Development of a Porous Support for Thin Palladium Membranes

<u>Stephen N. Paglieri</u>¹, Iver E. Anderson², Robert E. Buxbaum³, Michael V. Ciocco⁴, Bret H. Howard⁴

¹Los Alamos National Laboratory, Los Alamos, New Mexico, USA
²Ames Laboratory, Ames, Iowa, USA
³REB Research and Consulting, Ferndale, MI, USA
⁴National Energy Technology Laboratory, Pittsburgh, PA, USA

22nd Annual Conference on Fossil Energy Materials Pittsburgh, Pennsylvania July 8-10, 2008

Operated by Los Alamos National Security, LLC for NNSA

Partners & collaborators

- Iver E. Anderson, Ames Laboratory
 - development of Pd/iron-aluminide composite membranes
- Ames Laboratory Material Preparation Center
 - alloy development, casting, and disc fabrication
- Robert E. Buxbaum, *REB Research & Consulting*
 - industrial partner
- Michael V. Ciocco, Bret H. Howard, Bryan D. Morreale, and Richard P. Killmeyer National Energy Technology Laboratory
 - membrane testing and analysis

Operated by Los Alamos National Security, LLC for NNSA

Outline

- Background
 - hydrogen separating membranes for FutureGen and distributed hydrogen generation
- Iron aluminide porous membrane support
 - metallic interdiffusion barrier
 - fabrication, optimization, and characterization
- Fabrication, testing, and analysis of Pd-coated Group 5 membranes
 - assessment of Nb alloys
 - V-10at%Pd
 - hydrogen permeation testing

FutureGen: Coal derived hydrogen/electricity/chemicals

Source: Gray, D. and Tomlinson, G. Mitretek Systems. Hydrogen from Coal, Mitretek Technical Paper MTR 2002-31. July 2002.

www.fossil.energy.gov

Fuel reforming for hydrogen

Challenge: apply membranes to small-scale distributed [hydrogen] production in a one-step shift reactor that is feedstock flexible

– Arlene Anderson, Tech. Devel. Manager, DoE H₂, Fuel Cells & Infrastructure Tech.

Innovative goals

Develop robust, high flux hydrogen separation membranes

- reduce equipment size and costs required for H₂ production
- smaller footprint
- for reforming various fuels using membrane reactors
- function in coal gas environment (H₂S resistant)
- Fabricate a thermally stable porous support
 - $-\,$ ultra-thin (< 5 μm), pinhole-free Pd alloy composite membranes
 - inhibit metallic interdiffusion between the substrate and Pd-alloy membrane at temperatures > 400°C for extended lifetime
- Increase the durability and reduce the cost of Group 5 metal membranes for hydrogen separation and purification
 - necessary for industrial scale deployment
 - hydrogen permeability and resilience comparable to Pd-Ag/Pd-Cu

Asymmetric porous membrane support

 $\leq 3 \ \mu m$

layer

- Slurry of uniform iron aluminide microparticles is applied to a porous substrate and sintered
 - $\leq 3 \,\mu m$ Fe-16Al-2Cr microparticles
- A thin oxide layer forms on all exposed post-sintered surfaces - aluminum diffuses to the surface
- Forms a barrier to metallic interdiffusion
 - Al₂O₃ interlayer between a thin Pd alloy film and the particles in the porous support

macroporous support (10 µm stainless steel)

High pressure gas atomized powder preparation method: I.E. Anderson, R.L. Terpstra & B. Gleeson. Mater. Sci. & Eng. A, 326(1) 101 (2002).

- Commercially available porous metal support
 - for example, porous stainless steel with a 0.1 μ m particle cut-off

- Commercially available porous metal support
 - for example, porous stainless steel with a 0.1 μ m particle cut-off
- Fe-16Al-2Cr microparticle slurry applied, dried, sintered

- Commercially available porous metal support
 - for example, porous stainless steel with a 0.1 μ m particle cut-off
- Iron-aluminide microparticle slurry applied, dried, sintered
- Post treat to form thin alumina layer

Operated by Los Alamos National Security, LLC for NNSA

- Commercially available porous metal support
 - for example, porous stainless steel with a 0.1 μ m particle cut-off
- Iron-aluminide microparticle slurry applied, dried, sintered
- Post treat to form thin alumina layer
- Deposit thin hydrogen selective layer
 - PVD, CVD, electroless plating

SEM of Sintered Membrane

- Fe-16Al-2Cr (wt.%) powder
- < 3 μm particles
- Sintered at 975°C for 1 h
 - I.E. Anderson et al.

Operated by Los Alamos National Security, LLC for NNSA

Membrane characterization

- Top view of porous Fe-16Al-2Cr membrane
- Optical profilometry
 - WYKO NT2000 Profiler
 - Vertical scanning interferometry
 - $R_a = 1.51 \ \mu m$
- Surface roughness is a key parameter for depositing a thin, defect-free Pd film

H_2 and Ar Flowrates through Fe-16Al-2Cr (< 3-µm Particle) Membrane at 350°C and $\Delta P = 0-35$ psia

0

Results of XPS analysis of Fe-16Al-2Cr surface, heat-treated at 800°C for 24 h in UHP Ar

Element	Atomic %
carbon	25
nitrogen	6
oxygen	29
aluminum	36
chrome	1
iron	3
the second se	the second se

Operated by Los Alamos National Security, LLC for NNSA

Results of XPS analysis of Pd/Fe-16Al-2Cr surface, heattreated at 500°C for 100 h under vacuum

Bare region		
Element	Atomic %	
oxygen	51	
carbon	21	
sodium	1	
iron	26	
palladium	$1 \leq 1$	

Palladium		
Element	Atomic %	
oxygen	56	
carbon	23	
sodium	0.5	
iron	6	
palladium	14	

Typical composite membrane configurations

- Pd-Ag film supported by a micromachined membrane
 - H.D. Tong et al. Thin Solid Films 479 (2005) 89.
- Bundle of 0.8 m long (14-mm diameter) Pd-Ag coated tubes
 - P.P.A.C. Pex et al. Proc. Int. Conf. Inorg. Membr. (2004).
- Thin Pd-Ag foil prepared by PVD, supported on porous SS

– H. Klette et al. Membrane Technology 5 (2005) 7.

ATIONAL LABORATORY

Summary & conclusions

- A porous membrane support was prepared from < 3-µm Fe-16Al-2Cr particles
 - optical profilometry showed a fairly smooth surface
 - heat treatment produced an alumina surface
 - Membrane has high porosity, minimal flux resistance

Present work

- deposit a defect-free, gas-tight palladium film onto the porous iron aluminide membrane
 - optimize the formation of an alumina layer
 - determine layer effectiveness at preventing metallic interdiffusion

Operated by Los Alamos National Security, LLC for NNSA

Membrane testing

- Coated foil cut into 1.9 cm diameter discs
- disc sealed into testing module between two VCR gaskets
 - upstream side purged with argon during heating
 - downstream side evacuated continuously

0.37-mm thick V-6Ni-5Co (at%) membrane (coated with 100 nm Pd per side) after testing at 450°C for 170 h.

Operated by Los Alamos National Security, LLC for NNSA

Investigation of Nb alloys

- Nb alloyed with Al, Cu, Mo, Ni, Pd, Ru, Ti, Zr
- Almost all alloys were either:
 - brittle as-cast
 - embrittled when exposed to hydrogen
 - Exceptions: :
 - H₂ permeable Nb-50Cu
 - Nb-29Ni-24Ti (equimolar)
 - Nb-1Zr

Evaluation of some niobium alloys

- Brittle As-Cast
 - Nb-14Ru
 - Nb-25.6Mo
 - Nb-15Cu
 - Nb10Pd-5Cu
 - Nb-10Ru-10Rh
 - Nb-8Pd
 - Nb-5Pd
 - Nb-15Pd
 - Nb-8Ru
 - Nb-7.7Ru-7.7Pd
 - Nb-5.9Ru-5.9Pd
 - Nb-71Ru-11Ni-12Ti [–]
 - Nb-6Ru-6Pd-0.3C

- Nb-5Ru-5Pd-9Ti-0.3C
- Nb-6Pd-12Ni-12Ti
- Nb-5Pd-5Ti
 - Nb-5Pd-5Ti-0.3C
 - Nb-6Pd-12Ni-12Ti-0.3C
 - Nb-6Pd-11Ni-20Ti-0.2C
 - Nb-6Pd-10Ni-20Ti-0.2C
 - Nb-4Pd-4Ti-9Co-0.3C
 - Nb-4Pd-12Ti-8Ni-8Co-0.2C
 - Nb-5Pd-25Ni-16Ti-0.2C
 - Nb-40Ti-9Al-17Ni
 - Nb-32Ti-4Al-17Ni-0.3C
 - Nb-37Ti-9Al-17Ni-0.3C
 - Nb-25Ti-3Al-25Ni-0.2C

- Nb-21Ti-3Al-38Ni-0.2C
- Nb-5Ru-5Pd-9Ni-8Ti-0.3C
- Nb-32Co-26Ti
- Nb-26Co-21Ti-17V

Embrittled in hydrogen

- Nb-9Mo
- Nb-44Ti-10.7Al
- Nb-38.3Ti-5.2Al

Not brittle

- Nb-50Cu
- Nb-29Ni-24Ti (equimolar)
- Nb-1Zr

Slide 22

H₂ Flux at 400, 450, or 500°C Through 0.37-mm-thick V–6Ni-5Co and 0.1mm-thick V-10Pd (at.%) Foils

Operated by Los Alamos National Security, LLC for NNSA

0

H₂ flux through V-10Cu, V-10Pd and V-6Ni-5Co membranes (100 nm Pd per side) at 350-450°C and $\Delta P = 101$ kPa

RBS spectra of V-6Ni-5Co membranes

0

Operated by Los Alamos National Security, LLC for NNSA

Durability studies: Hydrogen embrittlement

Membrane Composition	Failure Temperature	Failure Pressure
(wt.%)	(°C)	ΔP (psia)
V-15Cu	350	44
V-5Ti	322	15
V-18Pd	150	16
Pd-23Ag	< r.t.	NA

Operated by Los Alamos National Security, LLC for NNSA

DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Targets for Dense Metallic Membranes

Performance Criteria	2010 Target	This work
Flux @ 400°C, 20 psi ∆P H ₂ partial pressure & >15 psia permeate side pressure	250 scfh/ft ²	58 scfh/ft ² (∆P = 44 psi, vacuum on permeate)*
Module cost (including membrane material)	\$1000/ft ²	< \$2/ft ² (membrane only)
Durability	26,280 h	> 1400 h
Operating Capability	400 psi	> 100 psi
Hydrogen Recovery	> 80%	> 80%
Hydrogen Quality	99.99%	> 99.99%

*0.1-mm-thick V-10Pd membrane coated with 100 nm of Pd per side

Source: Multi-Year Research, Development and Demonstration Plan (2007) http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/production.pdf

Operated by Los Alamos National Security, LLC for NNSA

Joining Pd/V-alloy/Pd membranes

- *e*-beam welded along the seam into the shape of a tube
 - patented fixture/process
 - 75-µm thick foil
 - brazed to standard SS VCR fittings
- Very thin Pd coating
 - 1000 Å on both sides

Summary & conclusions

- numerous niobium and some vanadium-based alloys were tested for hydrogen permeability and durability
 - most Nb alloys embrittled
 - H_2 flux through V-6Ni-5Co and V-10Pd membranes was stable at higher temperatures than V-Cu
 - hydrogen flux constant at 400° C for > 1400 h (V-10Pd)
 - V-10Pd survived thermal cycling to 200°C in hydrogen but cracked at 150°C: embrittlement still needs to be reduced

Present work

- investigate other Group V alloys with palladium alloy surface coatings
 - test hydrogen flux stability and impurity resistance of membrane materials/coatings
 - durability tests: thermal cycling in hydrogen
- joining methods and module development

Acknowledgments

- Development of Pd/iron-aluminide composite membranes in collaboration with Ames Laboratory was funded by US DOE Office of Fossil Energy, Advanced Research-Materials Program
- Ames Laboratory Material Preparation Center
- V-alloys: collaboration with Dr. Robert E. Buxbaum of REB Research and Consulting, National Energy Technology Laboratory, and Ames Laboratory: contract DE-FC26-05NT42400

Acknowledgments

- Robert L. Terpstra membrane fabrication
- Dr. Robert Day profilometry
- Drs. Thomas Venhaus & Roland Schulze AES/XPS
- Paul Mombourquette & Ronny Snow PVD coating
- Dr. Hain Oona data collection and logging
- Dr. Joseph Wermer, Ben Roybal, Cameron Howard, & Blake Nolen – assistance with data collection
- Doug Aiken & Gerald Lucero welding
- John Moya, Stan Bennett, Stephen Cole, Jerry Schobert, & Richard Basinger – experimental setup
- Doug Aiken & Eluterio Garcia machining

Operated by Los Alamos National Security, LLC for NNSA