Fifteen Years of Stream Monitoring in EMAP: The Evolution of Design, Indicators and Assessment

Contributors:

Western Ecology Division, Corvallis:

J.L. Stoddard.

S.G. Paulsen

D.V. Peck

P.R. Kaufmann

A.R. Olsen

J. Van Sickle

S.A. Peterson

P.L. Ringold

Oregon State University:

A.T. Herlihy

R.M. Hughes

T.R. Whittier

Mid-Continent Ecology Division, Duluth:

B. H. Hill

Environmental Research Center, Cincinnati:

D.J. Klemm

J.M. Lazorchak

Pacific States Marine Fisheries Commission:

D.P. Larsen

U.S. Forest Service:

F.H. McCormick

RESEARCH & DEVELOPMENT

Elements of EMAP Streams

- Design
 - Probability designs extrapolated to a target population with known confidence
 - Plot-scale design consistent and sufficient sampling effort in all stream types
- Indicators
 - Focus on biological indicators and indices (ecological condition)
 - Extensive indicators of physical, chemical and biological habitat (relative importance of stressors)
 - Reference condition (setting expectations)
- Assessment tools
- Regional demonstrations

RESEARCH & DEVELOPMENT

Mid Atlantic Highlands Assessment (MAHA - 1993-94)

79,000 mi² Portion of Region III, portions of 5 states Wadeable streams (1st through 3rd order)

RESEARCH & DEVELOPMENT

Mid Atlantic Integrated Assessment (MAIA - 1997-98)

180,000 mi² Region 3, all or part of 8 states

All perennial flowing waters

RESEARCH & DEVELOPMENT

EMAP Western Pilot (EMAP-W 2000-04)

All perennial flowing waters, except "Great Rivers"

1,223,000 mi² 12 States; Regions 8, 9 and 10

RESEARCH & DEVELOPMENT

Wadeable Streams Assessment (WSA - 2005)

Wadeable Streams Assessment €EPA A Collaborative Survey of the Nation's Streams

3,100,000 mi² 10 Regions, 48 states

Wadeable streams (1st through 3rd order)

RESEARCH & DEVELOPMENT

National River and Stream Assessment (2008-09)

RESEARCH & DEVELOPMENT

Design - MAHA Site Selection

RESEARCH & DEVELOPMENT

Design - MAHA Site Selection

RESEARCH & DEVELOPMENT

Strahler Orders

RESEARCH & DEVELOPMENT

Strahler Orders

Design - GRTS Eastern portion of WSA

Spatially-balanced Unequal probabilities based on:

- Omernik ecoregion
- USEPA region
- Strahler order categories:

Expected sample size 500 sites Additional sites selected to be used when initial sites can not be sampled

- Non-wadeable stream
- Landowner access denial
- Physically inaccessible

RESEARCH & DEVELOPMENT

Design Dealing with an Imperfect Frame

RESEARCH & DEVELOPMENT

Design Dealing with an Imperfect Frame - EMAPW

RESEARCH & DEVELOPMENT

Design Dealing with an Imperfect Frame - WSA

Based on office and field evaluation of sites in sample. In each region, percentages are percent of NHD length in the region

RESEARCH & DEVELOPMENT

Plot Design

RESEARCH & DEVELOPMENT

Plot Design - Sample Sufficiency for Streams

RESEARCH & DEVELOPMENT

Plot Design - Sample Sufficiency for Rivers

RESEARCH & DEVELOPMENT

MAHA Macroinvertebrate Results Number of EPT Taxa

RESEARCH & DEVELOPMENT

EPT Results in Riffles and Pools

RESEARCH & DEVELOPMENT

Index Development Approach Example Fish Metrics

NATIVFAM	Number of families represented	PBCLN	prop. of indiv. as bc spwn clear substr.
NREPROS	Number of reproductive guilds	PBCST	prop. of indiv. as broadcast spawners
NSANGU	Number of anguilla species	PBENT	prop. of fish as benthic insectivores
NSATHER	Number of atherin species	PBENTSP	prop. of benthic hab. sp. in native sp.
NSBENT2	Number of native benthic species	PCARN	prop. piscivore-invert.(piscinv+pisciv)
NSCATO	Number of sucker species	PCGBU	prop. of indiv. as clear gravel buryers
NSCATO2	Number of native intolerant Catostomids	PCOLD1	Prop. of cold water individuals
NSCENT	Sunfish Species Richness	PCOLD2	Prop. of cold & cool water individuals
NSCOLU	Number of water column species	PCOLSP	prop. of column sp. in native sp.
NSCOTT	Number of sculpin species	PCOTTID	prop. of individuals as cottids
NSCYPR2	Number of intolerant cyprinid species	PCYPTL	prop. of ind. as tolerant cyprinids
NSDART	Number of darter species	PEXOT	prop. of individuals as introduced
NSDRUMX	Number of drum species	PGRAVEL	prop. of simple lithophils
NSESOXX	Number of esox species	PHERB	prop. of individuals as herbivores
NSFUND	Number of fundelis species	PINSE	prop. of indiv. as native insectivores
NSGAMB	Number of gambusia species	PINVERT	prop. of invertivores
NSICTA	Number of ictalurid species	PMACRO	prop. of macro-omnivores
NSINTOL	Number of intolerant species	PMICRO	prop. of micro-omnivores
NSLAMP	Number of lamprey species	PMICRO2	Prop. of micro-omnivores minus RHINATRO
NSPERCO	Number of percopsis species	PNEST	prop. of indiv. as nest associates
NSPPER	Number of perch species	PNTGU	prop. of indiv. as nester guarder
NSSALM	Trout Species Richness	POMNI	prop. Omninore individuals (pmicro+pmacro)
NSUMBR	Number of umbridae species	POMNI_H	prop. omni-herbiv.(pmicro+pmacro+herbiv)
NTROPH	Number of trophic guilds	PPISC	prop. of individuals as carnivores
NUMFISH	Number of individuals in sample	PPISCIN2	Prop. of piscivore-insectiv. minus SEMOATRO
NUMNATSP	Number of native species	PPISCINV	prop. of piscivore-insectivores
NUMSPEC	Total Number of fish species	PTOLE	prop. of individuals as tolerant
PANOM	Proportion of individuals with anomolies	PTREPRO	prop. tolerant reproductive guild individuals
PATNG	prop. of indiv. as attacher non-guarder		

RESEARCH & DEVELOPMENT

Index Development Approach (Signal:Noise Test)

Signal:Noise = ratio of between-site variance and withinsite variance (based on repeat samples)

RESEARCH & DEVELOPMENT

Index Development Approach (Example of Periphyton Responsiveness)

Periphyton Metric Responsiveness 100 Pools ဖ Riffles Proportion of Individuals in Eutrophication Classes 5 & 80 60 40 20 0 100 1000 10

Total Phosphorus Concentration (µg/L)

RESEARCH & DEVELOPMENT

Index Development Approach Responsiveness Quick and Dirty Screen

RESEARCH & DEVELOPMENT

Metric Scoring

RESEARCH & DEVELOPMENT

Responsiveness of Final Index EMAP West Fish IBI

Reference vs. Trashed Sites

RESEARCH & DEVELOPMENT

Wadeable Streams Assessment

Regional IBI Metrics

	NAP	SAP	CPL	UMW	TPL	NPL	SPL	WMT	XER	ALL
% EPT Taxa	X					Х		Х		Х
% EPT Individuals					Х		X			
% Non-Insect Taxa									Х	
% Non-Insect Individuals			Х							
% Ephemeroptera Taxa		Х								
% Chironomid Taxa				X						
Shannon Diversity		Х	X	X	Х		X			Х
% Individuals in top 5 taxa	X							X	Х	
% Individuals in top 3 taxa						X				
Scraper Richness	X	Х			Х	X	Х	X	Х	Х
Shredder Richness			Х	X						
% Burrower Taxa		Х		X		Х	Х			X
% Clinger Taxa	X		X					X	Х	
Clinger Taxa Richness					X					
Ephemeroptera Taxa Richness	X	X	Х	X			Х	X	Х	Х
EPT Taxa Richness					Х					
Total Taxa Richness						X				
Intolerant Richness						Х	X			Х
% Tolerant Individuals		Х	X					X	X	

RESEARCH & DEVELOPMENT

Wadeable Streams Assessment Macroinvertebrate IBI Results

RESEARCH & DEVELOPMENT

Predictive Modeling

An Alternative to IBIs?

REFERENCE TAXA LIST					
(hypothetical example with 5 reference sites in region)					
	Taxa Name	# of Ref Sites	Probability		
1.	CHIRCHIR	5	1.0		
2.	HYDRSP.	5	1.0		
3.	OLIGSP.	5	1.0		
4	PLEUJUGA	5	1.0		
5	CHIRORTH	4	0.8		
6	CHIRTPOD	4	0.8		
(CHIRTIAR	4	0.8		
8	CHLOSVEL	4	0.8		
9		4			
10.	HEFIEFEO	4	0.8		
36	NEMASP	2	04		
37	PLODSKWA	2	0.4		
38.	PTYCPTYC	$\overline{2}$	0.4		
39.	SIALSIAL	2	0.4		
40.	TIPUDICR	2	0.4		
41.	TIPUTIPU	2	0.4		
Sum of Probability Values = $E = 26.4$					

RESEARCH & DEVELOPMENT

Predictive Modeling An Alternative to IBIs?

	SITE AR08-04				
Reference Taxa		Non-Reference Taxa			
1. BAETLABI		14. AMEAMEL			
2. CERACERA		15. COLLSP.			
3. CHIRCHIR		16. CORYNEOH			
4. CHIRORTH		17. EMPICLIN			
5. CHIRTPOD		18. EPHESERR			
6. CHIRTTAR		19. HEPTCGMA			
7. CHLOSWEL		20. PLANSP.			
8. EMPICHEL					
9. LEPILEPI					
10. LEPTPARA					
11. NEMASP.					
12. OLIGSP.					
13. TIPUDICR					
O = 13	E=26.4	O/E=0.492			
RESEARCH & DEVELOPMENT					

Predictive Modeling Full Model Includes Multiple Site Clusters

RESEARCH & DEVELOPMENT

Predictive Modeling Example for MAHA Bugs

RESEARCH & DEVELOPMENT

Wadeable Streams Assessment - O/E

RESEARCH & DEVELOPMENT

Comparing IBI and O/E Scores

RESEARCH & DEVELOPMENT

Comparing O/E Scores with IBI Metrics

RESEARCH & DEVELOPMENT

MAHA Approach to Reference Condition

61 hand-picked (BPJ) Reference Sites; 380 Probability Sites

EMAP-W Approach to Reference Condition

730 Reference Sites; 965 Probability Sites

Candidate reference sites selected by:

Established state reference sites State BPJ suggestions STAR (Hawkins) BPJ sites EMAP GIS top-down sites Filtered probability sites All candidates subjected to filtering

RESEARCH & DEVELOPMENT

LEVEL 3 ECOREGION BOUNDARIES

EMAP-W Approach to Reference Condition

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Did you know? 24 of 32 EMAP Stream forms are for Physical Habitat

RESEARCH & DEVELOPMENT

Helps determine how to assign IBI values to fishless lakes

Conclusion: High probability of 'fishless' streams when Habitat Volume Index falls below 0.4

RESEARCH & DEVELOPMENT

Helps determine how to assign IBI values to fishless lakes

But only 100 MAHA sites were sampled quantitatively for physical habitat, so we were forced to use a surrogate for habitat volume (watershed size)

RESEARCH & DEVELOPMENT

Relative Bed Stability and Excess Fines

based on mean particle diameter ratio: Observed/Mobile LRBS=Log(D_{gm}/D*_{cbf})

D_{gm} --- observed geometric mean diameter from field "pebble count".

 D^*_{cbf} : max mobile D "Critical D" at bankfull --- by equating bankfull and critical shear stress:

Bankfull Bed Shear Stress (pgR*_{bf}S), controlled by:

+ Channel slope (S)

+ Adjusted Bankfull Hydraulic Radius (R*_{bf})

+ Bankfull Depth,

- Residual pool depth, - Form roughness,- Large wood volume Critical Shear Stress $\Theta(\rho_s - \rho)gD$, influenced by:

+ Particle Diameter (D)

+ mass density of particles in water (ρ_s - ρ)

. shape, exposure, size variance, turbulence, relative submergence (θ)

RESEARCH & DEVELOPMENT

Relative Bed Stability

Relative Bed Stability and Excess Fines

Powder River, Wyoming LRBS= -1.6 %Sands and Fines = 99% %Fines = 10%

RESEARCH & DEVELOPMENT

Relative Bed Stability and Excess Fines

Sands and Fines = 100%
%Fines = 100%

Keystone Ditch, Wyoming

LRBS

Relative Bed Stability

(Data from OR/WA Coast Range REMAP '94-'95)

LRBS: $Log(D_{gm}/D_{cbf}^{*})$

RESEARCH & DEVELOPMENT

Building a scientific foundation for sound environmental decisions

Fish IBI

Chemical Stressors Mercury in EMAP West

RESEARCH & DEVELOPMENT

Biological Stressors Alien Species

RESEARCH & DEVELOPMENT

Assessment - MAHA

Relative Ranking of Stressors

Assessment - EMAP West

Multiple Indices, Multiple Assemblages

RESEARCH & DEVELOPMENT

Assessment - Relative Risk

Naproxen least risky

According to a report in the Journal of the American Medical Association, the painkiller naproxen has less of a cardiovascular risk than other drugs.

Relative risk estimates*

Naproxen management	0.97
Celebrex	1.06
Ibuprofen	1.07
Other anti- inflammatory	1.10
Mobic Management	1.25
Vioxx III	1.35
Voltaren	1.40
* Relative risk is measu baseline of one, which people not on painkiller	ired against a in this case is 's
SOURCE: JAMA	AP

RESEARCH & DEVELOPMENT

Assessment - Relative Risk EMAP West

Rendative Ring Rontaneese for tikes and is a power to a power to a power to a power to whether the provident of the power of the power

RESEARCH & DEVELOPMENT

Assessment - Relative Risk MAIA

Multiple assemblage assessment confirms that different stressors affect fish, macroinvertebrates and periphyton

RESEARCH & DEVELOPMENT

Next Steps in EMAP (Streams) Evolution

- Design
 - Site selection: continued improvement in GRTS designs
 - Plot design: harmonizing of wadeable/non-wadeable protocols
- Biological Indicators
 - Settling the IBI/O:E debate
- Stressor Indicators
 - Modeling flashy stressors (pesticides, nutrients)
 - Incorporating natural gradients into IBIs
- Reference Condition
 - Modeling approaches to deal with sliding scale issue
- Assessment
 - Melding relative extent and relative risk

RESEARCH & DEVELOPMENT