

Room-temperature ductility enhancement of Mo alloy with nano-sized metal oxide dispersions

N. Ma, and B.R. Cooper Physics Department West Virginia University **C. Feng, J. Tannenbaum and B.S.-J. Kang** Mechanical and Aerospace Engineering Department West Virginia University

22nd Annual Conference on Fossil Energy Materials, Pittsburgh, July 8-10, 2008

DOE/NETL ARM Program, contract no. DE-AC05-00OR22725 managed by UT-Battelle, LLC (6/23/2005 to 6/30/2008)

And

DOE/NETL UCR Program, contract no. DE-FG26-05NT42526 (8/01/2005 to 7/31/2008) Patricia Rawls, Program Manager

Research Objective: To understand and to remedy the impurity effects for room-temperature ductility enhancement of molybdenum (Mo) based alloys by the inclusion of candidate nano-sized metal oxide dispersions.

Task 1: Molecular Dynamic Simulation

To study *microscopic* mechanisms of impurity embrittlement of **Mo**- and **Cr**-based alloys and their room-temperature ductility enhancement effects of **MgO** or $MgAl_2O_4$.

To develop predictive capabilities to facilitate the design and optimization of Mo and other high temperature alloys for fossil energy materials applications.

Task 2: In-situ Mechanical Property Measurement

To develop a micro-indentation measurement technique ****** for quick assessment of material mechanical behavior and properties. Task 2 also includes preliminary development of Mo alloys with candidate nano-sized metal oxides (**MgAl**₂**O**₄)

** : Also co-supported by NETL, Materials and Component Development for Advanced Turbine Systems Program, Project Monitor: Mary Anne Alvin

West Virginia University

Background

Due to their ultra-high working temperature (>1000oC) and excellent oxidation and corrosion resistance, a number of Cr and Mo based alloys are being developed as the next generation structural materials for fossil energy applications. However, a severe drawback with these materials is their limited room temperature ductility.

Past stude showed ductility improvement of Mo phase by inclusion of metal oxide dispersion (e.g. Schnibel 2003)

Experimental difficulties:

•Optimal dispersion composition

- MgAl₂O₄, MgO, or other oxide candidates?
- nano-size oxide? how to achieve uniform dispersion and prevent agglomeration?

Atomistic modeling can provide some answers to these questions to reduce experimental trial and error

Mo with spinel dispersions: different procedures yield different results. (Schnibel, 2003)

West Virginia University

Influence of impurity elements

Insufficient ductility mostly due to impurities (such as N, O, etc.)

- weaken the metal-metal bond
- precipitate or segregate as brittle oxides or nitrides

Ductility enhancement by MgO or MgAl₂O₄ spinel dispersions:

- Scruggs 1965: on Cr and Mo Alloys
 - Mechanism assumed to be impurity gettering by spinel phase
- Brady 2003 (detailed microstructural analysis): on Cr Alloys
 - Impurities detected near the metal oxide boundary (not inside the oxide)
 - MgAl₂O₄ is not as effective as MgO
 - Other metal oxides were tried with detrimental results
 - unclear whether MgO or MgCr₂O₄ is more effective
 - Fundamental mechanism is not fully understood
 - Further studies are needed to optimize the composition and size of dispersion material

(Extension of) Rice's criterion

What matters are:

the characteristics of the **Chemical bonds** the properties of the **Valence electrons**

How properties of electrons affect ductility

Localized around ions

Immobile (cannot fill the voids easily)

Delocalized, mobile electrons make flexible bonds → **ductile**

West Virginia University

Properties of electrons

Space distribution

How localized/delocalized electrons are

• Energy distribution

How easy electrons can be excited to mobile states

• Angular momentum distribution How rigid/flexible chemical bonds are

Model systems

A. impurity embrittled system

B. ductility enhanced system

Spatial charge distribution

Results: Interstitial charge (Cr alloys)

more interstitial charge → better ductility

Results: Interstitial charge (Mo alloys)

more interstitial charge \rightarrow better ductility

Results: Muffin-tin charge distribution

uniformly shared MT charge (less variance) → better ductility

Results: L-projected population

Charge (e)	N imbrittled Cr			MgO ductilized Cr			
	1 st Cr	2 nd Cr	3 rd Cr	4 th Cr	1 st Cr	2 nd Cr	3 rd Cr
s-like	0.172	0.260	0.204	0.206	0.256	0.297	0.245
d-like	3.772	3.970	3.603	3.585	4.137	3.998	3.734
s/d %	4.6	6.5	5.7	5.7	6.2	7.5	6.6

Results: L-projected energy

Energy Ryd.)	O embrittled Mo			MgO ductilized Mo			
	1 st Cr	2 nd Cr	3 rd Cr	4 th Cr	1 st Cr	2 nd Cr	3 rd Cr
E* 4s	1.004	0.954	1.078	1.077	0.837	0.940	1.058
E* 3d	0.808	0.730	0.854	0.849	0.868	0.934	1.047
ΔE	0.20	0.22	0.22	0.23	-0.03	0.01	0.01

Higher s level

Lower s level

Summary: Properties of electrons

What has been achieved?

Identified *microscopic* criteria to predict **brittle/ductile** properties

These criteria can

Explain the **mechanism** Be used in larger scale simulations to **optimize** performance

Result: Molecular Dynamics (Cr/MgO with N)

163 atoms

Constant Temperature (600 K)

Diffusion time ~1ps (10^{-12} s) Diffusion length ~ 2A

Result consistent with Brady's experiment

Analysis: Charge Density Distribution and DOS

Analysis: Impurity Electronic States

In the bulk of Cr

Near the Cr/MgO boundary

Conclusion: O-N antibonds force the impurity states to rotate 45 degrees, promoting more flexible σ bonds in the system.

West Virginia University

Mo/Spinel: Stability of Impurity

48 Mo atoms56 Spinel atoms1 O impurity

-2.8eV → more stable

Mo/Spinel: L-projected Occupations

O 2s	1.60	1.62	+0.02
O 2p	4.61	4.60	- 0.01
Mo 4s	36.53	36.66	+0.13
Mo 3d	250.24	250.04	- 0.20

Mo/Spinel: Average Entropy of the States

0	16.4	31.1	+14.7
Mo/48	60.2	61.1	+0.9

Note: higher entropy means more delocalized spatial charge distribution \rightarrow more ductile

West Virginia University

Mo/MgO: Stability of Impurity

48 Mo atoms64 MgO atoms1 O impurity

E = -692.3 eV

-2.1eV → more stable

Mo/MgO: L-projected Occupations

O 2s	1.56	1.57	+0.01
O 2p	4.64	4.65	+0.01
Mo 4s	35.06	35.09	+0.03
Mo 3d	250.97	250.88	-0.09

Mo/MgO: Average Entropy of the States

0	13.2	20.8	+7.6
Mo/48	58.3	57.5	-0.8

Note: higher entropy means more delocalized spatial charge distribution \rightarrow more ductile

Comparison: Spinel vs. MgO

	Spinel		MgO	
O 2s	1.62	+0.02	1.57	+0.01
O 2p	4.60	-0.01	4.65	+0.01
Mo 4s	36.66	+0.13	35.09	+0.03
Mo 3d	250.04	-0.20	250.88	-0.09
O states	31.1	+14.7	20.8	+7.6
Mo states	61.1	+0.9	57.5	-0.8

Conclusion: though both spinel and MgO may enhance the metallic bonds and ductility of Mo, spinel is more efficient than MgO.

Summary: Task 1: Molecular Dynamics Simulation

Cr-based systems: Observed possible impurity gettering

- N diffused from inside the matrix to the interfacial boundary
- Charge distribution and DOS properties indicate improved ductility
- Results in consistency with Brady's experimental work: *"impurity management effects" Brady, et.al. Mat. Sci. & Eng. A,* **358**, 243 (2003)

Mo-based systems: *No impurity gettering observed up to 1000 °K*

- Higher barrier for oxygen diffusion activation
- Possible ductility enhancement features observed for both spinel and MgO \rightarrow *delocalized states, higher s occupation ratio, etc.*
- Spinel is more efficient than MgO

Task 2: In-situ mechanical property measurement Micro-Indentation Technique Development at WVU

- Gen I: Transparent Indenter Measurement (TIM) Technique (Interferometric Indentation Method)
- Gen II: Contact Area with Multi-partial Unloading Procedure

(A Simplified TIM Method)

- Gen III: Multi-partial Unloading Technique (A Load-Based Algorithm)
- Capability:
- Young's modulus, hardness, stress-strain curve of alloys or thin-film coating, surface stiffness response measurement of multi- layers structures, e.g. TBC
- **Ductile/Brittle** assessment using indentation technique
 - Indentation-induced surface cracking
 - Surface profile/slip lines/shear bands

Motivation for Micro-Indentation R&D

Material Matrix (typical alloys development)

*Pure Cr, HP 2 hrs/1590C	Cr-6TiO2, HP 2hrs/1590C
*Scruggs Cr-6MgO-0.5Ti (extrusion, 1300C) HP 2hrs/1590C	Cr-6Y2O3, HP 2hrs/1590C
Cr-6MgO-0.5Ti, HP 2hrs/1590C	Cr-2MgO, HP 2hrs/1590C
Cr-6MgO-0.5Ti, sintered HP 2hrs/1590C	Cr-2ZrO2, HP 2hrs/1590C
Cr-6MgO-0.5Ti, HIP 1.5hrs/1590C	Cr-2TiO2, HP 2hrs/1590C
Cr-6MgO-1Ti, HP 2hrs/1590C	Cr-6La2O3, HP 2hrs/1590C
Cr-6MgO-2.2Ti, HP 2hrs/1590C	Cr-3MgAl2O4, HP 2hrs/1590C
Cr-6MgO-0.75Ti, HP 2hrs/1590C, extruded 1300C	Cr-Fe-MgO, 51.75Cr-42.44FE-5.66MgO- 0.15La2O3wt%, extruded powders at 1300C
Cr-6MgO-0.75Ti, HP 3hrs/1590C, extruded 1300C	*Cast Re-(26-30)Cr wt% nominal
Cr-6MgO, HP 2hrs/1300C	#695, MO, Mo powder (2~5um) HP/1hr/1800°C/3ksi/Vacuum
Cr-6MgO, HP 2hrs/1450C	*#697, Mo-6wt%MgAl2O4, Mo powder (2-8um), MgAl2O4 (1-5um) HP/1hr/1800°C/3ksi/Vacuum
Cr-6MgO, HP 2hrs/1590C	#698, Mo-3wt%MgO, Mo powder (AEE, 2-8um) MgO, HP/1hr/1800°C/3ksi/Vacuum
*Cr-6MgO(Nano), HP 2hrs/1500C	*#678, Mo-3.4wt%MgAl2O4, Mo powder(2-8um) MgAl2O4(1~5µm),HP/1hr/1800°C/3ksi/Vacuum

Alloys received from M.P. Brady and J. H. Schneibel, ORNL; HP: Hot Pressed; *: Alloys Tested

Tensile Test Specimen EDM Cutting

High Temperature Tension Test Experimental Setup MTS 810 System

 MTS 810 high temperature material testing system

1. High temperature extensometer, 2. Quartz lamp heater

3. Thermal couple, 4. Water cooling lines

West Virginia University

Alloy #697 Tensile Test Results with Thermal Cycle Effect

Room Temperature

Room Temperature and 650°C

Room Temp 0.254mm/min

Room Temp

0.00254mm/min

650°C 0.254mm/min

650°C 0.00254mm/min

Instrumented Indentation Technique (Background)

• Young's modulus (E)

$$\frac{dP}{dh} = \frac{2}{\sqrt{\pi}} E_r \sqrt{A} \quad \text{(Spherical indentation)}$$

Where *Er* is the reduced Young's modulus,

$$\frac{1}{E_r} = \frac{1 - v^2}{E} + \frac{1 - v_0^2}{E_0}$$
 (M.F. Doerner et al, 1986)

P-h curve from load-depth sensing indentation test

A: contact region (derived from dp/dh or direct measurement)

- Post-yielding stress-strain data
 - Tabor's empirical relation:
 d: contact diameter, D: indenter diameter, *Pm*: mean pressure C: constraint factor.
 - Constraint factor C is strain hardening depended

$$\varepsilon = 0.2 \frac{d}{D}$$

$$\sigma = \frac{P_m}{C} \qquad P_m = \frac{Load}{\pi a^2}$$

ORNL Cast Re-(26-30) Cr wt% Alloy

Application: ORNL Cast Re-(26-30) Cr wt% Alloy

• Initial multiple-partial unloadings for Young's modulus determination and followed by discrete loadings for post-yielding stress/strain data based on Tabor's equations.

(b) Visualization of indented surface, Field of view for each image: 395um x 377um

West Virginia University

Gen III: Multi-Partial Unloading Indentation Technique (A Load-Based Algorithm)

Specimen

Load-depth sensing indentation system without imaging

Governing Equations

$$\frac{dh}{dp} = C \times \frac{1}{p^{1/3}} + C_s$$
$$C = \left(6RE_r^2\right)^{-1/3}$$

Displacement Multi-partial unloading indentation technique

Applications:

Load

- Young's modulus
- Stress-strain curve
- Indentation creep, fatigue

Potential:

Portable Indentation System

Load-Based vs. Contact Area - Based

• Spherical indentation, elastic

Load-Based Indentation

- Compliance form
 - No area, or contact region measurement

$$\frac{dP}{dh} = (6RE_r^2)^{1/3} \cdot P^{1/3}$$

$$\frac{dh}{dP} = (6RE_r^2)^{-1/3} \cdot P^{-1/3}$$

$$\frac{dh}{dP} = C \times \frac{1}{P^{1/3}}$$

Gen III: Multi-Partial Unloading Indentation Technique

Gen III: Validation Tests

0.18

0.16

0.14

0.12

0.1

0

0.1

(N/mn) dp/qp

• IN 783 (E = 177GPa), measured E=169 GPa

Compliance curve

1/p^(1/3) (1/N^1/3)

0.2

Inconel 783

0.3

Linear (Inconel 783)

0.4

0.5

v = 0.2434x + 0.092

 $R^2 = 0.9969$

AI 7075-T6 (E= 71 GPa), measured E = 67 GPa

Load-depth curve

Compliance curve

West Virginia University

Gen III: Benefits

- Designed for TBC/Bond Coat specimen
 - Measurement of surface stiffness responses as a means to correlate the evolution of the microstructural changes of the TBC bond coat/substrate subjected to high temperature thermal cycles.
 - Can also be correlated to the damping effect
 - No surface preparation is needed
 - Simple and has the potential to develop a portable unit for in-situ field testing
- Controllable influence zone
 - As load increases, the influence zone increases.
 - The response is contributed from different region of the multi-layered material

$$\frac{dh}{dp} = C \times \frac{1}{p^{1/3}} + C_s$$

West Virginia University

Gen III: Multi-Partial Unloading Indentation Technique (A Load-Based Algorithm)

Displacement

Specimen Load-depth sensing indentation system without imaging

Governing Equations

$$\frac{dh}{dp} = C \times \frac{1}{p^{1/3}} + C_s$$

$$C = \left(6RE_r^2\right)^{-1/3}$$

Multi-partial unloading indentation technique

Table-top Unit

Applications:

- Young's modulus
- Stress-strain curve
- Indentation creep, fatigue

Potential:

Portable Indentation System

Portable Micro-Indentation System

- A prototype portable micro-indentation system
- Software Development
 - Establish initial condition
 - Setup testing parameters
 - Acquire load-depth information
 - Use load-based algorithm for data processing
 - Indentation Results

Table-Top Micro-Indentation Unit

Portable Micro-Indentation Unit

Establish Initial Condition

Curre	nt PI Position 5.017 Micro	Current Load n -0.0115 M	Loadcell Scale ewton M75 - 100 LB (SG24,	₽ ▼ 40	Travel Range) Microns 🛛 🗸	Choose Indenter Middle Size,	Done
Establish	Contact Setup 1 1.6000 - 1.4000 - 1.2000 - 0.8000 - 0.6000 - 0.4000 - 0.2000 -	e Load-Depth Data Tota Processing	History	E and S-S of Contact Positions 5.142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contact Load (N) Contact Load (N) Contact Load (N) Auto Establish Initia New Position (micro 5.000	Contact Load (N) O.500 Automatic Reset Establish Initial Contact New Position (micron) O.500 Control Velocity	
	0.0000	twy/it_undr/y/dy Time	314		0 0 0 0	Move PI to Ne	w Position
	Reset Load	lcell Initial Reading	Notes: 1. Please adjust 2. The History o 3. Use the laste will be autom 3. You can mant 4. If you try to r be prompted	: the contact of Contact Po st contact p stically trans ually retreat move PI to a whether or n	load according to you ositions keeps a record osition as a guideline f fered to the next step the PI position to che new Position which is not to proceed the op	ir loadcell capacity d of all the contact position you have or adjustment of the PI position, us o, Setup Test Parameters ck if the contact position is correct. more than 3 micron from current po eration. This is to prevent disater m	e reached. ually, the number osition, you will ovement of PI.

Setup Testing Parameters

Acquire Load-Depth Information

Use Load-based Algorithm for Data processing

Indentation Results

West Virginia University

Resolution and Accuracy

- PZT actuator accuracy: 4 nm
- Loading accuracy: 0.05 N
- Indenter size: 1/16" (diameter, or R = 793 µm)

(For micro-indentation on Mo alloys and other high strength alloys)

- Typical loading range: 40 N to 200 N
- Typical contact diameter: ~ 200μm (100 to 300 μm)
- Estimated max. indentation depth: ~ 6 μm (4 to 12 μm)

(For micro-indentation on TBC specimens)

- Typical loading range: 60 N to 200 N
- Typical contact diameter: ~ 200 μm (150 to 280 μm)
- Estimated max. indentation depth: $\sim 6 \mu m (4 \text{ to } 10 \mu m)$

Portable Indentation System Design & Applications

Portable micro-indentation system with electromagnetic or v-notch mount

Latest portable micro-indentation system suitable for curved / flat surfaces

Software for both units

Portable Micro-Indentation Test at Different Orientation On Curved/Flat Surfaces

Upside down position for curved surface

Upside down Position for flat surface

curved surface

Validation Tests

Flat Surface

Curved Surface

Test	Bronze 932	Aluminum 6061	01 Tool Steel
Number	GPa	GPa	GPa
Book Value	103 -124	68 - 71	190 - 210
1	109.98	68.23	207.92
2	113.74	68.57	209.78
3	113.98	68.14	210.01
4	109.90	68.43	204.75
5	111.99	70.51	211.66
6	115.45	69.07	209.78
7	119.02	68.40	210.48
8	114.06	77.15	212.37
9	121.97	73.40	215.03
10	124.38	67.77	199.94
Average	115.45	69.97	209.17
Standard Deviation	4.88	3.03	4.22

Test	Bronze 932	01 Tool Steel
Number	GPa	GPa
Diameter	3/4"	3/4"
Book Value	103 -124	190 - 210
1	95.54	209.19
2	96.99	211.59
3	107.50	188.23
4	103.96	197.05
5	117.80	197.83
6	107.15	202.24
7	96.69	187.51
8	100.06	184.33
Average	103.21	197.25
Standard Deviation	7.54	10.12

West Virginia University

High-Temperature Micro-Indentation Tests (Preliminary)

Steel at 600C (Measured E~160GPa) ReN5 at 600C (Measured E~70GPa)

Materials Matrix

(Alloys received from M.P. Brady and J. H. Schneibel, ORNL)

#678, Mo-3.4wt%MgAl2O4: 1800°C/4hr/3ksi/Vacuum, Mo powder 2-8µm, MgAl2O4, 1-5µm#696, Mo-3.0wt%MgAl2O4: 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8µm, MgAl2O4, 1-5µm#695, Mo only: 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8µm#697, Mo-6.0wt%MgAl2O4: 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8µm, MgAl2O4, 1-5µm#698, Mo-3wt%MgO: 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8µm, MgAl2O4, 1-5µm#698, Mo-3wt%MgO: 1800°C/1hr/3ksi/Vacuum, Mo powder 2-8µm, MgAl2O4, 1-5µmCast Re-(26-30) Cr wt% nominal

(Powder mix prepared at WVU using Ultrasound Mixing Technique and sent to ORNL for vacuum hot-pressed)

 Mo-5.0wt%MgAl₂O₄
 : 1800°C/0.5hr/3ksi/Vacuum

 Mo-5wt%MgO
 : 1800°C/1.0hr/3ksi/Vacuum

 Mo-5.0wt%TiO₂
 : 1700°C/0.5hr/3ksi/Vacuum

(Powder mix prepared using Hosakawa Mechano Chemical Bonding processing technique from Hosokawa, then vacuum hot-pressed)

Mo-2.5wt%MgAl₂O₄ (Before MCB process): 1800°C/0.5hr/3ksi/Vacuum

Summary: Young's Modulus Measurement

Material	Young's modulus (GPa)
Cast Re-(26-30) Cr wt%	234
#678, Mo-3.4wt%MgAl ₂ O ₄	229
#696, Mo-3.0wt%MgAl ₂ O ₄	200
#697, Mo-6.0wt%MgAl ₂ O ₄	192 (Tensile test : 189)
#698, Mo-3wt%MgO	211
Mo-MgO (WVU)	254
Mo-MgAl2O4 (WVU)	202
Mo-TiO2 (WVU)	226

(Averaged value from five indentation tests, typical)

Anaytical results show a small tensile zone on the surface next to the indentation zone

Figure 3. Tensile and compressive, σ_{π} field in a substrate under a Hertzian load.

[Figura 3: Região sob tensão radial e compressiva, $\sigma_{\rm sp}$ devido uma carga Hertziana.]

(From: A. Franco Jr., S. G. Roberts, Ceramica 50 (2004) 94-108)

Verification by finite element simulation (WVU)

Material surface condition evaluation of Mo alloys with spinel particles

SEM observation at 2000x

#695, brittle, indentation load 1500N, cracks are observed #697, brittle, indentation load 1000N, cracks are observed

#678, Ductile, indentation load 2000N, no cracks were observed

Note: Dashed lines are indent boundaries

🤟 West Virginia University

#698, Mo-3wt%MgO

• 400N indentation, cracking

1000N indentation, cracking

1000N indentation with 1.6mm WC indenter

(Image size: 321µm×240µm)

🮸 West Virginia University

#696, Mo-3.0wt%MgAl₂O₄

• 400N indentation, cracking

• 1000N indentation, cracking

1000N indentation with 1.6mm WC indenter

(Image size: 321µm×240µm) (WVU $MgO_{0.05}Mo_{0.95}$, $TiO_{2\,0.05}Mo_{0.95}$, $MgAl_2O_{4\,0.05}Mo_{0.95}$ Powder Mixes)

- (1) 95 g of Mo powder (65 nm nominal) was mixed in ethyl alcohol and sonicated for 10 minutes using a high intensity sonicator (VC 600) in the presence of Argon.
- (2) Then 5 g of MgO or TiO₂ or MgAl₂O₄ powder (20 nm nominal) was added slowly to the Mo solution with continuous sonication. The total mixture was sonicated for 1 hour in Argon atmosphere.
- (3) The solution was kept at room temperature in Argon-filled glove box to let the ethanol evaporate for 24 hours. The remaining alcohol was removed by drying the product in vacuum.
- (4) The dried powder was kept in Argon filled glove box and packed in a bottle in the presence of Argon.

🎸 West Virginia University

Mo-TiO₂ (WVU)

• 400N indentation, cracking

• Vickers hardness

353HV, 1kg, 30s

🤝 West Virginia University

Mo-MgO (WVU)

• 400N indentation, cracking

• Vickers hardness, 249HV, 1kg, 30s

Mo-MgAl₂O₄ (WVU)

• 400N indentation, no cracks in MgAl2O4 uniformly distributed region

• Vickers hardness (plastic flow observed)

276HV, 1kg, 30s 344HV, 1kg, 30s

Hosokawa Mechano Chemical Bonding Technology

The powder mixture introduced into the internal cavity of the equipment is subjected to a centrifugal force which transports them to the inner wall of the rotating chamber. The powder mixture is then subjected to additional compression and shear mechanical forces as they rotate and pass through a gap between the chamber wall and what is referred to as a press head.

This results in the smaller particles being dispersed and bonded onto the surfaces of larger base particles without using any binders. This technique can also be applied to improve particle sphericity and for precision mixing of nano and submicron powders.

Powder Mixing Using Mechano-Chemical Bonding Technique

450 gram of Mo-MgAl₂O₄ powder mixes (97.5wt% Mo (size: 2 to 6 μ m) and 2.5wt% MgAl₂O₄ (size: 30 nm)) were processed by Hosokawa's Mechano-Chemical Bonding technique

SEM image: $MgAl_2O_4$ coverage: brighter areas have less $MgAl_2O_4$.

MgAl₂O₄ coverage

ZEISS

More SEM image: MgAl₂O₄ coverage (Energy-selected backscattering detector)

SEM image (Inlens detector) Mo particle is cut by FIB

SEM image (SE2 detector) $MgAl_2O_4$ thickness variation on the Mo Surface

 200 nm
 Mag = 250.45 K X FIB Mag = 250.45 K X FIB Mag = 250.45 K X FIB Lock Mags = Yes
 EHT = 5.00 kV WD = 6 mm
 Signal A = ESB Photo No. = 2860
 Date :16 Dec 2007 Time :1:38:59

ESB image: bright areas are Mo and less bright cover is MgAl₂O₄

EDS maps (O, Mg, Al, Mo): confirm MgAl₂O₄ on Mo particle surface. Brighter areas (top left) have less MgAl₂O₄.

EDS spectrum from the whole area: Mo, AI, Mg, O

Bending Of Mo+MgAl₂O₄ (MCB processing)

Specimen after unloading
Vickers hardness (plastic flow observed)

Microstructure

225HV, 1kg, 30s, 10x

230HV, 1kg, 30s, 10x

Comparison of Ductility through Vickers Indentation

#697: Cracks observed

Mo-Nano MgAl₂O₄ with sonication process (WVU)

Mo-Nano MgAl₂O₄ with MCB process (WVU)

Conclusion:

Task 1: Molecular Dynamic Simulation

- Identified *microscopic* criteria to predict **brittle/ductile** properties. *These criteria* can explain the mechanisms and be used in larger scale simulations to optimize performance
- Observed possible tendency for **impurity gettering**. *This work demonstrates the capability of studying the dynamic effects and carrying out large scale simulations*

Task 2: In-situ Mechanical Property Measurement

- Developed a micro-indentation technique for in-situ mechanical property measurement.
- Mechano-Chemical Bonding (MCB) process can bond nano-size particles onto the surfaces of larger host particles to achieve desirable uniform dispersing of the nano-sizes oxides in the alloy matrix. Preliminary results show evidences of using the MCB processing technique to produce cost-effective Mo alloys with improved room-temperature ductility.

Thank You

Development of a Portable Transparent Indenter Micro-indentation Instrument with Integrated Spectroscopy and Surface Morphology Measurement

- To develop a portable Transparent Indenter Micro-indentation (TIM) Instrument which can evaluate not only mechanical properties but also the corresponding chemical composition, residual stress state and surface morphology of the tested material through integrated micro-indentation, laser fluorescence spectroscopy and imaging technologies.
- By embedding a CMOS sensor and employing innovative optical design, an optically transparent indenter assembly is integrated with (a) a PZT actuator and a miniature load cell for material micro-indentation tests, (b) an on-line fiber optic laser spectroscopy assembly for fluorescence spectroscopy measurement, and (c) a CMOS imaging module for high fidelity surface morphology mapping.
- The featured transparent indenter serves as a conduit for simultaneous in-situ surface morphology imaging, chemical composition identification and residual stress evaluation while under mechanical indentation testing.

