

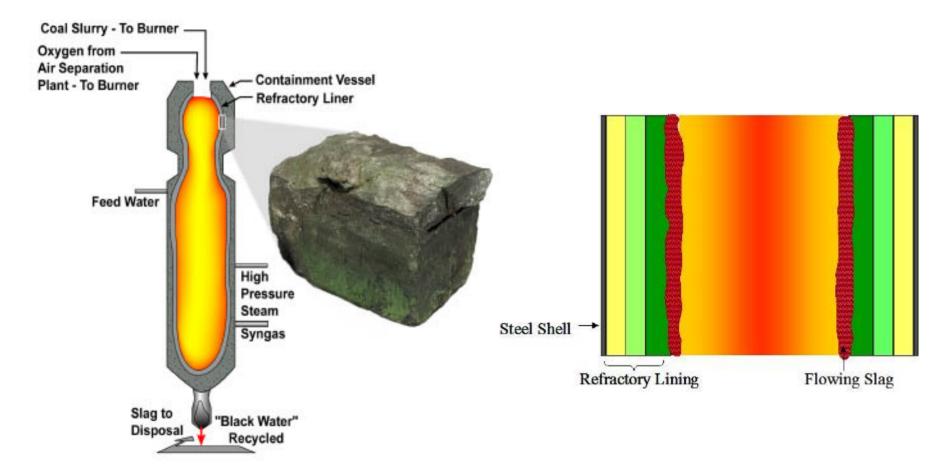
NATIONAL ENERGY TECHNOLOGY LABORATORY

Refractory Materials for Slagging Gasifiers

Cynthia A. Powell

James P. Bennett, Kyei-Sing Kwong, Arthur V. Petty, Rick Krabbe, and Hugh Thomas

Office of Research & Development

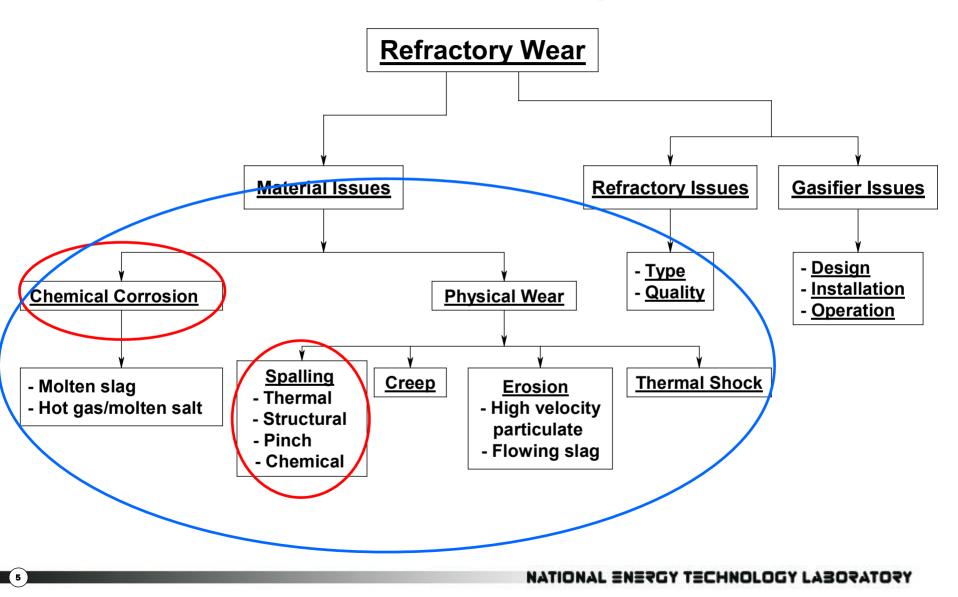


Project Objectives

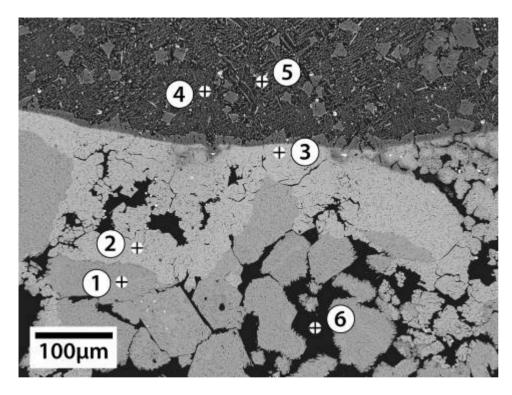
- Improved Refractories that lead to increased gasifier reliability, availability, and economics
 - 85-95% for power generation, 90% for chemical production
 - Service life of 3 + years in power generation
- Carbon feedstock flexibility
- Refractories that are environmentally friendly
- Reliable temperature measurement for the duration of a gasifier campaign

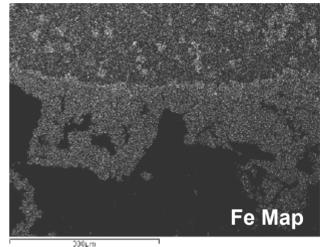
Reliability and Availability of the Gasifier Island Depends on Materials Performance

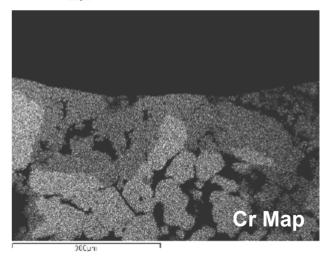
Refractory replacement cycle can be as frequently as every 90 days


(3)

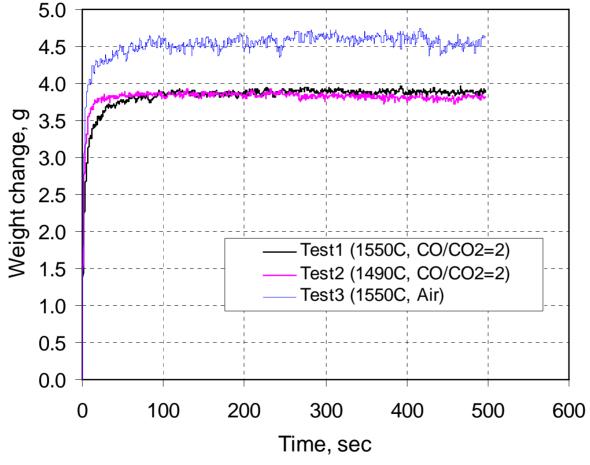
Materials Challenges Associated with Slagging Gasifiers


- Process temperatures of 1325° to 1575° C.
- Frequent thermal cycling.
- Reducing and oxidizing environments.
- Corrosive slags of variable chemistry.
- Corrosive gases.
- Pressures ≥ 400 psi.


Causes for Refractory Failure



Causes for Refractory Failure: Chemical Corrosion

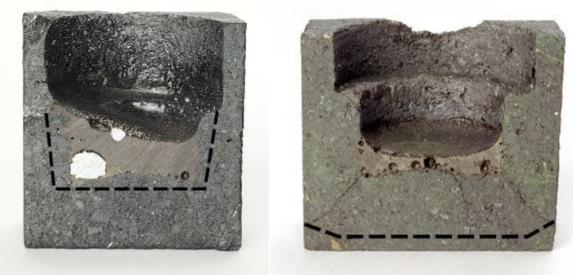


Refractory dissolution in the dynamic slag environment is inevitable, but in Cr_2O_3 refractories, it is a relatively slow process.

Causes for Refractory Failure: Slag Penetration

Slag rapidly penetrates the refractory microstructure, setting the stage for spalling ...

NATIONAL ENERGY TECHNOLOGY LABORATORY


Causes for Refractory Failure: Spalling

Spalling results in significant material loss, and much shorter refractory life when compared to chemical corrosion.

Refractory Solution: Phosphate Modified Cr₂O₃ Refractory Developed and Patented by the NETL

- Decrease slag penetration.
- Eliminate spalling.
- Maintain chemical corrosion resistance.

NETL Refractory

Previous Commercial "Best"

U.S. Patent 6,815,386 "Use of Phosphates to Reduce Slag Penetration in Cr2O3-Based Refractories." Licensed by NETL in May, 2007, to Harbison-Walker Refractories Company

Refractory Solution: Aurex[®] 95P

Affires				ECRE DRM
	1	UREX [®] 95	P	
Davidicatio	g. Chrome - Alumina Erick			
Physical Data. (Typical)			English Links	Di Sinda
			641	atati"
lick Dents			2007	4.38
Appendix Porcely, %			12.5	
			Ron'	10.0
Chaiting Strength At 70% (2110)			12.738	114
Medulas of Rupton ALTOP (2010) ALTOP (2007)			2,158 060	34.5 6.8
	Ehermoni Josefski, Manister (E.M.2000 Rissing) Housefski			
	Otronic Oxide	10,01		
	Pargelarian Pedicale	19100		
the toberato proxianios.	en obieve are based an average y. Scattabel fran the above at The test data calend be taken recorderes und when applicate	té intej óciur ya i la inteletital or n	individual/ lexits and in large is:	ote plant

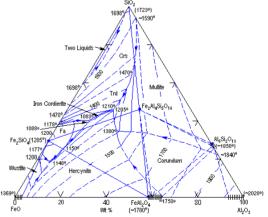
Field tests in commercial gasifiers with coal and/or petroleum coke feedstocks confirm elimination of spalling as a primary wear mechanism in Aurex[®] 95P and continued high resistance to chemical dissolution.

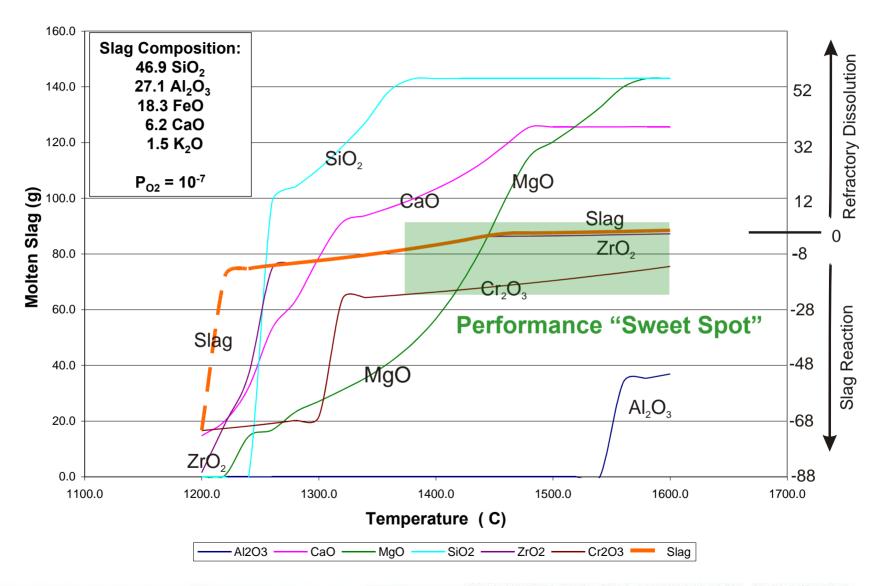
Why Push Beyond Cr₂O₃ Refractories?

- Industry desire for fuel flexibility leads to questions regarding the suitability of Cr₂O₃ refractories in ash/slag environments that are high in alkalis and alkaline earths.
- The use of Cr₂O₃ refractories limits opportunities to employ repair techniques adopted by other industries that could extend refractory life and increase gasifier availability.
- High Cr₂O₃ refractories are difficult to produce and expensive as a result. In addition, domestic suppliers are dwindling.

Research Goal: Viable Non-Cr₂O₃ Alternatives

- Same materials performance issues are likely in nonchome systems – refractory loss expected to be dominated by dissolution and/or reaction with the slag.
- Approach is to identify materials systems that are relatively stable in the gasifier environment and then to manipulate microstructure and microchemistry to optimize performance.
- Laboratory proof of concept is followed by scale-up with industrial partners.

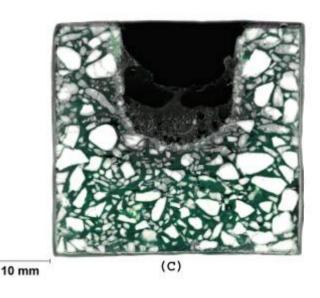



NATIONAL ENERGY TECHNOLOGY LABORATORY

Possible Non-Cr₂O₃ Alternatives

Thermodynamics suggests that few materials will match Cr_2O_3 performance with regard to chemical stability, but that refractories in the ZrO_2 and Al_2O_3 + MgO systems have potential, depending on ash chemistries. Practical experience also suggests several microstructural and microchemical manipulations that could enhance refractory performance.

The Search for Non-Cr₂O₃ Alternatives



NATIONAL ENERGY TECHNOLOGY LABORATORY

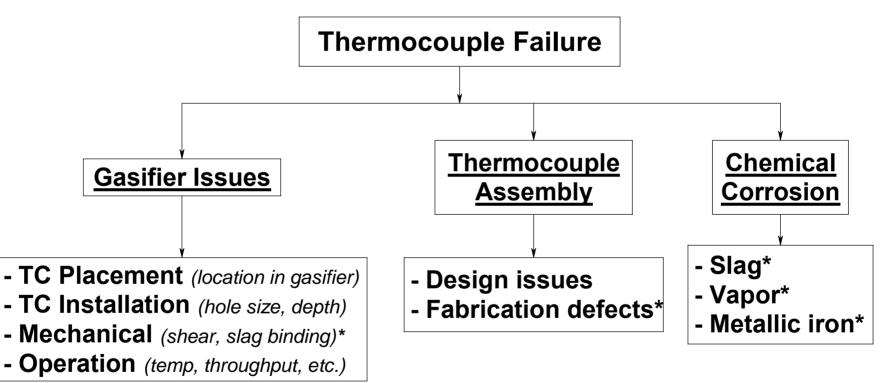
(14)

Laboratory Proof of Concept

Static laboratory exposure tests confirm or deny thermodynamic predictions, and the impact of macrostructure/microstructure design on refractory stability.

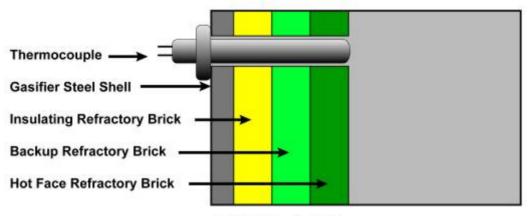
Next Steps: Scale-up with Industrial Partners

- Promising new materials have been selected based on laboratory tests, and have been scaled up, in collaboration with several commercial partners, for dynamic laboratory testing.
- Dynamic laboratory tests are underway, with initial results confirming several potential non-Cr₂O₃ alternatives.

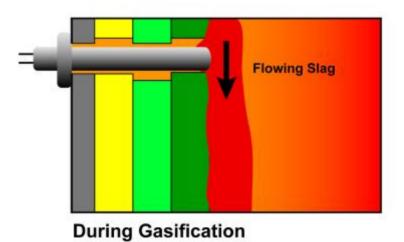


Temperature Sensors for Effective Gasifier Operation

- Thermocouples are currently the most-commonly used method of process temperature measurement.
- Thermocouples rarely last an entire gasifier campaign, and can fail early in the start-up process. Replacement requires gasifier shutdown.
- Effective temperature control will impact system reliability, availability, and economics.
- Strategies that can extend thermocouple life are the goal of this project.


Factors Impacting Thermocouple Failure

(18


* = Possible refractory related issue

Thermocouple Failure during Gasifier Operation

(19)

Initial Installation

Improved Sensor Reliability through Better Engineered Protection Materials

NETL-recommended fabrication procedure to reduce processing flaws, combined with NETLdeveloped filler material to reduce slag penetration and attack

NATIONAL ENERGY TECHNOLOGY LABORATORY

Improved Sensor Reliability through Engineered Protection Materials

An improved refractory thermocouple well block could also provide better thermocouple protection in the gasifier environment.

Improved Sensor Reliability through a Better Understanding of Sensor Failure

Tracking system implemented to document causes and frequencies of thermocouple failure.

Current Project Status

- An improved performance high Cr₂O₃ refractory has been developed, patented, and the technology licensed to industry.
- Laboratory proof-of-concept continues on several non Cr₂O₃ refractory materials that show promise for gasifier applications where fuel flexibility is desirable.
- Understanding of thermocouple failure in gasifiers continues to evolve, with remediation strategies being developed in collaboration with gasifier users.

Support for this research from the DOE programs for Advanced Research-Materials (Bob Romanosky and Pat Rawls) and Advanced Gasification Technologies (Gary Stiegel) is gratefully acknowledged.

Thank You!