vulnerability Measurement and SCOFNNGcccovvvvviiiiiiiiiiiiiieeeeeeeeee e 1
1.1 Categories of System VulnerabilitieSccoovuuiiiiiii e 1

1.2 The Need for Vulnerability Measurement and SCOMNGevvvvevvveriiriiiiniiiniiinninnnn. 2

1.3 Vulnerability Measurement and Scoring SYStEMSeuiuueeiiemiiemiiiiiieeeeineeenneennnennnes 3

I O 08 T 1V 1= o= 5
2.1 BASE MELIICS ..uuteeeiiiiie ettt e et e e e e e e e et e e e e e e et e e e e e e e 6

2. 1.1 EXPIOBDIIILY . ..eeeeeieeiiiieee e 6

202 IMPACT .t e ettt e e e et e bt e aaaaeeae 10

A =T 0 a1 oo = LI\ 1= 1 [12
2.2.1 General EXploit LeVel (GEL)......cccuuiiiiiiiieee et 13

2.2.2 General Remediation Level (GRL)uuuiueiiiiiiiiiiiiii e 13

2.3 ENVIrONMENTAI METIICSeeeiiiii e a e e 14
D22 Tt R o Yot | I =t o] o T Y 14

2.3.2 Local Remediation LevVel (LRL)uuiiiiieiiiiiiiiiieeee e 15

A TG T o Tox> 1IN 0T o= Vod A 16

2.4 Base, Temporal, and Environmental VECIOISuuuueuuuuiimmiiiiriiiiiiiinnns 18

T oL o] 41 [0 PP P PP PPRPPR PP 20
G 200 R 1 T = 1T T 20
B.LlL GBNEIAL. ..ttt 20

.12 BASE MELICS ..eeeiiiie ettt ettt e e 21

G T o 1 = 11 0] 22
3.2.1 BaSe EQUALIONcciiiiiiiiie e e e e e e aeeae 22

3.2.2 Temporal EQUALIONuuuiiiiii s s s e e a e a e aa e 23

3.2.3 Environmental EQUALIONccoiiiiiiiiiiiiiiee e 23

4. SCONNG EXAMPIES et e e e e 25
R O 0 = (S £ TR PRSPPI 25

A O O 1o 1 e SR TRSOPPR 25

B O O iy SRRSO 26

N O 0 = {1 SR TR PP 26

A5 CCE-2366-3 iiieeiiiieee ettt ettt e e e et e e e e et e e e e e e e raaaa s 27

I O O 0 1 SRS 27

A O 01 = 5 K T SRR 28

B O 0 = 1 K PR PRI 28

e B O O e {0V e SR OR SO 29

O O 0 = e i e RSSO 29
I R O O e 1 e SRR 29
O O 08 = i < e TSP SOPPR 30

5. Comparing CCSS t0 CVSS and CMSSouuuiiiiiiiiiiiiieeiieeieeareeesreeeeanereeernrereeere. 32
6. Conclusions and FULUIE WOTKe ittt eeeeeeeeeeeeeeeeennees 33
7. Appendix A—Additional RESOUICES.......cciiiiiiiiii et e e e e e e eeaes 34
8. Appendix B—Acronyms and AbDreviatioNS............uuuuiiiiiiiiiiiiiii e 35

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

List of Tables

Table 1. Access Vector Scoring Evaluationcooiiiiiiiiiiiii e 8
Table 2. Authentication Scoring EValuationccooooiiiii i, 9
Table 3. Access Complexity Scoring EValuation................cooveiiiiiiiiiiiiieeeeeieee e 10
Table 4. Confidentiality Impact Scoring Evaluation................ccccooiiiiiiiiiiiiii e, 11
Table 5. Integrity Impact Scoring EValuationcccooiiiiiiiiiiiieeeiece e 12
Table 6. Availability Impact Scoring Evaluationeeviiiiiiiiiiiieeeee e 12
Table 7. General Exploit Level Scoring Evaluation............ ..o 13
Table 8. General Remediation Level Scoring Evaluationcccovvviiiiiiii e 14
Table 9. Local Vulnerability Prevalence Scoring Evaluation.............ccccceevviiiiiiiiiiiieceeeee 15
Table 10. Perceived Target Value Scoring Evaluationcccoooiiiiiiiiiiiiiiiiiees 15
Table 11. Local Remediation Level Scoring Evaluation.............c..ocoovviiiiiiiiiiin e 16
Table 12. Collateral Damage Potential Scoring Evaluationccccccciiiiiiiiniiens 17
Table 13. Confidentiality, Integrity, and Availability Requirements Scoring Evaluation 18
Table 14. Base, Temporal, and Environmental VECIOIScccoviiiiiiiiiiiiiiie e e e e 18

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

Overview of Vulnerability Measurement and Scoring

This section provides an overview of vulnerability measurement and scoring. It first defines the major
categories of system vulnerabilities. Next, it discusses the need to measure the characteristics of
vulnerabilities and generate scores based on those measurements. Finally, it introduces recent
vulnerability and measurement scoring systems.

1.1 Categories of System Vulnerabilities

There are many ways in which the vulnerabilities of a system can be categorized. For the purposes of
vulnerability scoring, this report uses three high-level vulnerability categories: software flaws, security
configuration issues, and software feature misuse.* These categories are described below.

A software flaw vulnerability is caused by an unintended error in the design or coding of software. An
example is an input validation error, such as user-provided input not being properly evaluated for
malicious character strings and overly long values associated with known attacks. Another example is a
race condition error that allows the attacker to perform a specific action with elevated privileges.

A security configuration setting is an element of a software’s security that can be altered through the
software itself. Examples of settings are an operating system offering access control lists that set the
privileges that users have for files, and an application offering a setting to enable or disable the encryption
of sensitive data stored by the application. A security configuration issue vulnerability involves the use of
security configuration settings that negatively affect the security of the software.

A software feature is a functional capability provided by software. A software feature misuse
vulnerability is a vulnerability in which the feature also provides an avenue to compromise the security of
a system. These vulnerabilities are caused by the software designer making trust assumptions that permit
the software to provide beneficial features, while also introducing the possibility of someone violating the
trust assumptions to compromise security. For example, email client software may contain a feature that
renders HTML content in email messages. An attacker could craft a fraudulent email message that
contains hyperlinks that, when rendered in HTML, appear to the recipient to be benign, but actually take
the recipient to a malicious web site when they are clicked on. One of the trust assumptions in the design
of the HTML content rendering feature was that users would not receive malicious hyperlinks and click
on them.

Software feature misuse vulnerabilities are introduced during the design of the software or a component
of the software (e.g., a protocol that the software implements). Trust assumptions may have been
explicit—for example, a designer being aware of a security weakness and determining that a separate
security control would compensate for it. However, trust assumptions are often implicit, such as creating a
feature without first evaluating the risks it would introduce. Threats may also change over the lifetime of
software or a protocol used in software. For example, the Address Resolution Protocol (ARP) trusts that
an ARP reply contains the correct mapping between Media Access Control (MAC) and Internet Protocol
(IP) addresses. The ARP cache uses that information to provide a useful service—to enable sending data
between devices within a local network. However, an attacker could generate false ARP messages to
poison a system’s ARP table and thereby launch a denial-of-service or a man-in-the-middle attack. The
ARP protocol was standardized over 25 years ago®, and threats have changed a great deal since then, so
the trust assumptions inherent in its design then are unlikely to still be reasonable today.

4

There are other types of vulnerabilities, such as physical vulnerabilities, that are not included in these categories.
5

David Plummer, Request for Comments (RFC) 826, An Ethernet Resolution Protocol (http://www.ietf.org/rfc/rfc826.txt)

http://www.ietf.org/rfc/rfc826.txt

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

It may be hard to differentiate software feature misuse vulnerabilities from the other two categories. For
example, both software flaws and misuse vulnerabilities may be caused by deficiencies in software design
processes. However, software flaws are purely negative—they provide no positive benefit to security or
functionality—while software feature misuse vulnerabilities occur as a result of providing additional
features.

There may also be confusion regarding misuse vulnerabilities for features that can be enabled or
disabled—in a way, configured—uversus security configuration issues. The key difference is that for a
misuse vulnerability, the configuration setting enables or disables the entire feature, and does not
specifically alter just its security; for a security configuration issue vulnerability, the configuration setting
alters only the software’s security. For example, a setting that disables all use of HTML in emails has a
significant impact on both security and functionality, so a vulnerability related to this setting would be a
misuse vulnerability. A setting that disables the use of an antiphishing feature in an email client has a
significant impact on only security, so a vulnerability with that setting would be considered a security
configuration issue vulnerability.

1.2 The Need for Vulnerability Measurement and Scoring

No system is 100% secure: every system has vulnerabilities. At any given time, a system may not have
any known software flaws, but security configuration issues and software feature misuse vulnerabilities
are always present. Misuse vulnerabilities are inherent in software features because each feature must be
based on trust assumptions—and those assumptions can be broken, albeit involving significant cost and
effort in some cases. Security configuration issues are also unavoidable for two reasons. First, many
configuration settings increase security at the expense of reducing functionality, so using the most secure
settings could make the software useless or unusable. Second, many security settings have both positive
and negative consequences for security. An example is the number of consecutive failed authentication
attempts to permit before locking out a user account. Setting this to 1 would be the most secure setting
against password guessing attacks, but it would also cause legitimate users to be locked out after
mistyping a password once, and it would also permit attackers to perform denial-of-service attacks against
users more easily by generating a single failed login attempt for each user account.

Because of the number of vulnerabilities inherent in security configuration settings and software feature
misuse possibilities, plus the number of software flaw vulnerabilities on a system at any given time, there
may be dozens or hundreds of vulnerabilities on a single system. These vulnerabilities are likely to have a
wide variety of characteristics. Some will be very easy to exploit, while others will only be exploitable
under a combination of highly unlikely conditions. One vulnerability might provide root-level access to a
system, while another vulnerability might only permit read access to an insignificant file. Ultimately,
organizations need to know how difficult it is for someone to exploit each vulnerability and, if a
vulnerability is exploited, what the possible impact would be.

If vulnerability characteristics related to these two concepts were measured and documented in a
consistent, methodical way, the measurements could be analyzed to determine which vulnerabilities are
most important for an organization to address using its limited resources. For example, an organization
could measure the relative severity of software flaws to help determine which should be patched as
quickly as possible and which can wait until the next regularly scheduled outage window. When planning
the security configuration settings for a new system, an organization could use vulnerability
measurements as part of determining the relative importance of particular settings and identifying the
settings causing the greatest increase in risk. Vulnerability measurement is also useful when evaluating
the security of software features, such as identifying the vulnerabilities in those features that should have
compensating controls applied to reduce their risk (for example, antivirus software to scan email

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

attachments and awareness training to alter user behavior) and determining which features should be
disabled because their risk outweighs the benefit that they provide.

There are additional benefits to having consistent measures for all types of system vulnerabilities.
Organizations can compare the relative severity of different vulnerabilities from different software
packages and on different systems. Software vendors can track the characteristics of a product’s
vulnerabilities over time to determine if its security is improving or declining. Software vendors can also
use the measures to communicate to their customers the severity of the vulnerabilities in their products.
Auditors and others performing security assessments can check systems to ensure that they do not have
unmitigated vulnerabilities with certain characteristics, such as high impact measures or high overall
severity scores.

Although having a set of measures for a vulnerability provides the level of detail necessary for in-depth
analysis, sometimes it is more convenient for people to have a single measure for each vulnerability. So
guantitative measures can be combined into a score—a single number that provides an estimate of the
overall severity of a vulnerability. Vulnerability scores are not as quantitative as the measures that they
are based on, so they are most helpful for general comparisons, such as a vulnerability with a score of 10
(on a0 to 10 scale) being considerably more severe than a vulnerability with a score of 2. Small scoring
differences, such as vulnerabilities with scores of 4.8 and 5.1, do not necessarily indicate a significant
difference in severity because of the margin of error in individual measures and the equations that
combine those measures.

1.3 Vulnerability Measurement and Scoring Systems

To provide standardized methods for vulnerability measurement and scoring, three specifications have
been created, one for each of the categories of system vulnerabilities defined in Section 1.1. The first
specification, the Common Vulnerability Scoring System (CVSS), addresses software flaw
vulnerabilities. The first version of CVSS was introduced in 2004, and the second version became
available in 2007.° CVSS has been widely adopted by the Federal government, industry, and others.
CVSS was originally intended for use in prioritizing the deployment of patches, but there has been
considerable interest in applying it more broadly, such as using its measures as inputs to risk assessment
methodologies.

The second vulnerability measurement and scoring specification is the Common Misuse Scoring System
(CMSS). CMSS was designed for measuring and scoring misuse vulnerabilities. CMSS uses the basic
components of CVSS and adjusts them to account for the differences between software flaws and misuse
vulnerabilities. A draft of the CMSS specification was released for public comment in February 2009 and
is undergoing revisions as of this writing.’

The Common Configuration Scoring System (CCSS), the third of the vulnerability measurement and
scoring specifications, is defined in this report. CCSS addresses software security configuration issue
vulnerabilities. The original draft specification for CCSS, which was released for public comment in May
2008, was based solely on CVSS. After CMSS was developed, the CCSS specification was redesigned
based on new concepts introduced in CMSS. So the current CCSS specification is largely based on CVSS
and CMSS, and it is intended to complement them.

The official CVSS version 2 specification is available at http://www.first.org/cvss/cvss-guide.html. NIST has also published
a Federal agency-specific version of the specification in NIST IR 7435, The Common Vulnerability Scoring System (CVSS)
and Its Applicability to Federal Agency Systems (http://csrc.nist.gov/publications/PubsNISTIRs.html).

Draft NIST IR 7517, The Common Misuse Scoring System (CMSS): Metrics for Software Feature Misuse Vulnerabilities

http://www.first.org/cvss/cvss-guide.html
http://csrc.nist.gov/publications/PubsNISTIRs.html

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

The three vulnerability measurement and scoring systems are similar. They all use the same six core
measures to capture the fundamental characteristics of vulnerabilities. They all generate vulnerability
severity scores in the range of O (lowest severity) to 10 (highest severity). However, there are also some
significant differences in the three specifications. These differences are discussed in Section 4, after the
CCSS specification has been defined and illustrated in Sections 2 and 3.

CCSS can help organizations to better analyze the risk inherent in their security configurations. Each
security configuration decision an organization makes can have positive and negative effects of varying
degrees to the security of a system. Without a standardized way to quantify these effects, organizations
cannot easily make sound decisions as to how each security issue should be addressed, nor can they
guantitatively determine the overall security strength or weakness for a system. Being able to express the
major security characteristics of configuration issues through standardized measures also assists
organizations in decision making, particularly when considering how security controls such as firewalls
might mitigate threats against certain issues. For example, if a configuration causes a weakness that could
be exploited across networks, then a network firewall, intrusion detection system, or other network-based
security control might be able to lessen the risk of exploitation of that weakness.

The primary purpose of this document is to define CCSS, and not to explain in detail how organizations
can use CCSS. This document is an early step in a long-term effort to provide standardized data sources
and corresponding methodologies for conducting quantitative risk assessments of system security.
Additional information will be published in the future regarding CCSS and how organizations will be able
to take advantage of it. Currently, the focus is on reaching consensus on the definition of CCSS and
encouraging security vendors and other organizations to consider adopting CCSS.

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

2. CCSS Metrics

This section defines the metrics that comprise the proposed CCSS specification. The CCSS metrics are
organized into three groups: base, temporal, and environmental. Base metrics describe the characteristics
of a configuration issue that are constant over time and across user environments. Temporal metrics
describe the characteristics of configuration issues that can change over time but remain constant across
user environments. Environmental metrics are used to customize the base and temporal scores based on
the characteristics of a specific user environment. Figure 1 shows how the base, temporal, and
environmental scores are calculated from the three groups of metrics.

a Base Metrics h

o~ =

' "
(Access Vector j E:owﬂdemia!m Irnpaca
(j (Integrity Impact j

Access Cnmplexity) (Availability Impact)

Authentication

b ~ b 1 -
\ Base Exploitability Base Impact
Base Score
4 : ™
Temporal Metrics
i e] A memesceeseosessoen e
| Base Exploitabiity || | Baselmpact |
General
[Exploit Level]
[General)
Remediation Level
L J
Temporal Exploitability

|

Temporal Score

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

Environmental Metrics

“'\
Confidentiality Impact !

k! 4
i
I

I" General]
o Exploit Level

Local
Exploit Level (Confidentiality

pon Requiremert
ocal Vulnerability
Prevalence
(Integrity j
Perceived Requirament
Target Value

\ r Availability
Requiremeant
Local Collateral Damage
Remediation Level Patential
b F A A
Environmental Environmental

Exploitability Impact

l

Environmental Score

&

Figure 1. CCSS Metric Groups

2.1 Base Metrics

This section describes the base metrics, which measure the characteristics of a security configuration
issue that are constant with time and across user environments. The base metrics measure two aspects of
vulnerability severity: Exploitability and Impact.

2.1.1 Exploitability

The Exploitability of a security configuration issue can be captured using the Access Vector,
Authentication, Access Complexity, and Exploitation Method metrics. These metrics are adapted from the
CVSS and CMSS specifications and reinterpreted in the context of security configuration issues.

2.1.1.1 Exploitation Method (EM)

Weaknesses caused by security configuration issues can be taken advantage of in two ways: actively and
passively.® These are indicated in CCSS as an Exploitation Method metric of Active (A) or Passive (P).
Some weaknesses can be actively exploited, such as an attacker gaining access to a sensitive file because
the targeted system is incorrectly configured to permit any user to read the file. Other weaknesses

& Itis theoretically possible that a single weakness caused by a configuration issue could be taken advantage of both actively

and passively, but no examples have been found to date.

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

passively prevent authorized actions from occurring, such as not permitting a system service or daemon to
run or not generating audit log records for security events.

The Exploitation Method metric is not used directly in generating CCSS scores, but the definitions for
some of the Exploitability base metrics are dependent on the value of the Exploitation Method metric.
The Exploitation Method metric is also useful for planning mitigation strategies, because most Passive
configuration issues involve an error or policy violation that can be fixed quickly. Active configuration
issues have a much wider range of mitigation possibilities and often require significantly more analysis
and planning for mitigation than Passive configuration issues.

Some organizations also find the Exploitation Method metric valuable because of how they define
availability. For example, an organization might consider a security configuration error that prevents use
of a particular system function as an operational concern, not a security concern, and prioritize and
remediate it differently. Such errors would all have an Exploitation Method metric value of Passive, so
organizations could use the metric to quickly differentiate the configuration issues that they consider
operational from the others.

2.1.1.2 Access Vector (AV)

The Access Vector metric reflects the access required to exploit the configuration issue. To produce an
Access Vector score for a configuration issue, consider what access to the system the exploiter® must
possess in order to exploit the issue. The possible values for this metric are listed in Table 1. The more
remote an exploiter can be, the greater the vulnerability score.

The Access Vector metric is assigned differently depending upon whether the configuration issue can be
taken advantage of actively or passively.

For active exploitation, the metric reflects from where the exploitation can be performed. The score
increases with the degree to which an exploiter may be remote from the affected system.

For passive exploitation, this metric reflects from where users or other systems are supposed to be able to
perform the action that is being prevented from occurring. The more remote the users or other systems
can be, the greater the score.

® The term “exploiter” refers to a party that is taking advantage of a weakness caused by a security configuration. In some

cases, authorized users will inadvertently exploit weaknesses, often without any knowledge of doing so, so terms such as
“attacker” are avoided in this document except where the context clearly indicates a conscious attack.

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

Table 1. Access Vector Scoring Evaluation

Metric Description
Value
Local (L) Active Exploitation: A weakness actively exploitable with only local access requires the exploiter to

have either physical access to the vulnerable system or a local (shell) account. Examples of locally
exploitable configuration issues are excess privileges assigned to locally accessible user or service
accounts, directories, files, and registry keys; prohibited local services enabled; weak password
policies for local accounts; lack of required password protection for screen savers; and lack of
required peripheral usage restrictions, such as permissions for the use of USB flash drives or CDs.

Passive Exploitation: A weakness passively preventing actions from occurring with local access
affects only local users, processes, services, etc. Examples of these configuration issues are
insufficient privileges assigned to locally accessible user or service accounts, directories, files, and
registry keys; necessary local services disabled; and overly restrictive peripheral configurations,
such as preventing the use of USB flash drives or CDs when an organization’s policy permits such
use.

Adjacent Active Exploitation: A weakness actively exploitable with adjacent network access requires the

Network (A) | exploiter to have access to either the broadcast or collision domain of the vulnerable software.

Examples of local networks include local IP subnet, Bluetooth, IEEE 802.11, and local Ethernet
segment. An example of an adjacent network configuration issue is configuring a wireless LAN
network interface card to connect to any available wireless LAN automatically.

Passive Exploitation: A weakness passively preventing actions from occurring with adjacent
network access affects users or other systems on the broadcast or collision domain of the
software. An example of such a configuration issue is a system that is intended to share its Internet
access with other systems on the same subnet, but is configured so that it cannot provide Internet
access to them.

Network (N) | Active Exploitation: A weakness actively exploitable with network access means that the exploiter
does not require local network access or local access. The software with the weakness is bound to
the network stack; this is also termed “remotely exploitable.” An example is a configuration setting
for a network service such as FTP, HTTP, or SMTP (e.g., excess privileges, weak password
policy). Another example is a prohibited network service being enabled.

Passive Exploitation: A weakness passively preventing actions from occurring with network access
affects users or systems outside the broadcast or collision domain. An example is a system that is
intended to provide a network service to all other systems, but the service has inadvertently been
disabled. Another example is a system that interacts with remote systems, but has all of its logging
and auditing capabilities disabled; the system will fail to record events involving the remote
systems, so this could permit malicious activity by those remote systems to go unnoticed.

2.1.1.3 Authentication (Au)

The Authentication metric measures the number of times an exploiter must authenticate to a target in
order to exploit a weakness. This metric does not gauge the strength or complexity of the authentication
process, only that an exploiter is required to provide credentials before an exploit may occur. The possible
values for this metric are listed in Table 2. The fewer authentication instances that are required, the higher
the score.

It is important to note that the Authentication metric is different from Access Vector. Here, authentication
requirements are considered once the system has already been accessed. Specifically, for locally
exploitable weaknesses, this metric should only be set to “Single” or “Multiple” if authentication is
needed beyond what is required to log into the system. An example of a locally exploitable weakness that
requires authentication is one affecting a database engine listening on a UNIX domain socket (or some

CCSS: METRICS FOR SOFTWARE SECURITY CONFIGURATION VULNERABILITIES (DRAFT)

other non-network interface). If the user'® must authenticate as a valid database user in order to exploit
the weakness, then this metric should be set to “Single.”

There are no distinctions between active and passive exploitation in assigning values to this metric.

Table 2. Authentication Scoring Evaluation

Metric Description

Value
Multiple Exploiting the weakness requires that the exploiter authenticate two or more times, even if the same
(M) credentials are used each time. An example is an exploiter authenticating to an operating system in

addition to providing credentials to access an application hosted on that system.
Single (S) | One instance of authentication is required to access and exploit the weakness.

None (N) Authentication is not required to access and exploit the weakness.

The metric should be applied based on the authentication the exploiter requires before launching an
attack. For example, suppose that a mail ser