Leetown, West Virginia Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Subjects of Investigation
Public Information
 

Research Project: IDENTIFICATION AND CHARACTERIZATION OF GENES AFFECTING COOL AND COLD WATER AQUACULTURE PRODUCTION

Location: Leetown, West Virginia

Title: Anabolic Effects of Feeding Beta-2 Adrenergic Agonists on Rainbow Trout Muscle Proteases and Myofibrillar Proteins

Authors
item Salem, Mohamed - WEST VIRGINIA UNIVERSITY
item Levesque, Aude - UNIVERSITY OF OTTAWA
item Moon, Thomas - UNIVERSITY OF OTTAWA
item Rexroad, Caird
item Yao, Jianbo - WEST VIRGINIA UNIVERSTIY

Submitted to: Comparative Biochemistry and Physiology
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: February 27, 2006
Publication Date: June 1, 2006
Citation: Salem, M., Levesque, A., Moon, T., Rexroad III, C.E., Yao, J. 2006. Anabolic effects of feeding beta-2 adrenergic agonists on rainbow trout muscle proteases and myofibrillar proteins. Comparative Biochemistry and Physiology. 1 44(2) 145-154.

Interpretive Summary: Protein turnover is the net effect of two dynamic cellular processes, protein synthesis and degradation. Protein turnover limits animal growth efficiency, as approximately 15 to 25% of the energy consumption of growing animals is used for protein breakdown and re-synthesis. Consequently, reduction of the cost of protein turnover is a strategic goal toward enhancement of animal growth efficiency. Oral administration of beta-2 adrenergic agonists (BAA) has been shown to increase muscle protein and decrease muscle fat in growing poultry, pigs, sheep and cattle. The mechanism of this effect involves altering protein degradation and synthesis rates. Studies of BAA administration have been conducted on several fish species including rohu fish, channel catfish, blue catfish and rainbow trout. These studies demonstrated that BAAs had much less anabolic effects in fish than in mammals. To achieve an effective utilization of BAAs in aquaculture, a better assessment of the precise mechanisms by which they modulate fish muscle accretion and degradation is needed. This study provides perspectives of the anabolic effects of the BAAs in rainbow trout muscle by up-regulation in synthesis of myofibrillar proteins and down regulation of the proteolytic enzyme system.

Technical Abstract: Beta-2 adrenergic agonists (BAAs) act as repartitioning agents in an intermediary metabolic pathway that redistributes nutrients to decrease adipose tissue and increase muscle accretion. This mechanism involves altering the protein degradation and synthetic rates. The aim of this study was to test the effects of chronic feeding of the BAAs clenbuterol (CLEN) and ractopamine (RACT) on rainbow trout (RBT) muscle. Specifically, we examined: 1) activities and mRNA accumulation of genes in the major proteolytic pathways including calpains, the multi-catalytic proteasome and cathepsins, and 2) mRNA accumulation of genes encoding the myofibrillar proteins, fast-twitch and slow-twitch myosin heavy chains (f-MHC and s-MHC, respectively) and beta-actin. RACT caused significant increases in mRNA accumulation of the calpain catalytic subunit (Capn1), the regulatory subunit (cpns), and the calpastatin large isoform (CAST-L). However, there was no corresponding net change in calpain enzymatic activity. CLEN caused a significant increase in mRNA accumulation of the proteasome alpha subunit without a corresponding change in 20S enzymatic activity. RACT caused a significant decrease in cathepsin D activity without affecting mRNA accumulation suggesting that the action is at the post-transcriptional level. In addition, CLEN as well as RACT caused highly significant increases in mRNA accumulation of the f-MHC and beta-actin genes suggesting an anabolic role of BAA on myofibrillar proteins. Neither CLEN nor RACT affected the mRNA expression of the s-MHC gene indicating no transformation of muscle fiber-type. This study suggests BAA may induce RBT muscle accretion by altering both protein synthesis and degradation.

   

 
Project Team
Rexroad, Caird
Vallejo, Roger
Palti, Yniv
 
Publications
   Publications
 
Related National Programs
  Aquaculture (106)
 
Related Projects
   FUNCTIONAL GENOMICS RESEARCH FOR RAINBOW TROUT AQUACULTURE PRODUCTION
   PRODUCTION OF AN INTEGRATED PHYSICAL AND GENETIC MAP FOR RAINBOW TROUT
   PRODUCTION OF AN INTREGRATED PHYSICAL AND GENETIC MAP FOR RAINBOW TROUT
   GENETIC BASIS OF CYPRINID HERPES VIRUS-3 RESISTANCE IN COMMON CARP
   PRELIMINARY CONSTRUCTION OF A 2ND GENERATION INTEGRATED PHYSICAL AND GENETIC MAP FOR THE RAINBOW TROUT GENOME
 
 
Last Modified: 05/14/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House