Headwaters to the Sea— EMAP's Estimate of Nutrient Transport in the Mississippi River Basin

Brian H Hill

US Environmental Protection Agency Office of Research and Development National Health and Environmental Effects Laboratory Mid-Continent Ecology Division Duluth, MN

N &P in basin tributaries vs. rivers

Mainstem Rivers

Nutrient stoichiometry tributaries vs. mainstem rivers

N vs. land use for small streams

Agricultural land use in the basin

Stream N as a function of land use

Agricultural land use, % of watershed area

Stream P as a function of land use

Agricultural land use, % of watershed area

NHDPlus—

linking the stream network to the landscape

NHD

Greatly improved 1:100K National Hydrography Dataset

PLUS (9 more components):

- Value Added Attributes
- Elevation-based Catchments
- Catchment Characteristics (NLCD)
- Headwater Node Areas
- Cumulative Drainage Area Characteristics
- Flow Direction, Flow Accumulation, and Elevation Grids
- Min/Max Elevations and Slopes
- Flow Volume & Velocity Estimates
- Flow Gages with Network Locations

A joint USGS-USEPA venture

Runoff as a function of watershed area

Load=mean annual discharge x mean nutrient concentration

Observed vs. predicted N & P loads

Tributary (non-point source) vs. point source N & P contributions

Nutrient spiraling

The more time an atom of nutrient spends in the water column, the slower the uptake rate and the longer the spiral length, the less likely it will be metabolized and/or lost from the system.

Upstream serial autocorrelation

How far upstream can we track nutrient influences?

Interval (km)	Critical D-W	D-W NOx	D-W NH ₃	D-W Ln_N	D-W SRP	D-W Ln_P
0-40	1.36	1.16	1.40	1.16	1.16	1.17
0-57	1.36	1.16	1.40	1.16	1.16	1.17
0-65	1.36	1.23	1.24	1.24	1.24	1.24
0-73	1.36	1.83	2.16	1.95	2.89	2.79
0-81	1.36	1.83	2.16	1.95	2.79	2.79
0-162	1.54	1.68	1.19	1.83	1.84	1.90
0-400	1.49	1.86	1.89	2.35	1.55	2.03
0-800	1.62	1.80	2.02	1.84	1.52	1.86
Entire (1300-1500)	1.69	2.14	1.54	1.23	1.84	2.07

Based on Durbin-Watson test for 1st order autocorrelation

Microbial Enzyme Stoichiometry

Seitzinger et al. 2006. Ecological Applications 16(6):2064-2090

Burgin & Hamilton 2007, Frontiers in Ecology and Environment 5 (2):89-96

Hypoxia in the Gulf of Mexico—

Linking watersheds, drainage networks and receiving waters

1995 1996

Year

66

991 992 993 994

66

		MS	МО	ОН		
This study	DIN	287	155	157	Compared to	
	DIP	21	17	4	prior study	
	DSi	205	188	39		
	N:P	20	11	76		
	Si:N	3	14	0.4		
	Si:P	14	80	26 ₃₀₀ –	25	
Justic et al. (1995)				-1	DIP 20 5	
1981-87 data		DIN	114		15 15	
	DIP	8		Ĕ		
	DSi	108		Z 100		
	N:P	15			5 0	
	Si:N	1		0	0	
	Si:P	14		1960) 1970 1980 1990 2000	
1960-62 data		36		25	N:P5	
		4 160		20	Si:N	
		0	<u>م</u>	15		
		9 1	z		2 0	
	SI.N Si-D	4 40		10		
	JI.P	40		E		
				1960 1970	1980 1990 2000	

Conclusions

•N & P were positively correlated with % of watershed in agriculture

•N & P loads fit a simple regression model based on cumulative watershed area

•Disparity between basin-wide projections of N & P and the sum of sub-basin models—suggesting other sources (e.g., point sources) & losses (e.g., N & P sequestration, denitrification)

•Serial correlation of N & P with river distance suggests that spiral lengths (sum of transport in water and bed phases) may be > 65km

•N:P in the tributaries and in the Great Rivers suggest N-limitations relative to available P concentrations

•Microbial enzyme activity associated with the acquisition of C, N & P also suggests Nlimitation, along with C-limitation (indicative of nutrient enrichment)