Fossil Energy Advanced Materials Program

22nd Annual Fossil Energy Materials Conference meeting

Pittsburgh, PA July 8-10, 2008

Robert Romanosky, Technology Manager National Energy Technology Laboratory

Roddie Judkins

A Typical Day for Rod Judkins

... And He Loved It!!!!

Real Men Don't Ask For Directions

Advanced Research Materials Program

Annual Material Budget

FY08 Budget Allocation

Fossil Energy Key Material Research Areas

EHT = 5.00 kV WD = 7 mm Signal A = 582 mm Hz - 1000 Map + 70 x Date 26 Sep 2002 H Sensors

sample 1

Oxy-Firing

Fuel Cells

AR Materials Research Areas

- **New Alloys** To increase the temperature capability of alloys for use in specific components required for advanced power plants by understanding the relationships among composition, microstructure, and properties.
- Functional Materials To understand the special requirements of materials intended to function in specific conditions such as those encountered in hot gas filtration, gas separation, and fuel cell systems.
- **Breakthrough Materials** To explore routes for the development of materials with temperature/strength capabilities beyond those currently available.
- Coatings & Protection of Materials To develop the design, application, and performance criteria for coatings intended to protect materials from the high-temperature corrosive environments encountered in advanced fossil energy plants.
- Ultra Supercritical Materials To evaluate and develop materials technologies that allow the use of advanced steam cycles in coal-based power plants to operate at steam conditions of up to 760°C (1400°F) and 5,000 psi.

Materials R&D Key to Energy Options

Key Research Projects

- USC Boilers and Turbines
- High Temperature Alloys
- Modeling and Material Performance in Low N₂ Environments
- Refractory Material for Slagging Gasifier
- Computational Capability to Protect Corrosion Wastage of Boiler Tubes

Development of Advanced Refractory Materials for Slagging Gasifiers

- Thermal Cycling
- Variable Environment (oxidizing on start-up; reducing in service)
- Corrosive Slags of Variable
 Chemistry
- Corrosive Gases
- Pressures ≥ 400 psi

The result is frequent gasifier shutdowns for refractory replacement

What and Why Oxy-fuel Combustion

- Energy production (in particular, electricity) is expected to increase due to population increase and per capita increase in energy consumption
 - Oxy-fuel combustion is one option for providing increased capacity to satisfy the future energy consumption demand
 - Can be used for retrofitting or new plants
- Global climate change one of the sources for CO₂ increase in the atmosphere is exhaust from fossil fuel combustion plants
 - Oxy-fuel combustion readily supports the capture and sequestration of CO₂ from power plants

Technological Barriers – Materials Needs

- Better understanding of material performance in oxyfuel environments
 - Evaluate ash assisted hot-corrosion of boiler alloys
 - Develop computational models to predict fireside corrosion will aid in the development of all advanced combustion systems
 - Evaluate other plant components
 e.g., coal pulverizers (wear-corrosion interactions)
- Future Capability: Combine Oxyfuel with USC.
 - Potential cleaner coal combustion technology
 - Oxyfuel: ease of flue gas clean-up and CO₂ sequestration
 - USC: maximize efficiency
 - Need cost effective advanced alloys that can withstand the oxyfuel/USC environment
 - higher temperatures and higher pressures than current systems

Advanced Sensor Materials

•Harsh Environmental Conditions

Sensor Material Development

•Rugged Sensor Designs

Driver for New Sensing Technology

• Advanced Power Generation:

- Harsh sensing conditions throughout plant
- Monitoring needed with advanced instrumentation and sensor technology.
- Existing instrumentation and sensing technology are inadequate

• Coal Gasifiers and Combustions Turbines:

- have the most extreme conditions
 - Gasifier temperatures may extend to 1600 °C and pressures above 800 psi. Slagging coal gasifiers are highly reducing, highly erosive and corrosive.
 - Combustion turbines have a highly oxidizing combustion atmosphere.

• Targeting development of critical on line measurements

- Sensor materials and designs are aimed at up to 1600 °C for temperature measurement and near 500 °C for micro gas sensors.
- Goal is to enable the coordinated control of advanced power plants followed by improvement of a system's reliability and availability and on line
 optimization of plant performance.

Materials for Sensing in Harsh Environments (Optical and Micro Sensors)

- Sapphire
- Alumina
- Silicon Carbide
- Doped Silicon Carbide Nitride
- Yttria stabilized zirconia
- Fused/doped silica for certain conditions
- Interest in
 - Active / doped coatings
 - 3D porous or "mesh" nanoderived ceramics / metal oxides

Sensor Packaging (Design, Materials, Technology Transfer)

- Package sensor to enable
 exposure to environment but
 protect for adequate performance
 - Chemical exposure, electrical lead failure, mechanical thermal expansion considerations
- Ease in handling, installation, replacement
- Barrier for technology transfer

What Does the Future Look Like?

- The USA and the world will face great energy challenges with ever increasing environmental constraints
- Advanced fossil energy power systems will be needed
- The Advanced Research Materials Program is poised to have even greater impacts on future energy systems
 - Novel materials for gas separation
 - Fuel cell materials
 - Next generation stainless steels with higher strength and better oxidation resistance
 - Advanced coatings
 - Prescriptive materials design and lifetime prediction for extreme environments

Program Roadmap

