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Partners & collaborators

Iver E. Anderson, Ames Laboratory
– development of Pd/iron-aluminide composite 

membranes
Ames Laboratory Material Preparation Center
– alloy development, casting, and disc fabrication

Robert E. Buxbaum, REB Research & Consulting
– industrial partner 

Michael V. Ciocco, Bret H. Howard, Bryan D. Morreale, 
and Richard P. Killmeyer National Energy Technology 
Laboratory
– membrane testing and analysis
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Outline

Background
– hydrogen separating membranes for FutureGen and distributed 

hydrogen generation
Iron aluminide porous membrane support
– metallic interdiffusion barrier
– fabrication, optimization, and characterization

Fabrication, testing, and analysis of Pd-coated Group 5 
membranes
– assessment of Nb alloys
– V-10at%Pd
– hydrogen permeation testing
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FutureGen: Coal derived hydrogen/electricity/chemicals

www.fossil.energy.gov
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Fuel reforming for hydrogen

Membrane reactor
– fuel flexible (liquid, 

gaseous, coal, biomass)
– CnHm+nH2O ↔

nCO+[(m+2n)/2]H2

– CO + H2O ↔ CO2 + H2
– produces pure H2 plus a 

high-pressure, CO2 rich 
stream in a single unit 
operation facilitates carbon 
sequestration

Challenge: apply membranes to small-scale distributed [hydrogen] production in a one-step shift 
reactor that is feedstock flexible

– Arlene Anderson,  Tech. Devel. Manager, DoE H2, Fuel Cells & Infrastructure Tech.
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Innovative goals

Develop robust, high flux hydrogen separation membranes
– reduce equipment size and costs required for H2 production
– smaller footprint
– for reforming various fuels using membrane reactors 
– function in coal gas environment (H2S resistant)

Fabricate a thermally stable porous support
– ultra-thin (< 5 μm), pinhole-free Pd alloy composite membranes
– inhibit metallic interdiffusion between the substrate and Pd-alloy 

membrane at temperatures > 400°C for extended lifetime
Increase the durability and reduce the cost of Group 5 metal 
membranes for hydrogen separation and purification
– necessary for industrial scale deployment
– hydrogen permeability and resilience comparable to Pd-Ag/Pd-Cu
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Asymmetric porous membrane support

Slurry of uniform iron aluminide
microparticles is applied to a porous 
substrate and sintered
− ≤ 3 μm Fe-16Al-2Cr microparticles

A thin oxide layer forms on all 
exposed post-sintered surfaces
− aluminum diffuses to the surface

Forms a barrier to metallic 
interdiffusion
− Al2O3 interlayer between a thin Pd 

alloy film and the particles in the 
porous support

High pressure gas atomized powder preparation method: I.E. Anderson, R.L. 
Terpstra & B. Gleeson. Mater. Sci. & Eng. A, 326(1) 101 (2002).

10 μm

nonporous Pd-alloy film
≤ 3 μm

Al2O3-coated
Fe-16Al-2Cr
microparticle

layer

macroporous support (10 μm stainless steel)
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Membrane fabrication

Commercially available porous metal support
− for example, porous stainless steel with a 0.1 μm particle cut-off

10 μm



Slide 9

Operated by Los Alamos National Security, LLC for NNSA

Membrane fabrication

Commercially available porous metal support
− for example, porous stainless steel with a 0.1 μm particle cut-off

Fe-16Al-2Cr microparticle slurry applied, dried, sintered

10 μm
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Membrane fabrication

Commercially available porous metal support
− for example, porous stainless steel with a 0.1 μm particle cut-off

Iron-aluminide microparticle slurry applied, dried, sintered
Post treat to form thin alumina layer

10 μm
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Membrane fabrication

Commercially available porous metal support
− for example, porous stainless steel with a 0.1 μm particle cut-off

Iron-aluminide microparticle slurry applied, dried, sintered
Post treat to form thin alumina layer
Deposit thin hydrogen selective layer
− PVD, CVD, electroless plating

10 μm
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SEM of Sintered
Membrane

Fe-16Al-2Cr (wt.%) 
powder
< 3 μm particles
Sintered at 975°C 
for 1 h
− I.E. Anderson et al.
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Membrane characterization

Top view of porous Fe-
16Al-2Cr membrane
Optical profilometry
− WYKO NT2000 Profiler
− Vertical scanning 

interferometry
− Ra = 1.51 μm

Surface roughness is a key 
parameter for depositing a 
thin, defect-free Pd film
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H2 and Ar Flowrates through Fe-16Al-2Cr (< 3-μm Particle) Membrane at 
350ºC and ΔP = 0-35 psia
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Auger analysis

Sulfur and boron
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Results of XPS analysis of Fe-16Al-2Cr surface, heat-treated 
at 800°C for 24 h in UHP Ar

Element Atomic %
carbon 25

nitrogen 6
oxygen 29

aluminum 36
chrome 1

iron 3
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Results of XPS analysis of Pd/Fe-16Al-2Cr surface, heat-
treated at 500°C for 100 h under vacuum

Bare region
Element Atomic %
oxygen 51
carbon 21
sodium 1

iron 26
palladium 1

Palladium
Element Atomic %
oxygen 56
carbon 23
sodium 0.5

iron 6
palladium 14
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Typical composite membrane configurations

Pd-Ag film supported by a micromachined membrane
– H.D. Tong et al. Thin Solid Films 479 (2005) 89.

Bundle of 0.8 m long (14-mm diameter) Pd-Ag coated tubes
– P.P.A.C. Pex et al. Proc. Int. Conf. Inorg. Membr. (2004).

Thin Pd-Ag foil prepared by PVD, supported on porous SS
– H. Klette et al. Membrane Technology 5 (2005) 7.
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Summary & conclusions

A porous membrane support was prepared from < 3-μm Fe-
16Al-2Cr particles
– optical profilometry showed a fairly smooth surface
– heat treatment produced an alumina surface
– Membrane has high porosity, minimal flux resistance

deposit a defect-free, gas-tight palladium film onto the 
porous iron aluminide membrane
– optimize the formation of an alumina layer
– determine layer effectiveness at preventing metallic interdiffusion

Present work
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Membrane testing

Coated foil cut into 1.9 cm 
diameter discs
disc sealed into testing module 
between two VCR gaskets
− upstream side purged with 

argon during heating
− downstream side evacuated 

continuously

0.37-mm thick V-6Ni-5Co (at%)
membrane (coated with 100 nm Pd per 
side) after testing at 450°C for 170 h.
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Investigation of Nb alloys

Nb alloyed with Al, Cu, Mo, Ni, 
Pd, Ru, Ti, Zr
Almost all alloys were either:
− brittle as-cast
− embrittled when exposed to 

hydrogen
Exceptions: :
− H2 permeable Nb-50Cu
− Nb-29Ni-24Ti (equimolar)
− Nb-1Zr



Slide 22

Operated by Los Alamos National Security, LLC for NNSA

Evaluation of some niobium alloys
− Nb-21Ti-3Al-38Ni-0.2C
− Nb-5Ru-5Pd-9Ni-8Ti-0.3C
− Nb-32Co-26Ti
− Nb-26Co-21Ti-17V

Embrittled in hydrogen
− Nb-9Mo
− Nb-44Ti-10.7Al
− Nb-38.3Ti-5.2Al

Not brittle
− Nb-50Cu
− Nb-29Ni-24Ti (equimolar)
− Nb-1Zr

Brittle As-Cast
− Nb-14Ru
− Nb-25.6Mo
− Nb-15Cu
− Nb10Pd-5Cu
− Nb-10Ru-10Rh
− Nb-8Pd
− Nb-5Pd
− Nb-15Pd
− Nb-8Ru
− Nb-7.7Ru-7.7Pd
− Nb-5.9Ru-5.9Pd
− Nb-71Ru-11Ni-12Ti
− Nb-6Ru-6Pd-0.3C

− Nb-5Ru-5Pd-9Ti-0.3C
− Nb-6Pd-12Ni-12Ti
− Nb-5Pd-5Ti
− Nb-5Pd-5Ti-0.3C
− Nb-6Pd-12Ni-12Ti-0.3C
− Nb-6Pd-11Ni-20Ti-0.2C
− Nb-6Pd-10Ni-20Ti-0.2C
− Nb-4Pd-4Ti-9Co-0.3C
− Nb-4Pd-12Ti-8Ni-8Co-0.2C 
− Nb-5Pd-25Ni-16Ti-0.2C
− Nb-40Ti-9Al-17Ni 
− Nb-32Ti-4Al-17Ni-0.3C
− Nb-37Ti-9Al-17Ni-0.3C
− Nb-25Ti-3Al-25Ni-0.2C
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H2 Flux at 400, 450, or 500ºC Through 0.37-mm-thick V–6Ni-5Co and 0.1-
mm-thick V-10Pd (at.%) Foils

ΔP = 1 atm
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H2 flux through V-10Cu, V-10Pd and V-6Ni-5Co membranes (100 nm Pd per 
side) at 350-450ºC and ΔP = 101 kPa
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RBS spectra of V-6Ni-5Co membranes
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Durability studies: Hydrogen embrittlement

Membrane Composition
(wt.%)

Failure Temperature
(°C)

Failure Pressure
ΔP (psia)

44

15

16

NA

V-5Ti 322

V-18Pd 150

V-15Cu 350

Pd-23Ag < r.t.
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DOE Hydrogen, Fuel Cells, and Infrastructure Technologies 
Program Targets for Dense Metallic Membranes

Source: Multi-Year Research, Development and Demonstration Plan (2007)
http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/production.pdf

Performance Criteria 2010 Target This work

Flux @ 400ºC, 20 psi ∆P H2
partial pressure & >15 psia
permeate side  pressure 

250 scfh/ft2 58 scfh/ft2

(∆P = 44 psi, vacuum 
on permeate)*

Module cost (including 
membrane material)

$1000/ft2 < $2/ft2

(membrane only)

Durability 26,280 h > 1400 h

Operating Capability 400 psi > 100 psi

Hydrogen Recovery > 80% > 80% 

Hydrogen Quality 99.99% > 99.99% 

*0.1-mm-thick V-10Pd membrane coated with 100 nm of Pd per side
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Joining Pd/V-alloy/Pd membranes

e-beam welded along the 
seam into the shape of a 
tube

patented fixture/process
75-μm thick foil
brazed to standard SS VCR 
fittings

Very thin Pd coating
1000 Å on both sides
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Summary & conclusions
numerous niobium and some vanadium-based alloys were tested for 
hydrogen permeability and durability

– most Nb alloys embrittled
– H2 flux through V-6Ni-5Co and V-10Pd membranes was stable at higher 

temperatures than V-Cu
– hydrogen flux constant at 400°C for > 1400 h (V-10Pd)
– V-10Pd survived thermal cycling to 200°C in hydrogen but cracked at 150°C: 

embrittlement still needs to be reduced

investigate other Group V alloys with palladium alloy surface coatings
– test hydrogen flux stability and impurity resistance of membrane

materials/coatings
– durability tests: thermal cycling in hydrogen

joining methods and module development

Present work
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