Development of Alumina-Forming Austenitic Stainless Steels

=Multi-Phase High-Temperature Alloys=

Yukinori Yamamoto, Michael P. Brady, Michael L. Santella, Hongbin Bei, Philip J. Maziasz, and Bruce A. Pint

> Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN

"22nd Annual Conference on Fossil Energy Materials," at Pittsburgh, PA July 8-10, 2008

Stainless Steels with Higher-Temperature Capability Needed

- Driver: Increased efficiencies with higher operating temperatures in power generation systems.
- Key issues are creep and oxidation resistance.
 - Significant gains have been made in recent years for improved creep resistance via nano MX precipitate control (M = Nb, Ti, V; X = C, N).
 - Stainless steels rely on Cr₂O₃ scales for protection from hightemperature oxidation.

-Limited in many industrial environments (water vapor, C, S) -Most frequent solution is coating: costly, not always feasible

Development Effort for Low Cost, Creep and Oxidation-Resistant Structural Alloy for Use from ~600-900°C

- Approach: Al₂O₃-forming austenitic stainless steels

 background and potential advantages
- Overview of alloy design strategy and initial results
- Current status and future research directions

Al₂O₃ Scales Offer Superior Protection in Many Industrially-Relevant Environments

- AI_2O_3 exhibits a lower growth rate and is more thermodynamically stable in oxygen than Cr_2O_3 .
- Highly stable in water vapor.

Challenge of Alumina-forming Austenitic (AFA) Stainless Steel Alloys

- Numerous attempts over the past ~30 years (e.g. McGurty et al. alloys from the 1970-80's, also Japanese, European, and Russian efforts)
- Problem: Al additions are a major complication for strengthening
 - strong BCC stabilizer/delta-ferrite formation (weak)
 - interferes with N additions for strengthening
- Want to use as little AI as possible to gain oxidation benefit
 - keep austenitic matrix for high-temperature strength
 - introduce second-phase (intermetallics/carbides) for precipitate strengthening

AFA Stainless Steel Alloys Successfully Developed

= 1000h, 800°C in water vapor =

HTUPS4 (Fe-14Cr-20Ni-2.5AI-0.9Nb base)

347 foil (Fe-18Cr-12Ni base)

*Y. Yamamoto et al., Science, **316** (5823) (2007) pp.433-436.

NbC Nano-Particles Pin Dislocations Effectively

TEM-BFI (after creep-rupture at 750°C/100MPa)

HTUPS4 (Fe-14Cr-20Ni-2.5Al-0.9Nb base)

NF709 (Fe-20Cr-25Ni base)

• Dense dispersions of NbC become source of excellent creep resistance.

Estimated Comparable Raw Material Cost To Existing Advanced Austenitic Stainless Steels

• Significantly less expensive than Ni-base alloys with similar properties.

HTUPS 4 Loses the Ability to Form External, Protective Al₂O₃ at 900°C

SEM Cross-Section of HTUPS 4 (0.9Nb/2.5 Al wt.%) after 500 h at 900°C in air

- •Transition to internal oxidation/nitridation of AI between 800-900°C
- •Reasons under investigation
 - -suspect oxygen solubility trends with temperature is key

Alloys Studied (FY06~FY08)

Alloy Designation	Nominal Composition (wt%, Fe: balance)													
	Ni	Cr	AI	Nb	Ti	V	Мо	W	Cu	Mn	Si	С	В	Р
Base alloy without Al addition														
HTUPS-1	20	14.3		0.15	0.3	0.5	2.5			2	0.15	0.08	0.01	0.04
2.5 wt% AI series														
AFA 2-1 (HTUPS4)	20	14.3	2.5	0.9			2.5			2	0.15	0.08	0.01	0.04
AFA 2-2	20	14.3	2.5	0.16	0.1	0.1	2.5			2	0.15	0.08	0.01	0.04
AFA 2-3	20	14.3	2.5	0.16			2.5			2	0.15	0.08	0.01	0.04
AFA 2-4	21	14	2.5	3		0.2	3.4					0.02	0.02	
AFA 2-5	21	14	2.5	3.3			3.4					0.08	0.08	
AFA 2-6	32	19	2.4	3.4										
3 wt% AI series														
AFA 3-1	20	14.3	3	0.4	0.1		2	1	0.5	2	0.15	0.08	0.01	0.04
AFA 3-2	20	14.3	3	0.6	0.1		2	1	0.5	2	0.15	0.1	0.01	0.04
AFA 3-3	26	14	3	0.6			1.25			0.2	0.2	0.04	0.01	0.02
AFA 3-4	20	14.3	3	1			2	1	0.5	2	0.15	0.1	0.01	0.02
AFA 3-5	20	14.3	3	1		0.2	2	1	0.5	2	0.15	0.1	0.01	0.02
AFA 3-7	20	14.3	3	1.5	0.1		2	1	0.5	2	0.15	0.1	0.01	0.04
AFA 3-8	20	14.3	3	2.5	0.1		2	1	0.5	2	0.15	0.1	0.01	0.04
					4 \	nt% A	I series	S						
AFA 4-1	20	12	4	0.6	0.1		2	1	0.5	2	0.15	0.1	0.01	0.04
AFA 4-2	20	12	4	1			2	1	0.5	2	0.15	0.1	0.01	0.02

OAK RIDGE NATIONAL LABORATORY

Alumina-scale Formation in Aggressive Conditions (900°C in air / 800 °C in air + water vapor)

- High AI addition helps alumina-scale formation even at 900°C in air.
- High Nb addition improves oxidation resistance in water vapor containing environment.

Higher AI, Nb, and Ni Levels Help Alumina-scale Formation

=Boundary for alumina-scale formation (~2000-5000 h exposure)=

- Ni additions also reduce the required amounts of Al/Nb additions to show protective alumina-scale formation.
- Preparation of the higher Al/Nb/Ni containing alloys is currently under progress.

Comparable Creep Strength to Commercial Heat-Resistant Alloys 100,000h rupture temperature [°C] 2.5AI AFA alloys (20Ni) 3AI 4AI Stress [MPa] Alloy 617 Alloy 709 Type 347 TP347HFG Super304H

- LMP {=(*T*[°C]+273)(C+ log *t*_{rupture} [h]), C=20}
- AFA alloys (20Ni) are in the range between alloy 709 (Fe-20Cr-25Ni base) and alloy 617 (Ni-22Cr-12Co-9Mo base).

Multi Second-phase (Intermetallics/Carbides) Strengthening

3AI/O.6Nb/20Ni (AFA 3-3), after creep-ruptured at 750°C/170MPa

SEM-BSE

TEM-BFI

 B2 [(Ni,Fe)AI] and Laves [Fe₂(Mo,Nb)] precipitates form during creep -may contribute to strengthening
 -rupture elongation still good despite intermetallic precipitates

Optimal Creep Resistance at ~1 wt% Nb

- MC type carbide (M: mainly Nb) is the key of creep resistance.
- Predicted optimum Nb at 4AI is ~1.5 wt% Nb (maximum amount of NbC).
- Further optimization could be expected by controlling the alloying elements.

50 Ib Trial Heat Made by Commercial Processes

- Vacuum melted and hot-rolled
- AFA4-1 Composition: Fe-20Ni-12Cr-4AI-0.6Nb base wt.%

AFA 4-1 Trial Heat Exhibited Good Tensile Properties

• Decrease in elongation with increasing temperature likely related to precipitation of intermetallic B2 and Laves phase

Trial Heat of AFA Alloy Readily Welded

Gas Tungsten Arc Weld (used same alloy as a filler material)

• No crack appears at fusion/heat-affected zones

Future Work

Approach from both Engineering/Scientific aspects;

- -Processing-
 - Screen abilities of welding and brazing.
- -Oxidation Resistance-
 - Long-term oxidation test in aggressive conditions (cont'd).
 - Effects of minor alloying additions: Y, Hf, etc.
 - Atom probe analysis of oxygen solubility in AFA alloys.

-High Temperature Strength-

- Optimize alloy compositions by using computational thermodynamic tools.
- Long-term creep testing at lower stress.
- Tensile tests of long-time aged AFA alloys.
- In-situ SEM observation of creep deformation of AFA alloys.

Courtesy: C. Boehlert (Michigan State Univ.)

Summary

- A new class of Fe-base, Al₂O₃-forming, high creep strength austenitic stainless steel alloys has been developed.
- Al₂O₃ formation at low levels of Al (2.5-4 wt.%)
 -current upper-temperature limit of 750-800°C.
 -higher Al, Nb, Ni levels may permit 800-900°C (and higher).
- Creep resistance and strength of AFA alloys (20Ni) comparable to best available heat-resistant austenitic steel alloys in a temperature range of 750-850°C.
- Comparable raw material costs to advanced heat-resistant steel alloys.

Summary (cont'd)

- 50 lb trial heat of AFA alloy was successfully hot-rolled by commercial processes.
- Preliminary screening tests suggest the AFA alloys are weldable.

Acknowledgments

The Office of Fossil Energy, U.S. Department of Energy, National Energy Technology Laboratory, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC, and The SHaRE User Facility in Oak Ridge National Laboratory, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, U.S. Department of Energy.

AFA2-1 (2.5AI/20Ni-0.9Nb), Solution Heat-treated

AFA2-1 (2.5Al/20Ni-0.9Nb), Aged for 72h@750°C

Kinetics: Alloy Design From Flux Criteria (Classical Wagner Oxidation Theory)

•Key is continuity: <u>continuous = protective</u>

•Continuous Al₂O₃ favored by alloy additions/reaction conditions that <u>decrease</u> Oxygen permeability or <u>increase</u> Al diffusivity

Protective Alumina Scale on Austenitic Steels at ~ 800°C

Al-modified (HTUPS4, Fe-14Cr-20Ni-2.5Al+x)

Creep-ruptured, **2192h/750°C**/100MPa in air

Base steel (HTUPS1, Fe-14Cr-20Ni base)

Developmental Scheme of

"Alumina-forming, Creep Resistant Austenitic Stainless Steels"

