

Control of Defects and Microstructure in ODS Alloys Gordon Tatlock John Walker Chun-Liang Chen Andy Jones

Control of Defects and Microstructure in ODS

- Recrystallisation of PM2000
 - torsionally deformed tube
 - extruded bar
 - sheet samples subjected to bending
 - sheet samples deformed torsionally
- Torsional forming trials on ASTM 446 ferritic steel tube
- Evolution of Oxide Dispersions during Secondary Recrystallisation
- Replacement ODM751
- Selective Laser Melting (SLM) of PM2000 alloy powder

Recrystallisation of torsionally deformed PM2000 tube

End-section of 2 meter length of PM2000 tube, twisted at Forecréu at 750°C.

Recrystallisation of torsionally deformed PM2000 tube

20

30 40

10

PM2000 tube 'end stock' + SR 1380°C/1h. Transverse section, SEM

PM2000 tube torsionally deformed ~20% + SR 1380°C/1h. Transverse section, SEM.

Recrystallisation of torsionally deformed PM2000 tube

Transverse section through PM2000 tube torsionally deformed + SR 1380°C/1h

Recrystallisation of torsionally deformed PM2000 tube

b) Deformed + SR 1380°C/45 min. Plan section. LVSEM (5kV).

c) Deformed + SR 1380%1h. Plan section, TEM.

a) torsionally deformed ~20% Plan section, TEM.

d) Deformed + SR

1380°C/1h

e) d) Transverse section. SEM. 800µm 800µm

e) Deformed + SR 1380°C/1h Plan section. SEM.

Recrystallisation of extruded PM2000 bar

PM2000 bar (can/HIP/hot extrude (1000°C). Fine-grained as-extruded state. SEM longitudinal sections

Recrystallisation of extruded PM2000

bar

Recrystallisation of extruded PM2000 bar

As–extruded + 1380°C/1h. Transverse section. SEM.

PM2000 sheet subject to bending/twisting +SR

Bent samples

Twisted samples

UNIVERSITY OF

 $120^\circ \rightarrow 90^\circ \rightarrow 45^\circ$

 $360^\circ \rightarrow 270^\circ \rightarrow 180^\circ \rightarrow 90^\circ$

Samples deformed (bend/twist then SR (1380°C /1h).

PM2000 sheet subject to bending/twisting +SR

Fine grained samples deformed in bending + SR (1380°C /1h). MA957/□-section from plate/ 30° final bend angle + 1300°C/1h – (after Capdevila and Bhadeshia, 2000)

Final angle of bend

PM2000 sheet subject to bending/twisting +SR

PM2000 'bar' sample cut from sheet, twisted 360^o + SR (1380^oC /1h).

Torsional forming trials: ASTM 446 steel tube

• Torsion trials: Forecreu, France ----- Kennametal Inc, Evans GA (twist drill manuf.)

- Kennametal trials unfunded; tube supplied free issue ex-UoL
- PM2000 replaced by Sandvik 4C54 (ASTM 446) heat resisting seamless Cr ferritic steel tube

C max	Si	Mn	P max	S max	Cr	N	Fe
0.2	0.5	0.8	0.03	0.015	26.5	0.2	Balance

Sandvik 4C54 chemical composition wt.%

• tube 21.3mm diameter, 2.7mm wall; arrangement supported by internal steel mandrel

Torsional forming trials: ASTM 446 steel tube LIVERPOOL

- Sandvik 4C54 (ASTM 446) tube + internal steel mandrel (15.5mm diam.)
- Initial parameters: torsion at ~1000°C/ 0.55 r.p.m/ mm.s⁻¹ hot zone
- outcomes:
 - 60° torsion achieved/wall thinning+thickening/ tube dynamic recrystallisation

Longitudinal section through a 'ridge'. SEM channelling contrast. Original tube wall thickness 2.7mm.

Transverse section showing 60° inclination of stringers in microstructure.

Torsional forming trials: ASTM 446 steel tube LIVERPOOL

Trial 2:

- Fixed mandrel
- 950°C
- 0.55 r.p.m
- 7mm traverse
 speed
- 60°helix

Torsional forming trials: ASTM 446 steel tube LIVERPOC

UNIVERSITY OF

Evolution of PM2000 Oxide Dispersions during Secondary Recrystallisation

Cross section of friction stir weld in PM2000 sheet + SR 1380°C/1h

- PM2000 sheet in fine-grained (KKL4) condition + friction stir weld (TWI)
- FS joint + SR 1380°C/1h
- carbon extraction replicas from parent sheet and joint

Carbon extraction replica of sample

Evolution of PM2000 Oxide Dispersions during Secondary Recrystallisation

Cubic -Y₂O₃

Extraction replica from friction stir weld in PM2000 sheet + SR 1380°C/1h

Evolution of PM2000 Oxide Dispersions during Secondary Recrystallisation

Y₃Al₅O₁₂ Yttrium-Aluminium-Garnet (YAG)

Extraction replica from friction stir weld in PM2000 sheet + SR 1380°C/1h

Evolution of PM2000 Oxide Dispersions during Secondary Recrystallisation

YAIO₃ Yttrium-Aluminium-Perovskite (YAP)

Extraction replica from friction stir weld in PM2000 sheet + SR 1380°C/1h

Evolution of PM2000 Oxide Dispersions during Secondary Recrystallisation

ODM 751 powder – Dour Metal SA, Belgium

ODM751 MA powder particles, Dour Metal SA. Optical micrograph, etched transverse section.

ODM751 MA powder. SEM image un-sieved powder

Replacement ODM751

- Powder supplied by Dour Metal, s.r.o.
- Powder sample dispersed in H_2O /surfactant.
- Laser diffraction measurements (5/sample).
- Results averaged over five tests.
- Powder size range: ~10-110µm.
- Mean size: ~35 µm.

Polishing relief: un-etched optical section

Etched sample: optical section

Replacement ODM751 sample. Backscattered SEM image

Replacement ODM751

Replacement ODM751

- EDX measurements from trial sample of replacement ODM751 MA powder (as shown in SEM image of polished/etched sample).
- Tabulated values normalised without the carbon contribution.

Replacement ODM751 MA powder. SEM image

	Weight %				
Element	Sample	ODM751 (nomina I)			
Cr	16.4 ± 1.6	16			
Al	4.8 ± 0.8	4.5			
Мо	1.6 ± 0.1	1.5			
Ti	0.6 ± 0.1	0.6			
0	3.4 ± 0.9				
Y ₂ O ₃		0.5			
Fe	73.2 ± 1.4	bal			

ODM751 powder +900ºC/1h.

TEM BF, FIB sample

Error bounds are one standard deviation

PM 2000 Thermocouple Sleeves Application: e.g. in Gas Turbines; temperature measurement close to combustion chamber

Micro-heat exchanger by SLM (20mm cube)

PM 2000 Burner Nozzles Fuel injection in diesel engines (test parts)

PM2000 Particle size analysis

 Powders were sieved to remove large particles that would impede flow/disturb the powder bed.

The PM2000 MA powder exhibited a bi-modal particle size distribution.

Particle Size Distribution 3000 Particle Size (µm) -PM2000 Sieved >106µm - Average, 13 November 2007 13:28:11

Larger fraction >106µm

50W, 0.1m/s wall

- Walls \leq 200µm thickness
- columnar grain structure
- some porosity; sensitive to build parameters

PM2000 SLM wall, side view, 50w, 0.1m/s. Electron channelling contrast images.

Wall integrity as a function of laser power (W) and scan speed (m.s⁻¹)

PM2000 tube (SR 1380°C/1h) Nominal oxide particle diameter = 30.8 ± 15.1nm

PM2000. SLM mesh build. 50W/ 0.2ms⁻¹. 0.6mm octahedral cell.

PM2000 SLM Wall, 50W, 0.2m.s⁻¹

Evidence of:

Retention of oxide particles in PM200 after SLM fabrication process.

An increase in mean particle size following 50W/0.2m.s⁻¹ SLM.

ODS particle diameter - PM2000 SLM wall, 50W, 0.2m/s

Summary

Recrystallisation of PM2000 tube, bar and sheet

- (i) SR (1380⁰C/1h) of torsionally deformed tube results in helical grain structures. Grain size varies:
 - across the wall
 - around the circumference
 - along the tube axis.

Isolated regions of PR material remain.

- (ii) Grain size across SR product forms (tube, extruded bar and sheet samples subject to bending and torsion):
 - Can be inhomogeneous
 - Varies surface to bulk
 - Is influenced by cumulative processing history

Torsional forming trial

- (i) Torsion trials on ASTM 446 supported by Kennametal Inc
 - 60⁰ twist achieved
 - Extensive plasticity/dynamic recrystallisation
 - Tube 'ribbing' with local wall thickening/thinning
 - Macroscopic straightness with fixed/split-mandrel

Summary

Evolution of oxide dispersions during secondary recrystallisation of PM2000

- (i) Yttria/YAG/YAP present in sheet and friction stir weld before and after SR
- (ii) YAG replaced by YAP as dominant oxide type during SR

Replacement ODM751

- (i) Dour Metal, s.r.o., Slovakia producing initial batches of replacement ODM751
- (ii) Composition produced is close to legacy ODM751
- (iii) Incomplete MA of residual amounts of Cr-rich precursor

SLM of PM2000 alloy powders

- (i) Sieved PM2000 powders can be fabricated using SLM techniques
- (ii) 'fully dense walls' can be built using a combination of laser power (W) and scan spe
- (iii) Initial trials suggest ODS particles can be retained, though with some coarsening