
Calibrating a rapid wetland assessment method to an intensive method in the Nanticoke Basin, Delaware and Maryland, USA

Alan Herlihy
Dept. Fish & Wildlife, Oregon State Univ.
Amy Deller Jacobs
Delaware DNREC
Mary Kentula
U.S. EPA, NHEERL-Corvallis

Overview

- Objective: Develop a calibrated overall rapid indicator of wetland condition for Nanticoke
- Process
 - Develop one overall Index of Wetland Condition based on HGM functions (Intense IWC)
 - Use Delaware rapid method stressor observations to develop rapid Index of Wetland Condition (Rapid IWC)
 - Statistical method to relate to calibrate rapid IWC to intensive IWC
 - Identify stressor variables to include
 - Score stressor variables

Data Collection - Nanticoke Basin

- •Collected data on over 200 randomly selected sites selected by EMAP in Flat, Riverine, and Depression wetlands, 2003-2004
- Sampled reference sites and developed HGM models

Development of an Index of Wetland Condition (IWC)

- Wanted an overall rating of condition
- Needed similar measure to compare to rapid
- Based on HGM variables
- Functions can still be calculated

HGM Variables for Flats – Scored 0-1

- V_{DISTURB} Evidence of vegetation disturbance
- V_{DRAIN} Percent of assessment area affected by drainage
- V_{FILL} Presence of anthropogenic derived sediment
- V_{HERB} Species of herb indicator species
- V_{MICRO} Presence of microtopographic features
- V_{RUBUS} Presence of *Rubus* sp.
- V_{SHRUB} Shrub density
- V_{SHRUBSP} shrub sp. composition

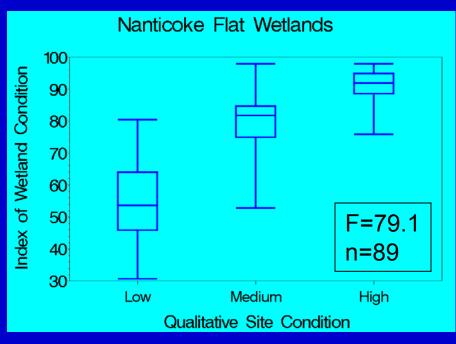
- V_{SNAG} Density of standing dead trees
- V_{TBA} Basal area of trees
- V_{TDEN} Tree density
- V_{SAPDEN} Sapling density
- V_{TREE} Tree species composition
- V_{BUFFBA} Basal area in buffer
- V_{BUFFUSE200} Surrounding landuse
- V_{BUFFIMP} Impervious surface surrounding site
- V_{BUFFRD200} Road density surrounding site

Development of an Index of Wetland Condition (IWC) - Flats

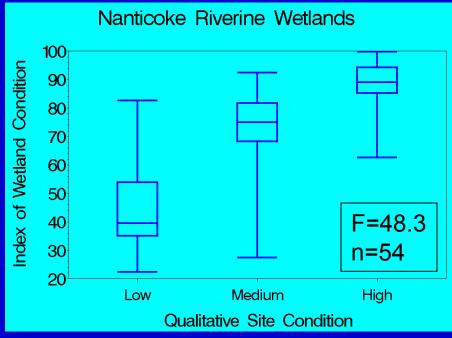
Screen HGM variables (EMAP IBI approach)

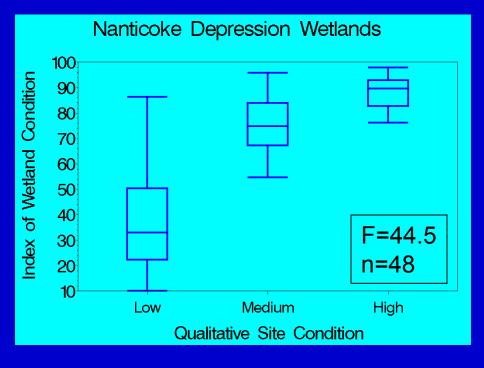
- Range Test
- Responsiveness
 - Use BPJ low, medium, high qualitative site rating
 - Variable should discriminate low vs. high
 - F-Test for significance
- Redundancy
 - Don't use two variables if r > 0.7
- Sum selected variables, normalize to 0-100

HGM variables in IWC for Flats


- Vdrain
- Vfill
- Vmicro
- Vherb
- Vrubus
- Vshrub
- Vtba
- Vtree
- Vdisturb
- Vbuffuse200*

Category	Original Weights
Hydrology	30%
Vegetation	60%
Landscape	10%


HGM variables in IWC for Flats


- Vdrain
- Vfill
- Vmicro
- Vherb
- Vrubus
- Vshrub
- Vtba
- Vtree
- Vdisturb
- Vbuffuse200*

Category	Original Weights	Adjusted Weights
Hydrology	30%	40%
Vegetation	60%	50%
Landscape	10%	10%

Discriminating ability of intense IWC among wetland condition classes (one-way ANOVA F-test)

Rapid Assessment Refinement and Calibration

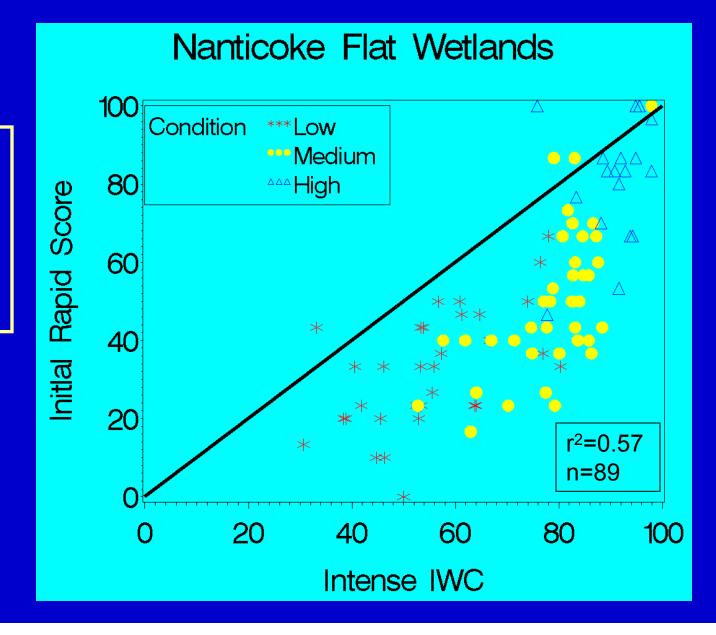
Is the Rapid Assessment Method producing results similar to the Intensive Method?

Delaware Rapid Wetland Assessment

- Requires a site visit
- Rapid, no detailed data collected
- Applies to all types of wetlands
- Useful for prioritizing restoration and protection
- Stressors worked best
 - Habitat/Plants
 - Hydrology
 - Buffer Landscape

Initial Scoring (0-30):

- 10 points for each category
- BPJ assignment of negative "points" for each stressor


Field Form Habitat Section

DELAWARE RAPID ASSESSMENT Version 3.0 DRAFT

Site # Site Name	Date
	A
Observers	
HGM Subclass	Reference or Assessment Site (circle one)
Natural Re-establishment Establishment Rehabilitation Enhanc	ement (circle one)
Watershed	Potential Reference Standard? yes or no (circle one)
lat/long	_ Photos
AA moved from original location? yes or no (circle one)	67
AA split? yes or no (circle one) If yes, list below the veget:	ation zones and coverage of the original AA
veg zone % of AA	veg zone % of AA
Qualitative Condition Rating Least Disturbed 1 2 3	3 4 5 6 Highly Disturbed (circle one number)
HABITAT/PLANT COMMUNITY (within site) Weight	HABITAT/PLANT COMMUNITY (within site) Weight (CONTINUED)
□ MOWING	□ TRAILS
□ FARMED	☐ GARBAGE/ISOLATED DUMPING
□ GRAZING	INCREASED NUTRIENT
	☐ Direct application/runoff into site
FOREST HARVESTING	☐ Dense algal mats
Clear Cut ☐ Selective Cut ☐ unsure☐	ROAD
□ No forestry activity within last 50 years	□ Logging road
Forestry activity within last 30-50 years	☐ Dirt or gravel constructed road
☐ Forestry activity within last 15-30 years	□ Paved constructed road
☐ Forestry activity with last 15 years	La Paved constructed road
☐ Clear cut within past 2 years ☐ Cleared land not recovering	<u></u>
☐ Forest activity <10% of site	OTHER
□ EXCESSIVE HERBIVORY/PINEBARK BEETLE/ GYPSY MOTH	SUBTOTAL HABITAT/PLANT COMMUNIT
PRESENCE OF INVASIVE SPECIES	COMMENTS ON HABITAT/PLANT COMMUNITY
□ Dominating the site	
□ Do NOT dominate the site	
□ CHEMICAL DEFOLIATION	
☐ MANAGED OR CONVERTED TO PINE	
□ BURNED	

IWC versus Rapid Score

0-30 Rapid score normalized to 0-100 Scale

Calibrating DERAP

- Want Rapid Score to Fit Intensive IWC
- Initially tried to improve fit by changing value of negative scoring points by hand
 - Looked for stressors that were scoring the medium and low sites down
 - Evaluated residuals off the line
- Combine some of the stressor categories into one
 - Channelized one side, channelized both sides
 - Impounded 10-75%, impounded >75%
- Mild success but we weren't real satisfied with results
- Need for statistical approach

Statistical Approach

- Want an objective way of assigning weights to each rapid stressor to formulate total rapid condition score
- Want to maximize correlation to intense IWC
- Use multiple regression
 - Dependent variable = Intense IWC
 - Independent variables = Rapid Stressors
 - Identify important stressor variables
 - Assign weights from regression coefficients

Multiple Regression Approach

Fit a model

Intense IWC = A +
$$B_1X_1 + B_2X_2 + ... + B_nX_n$$

Where A = Intercept

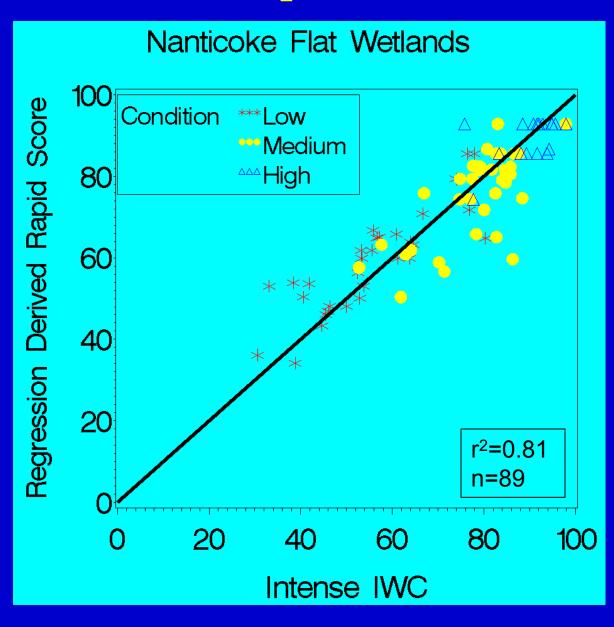
B_i = Regression Coefficient

X_i = Stressor i

0 if absent

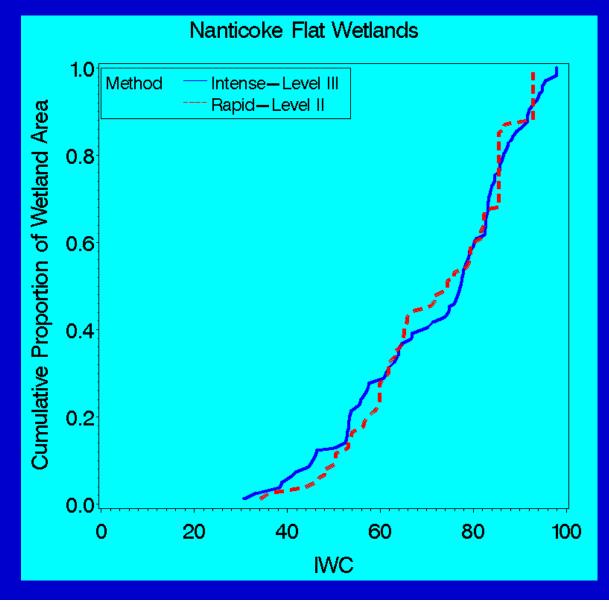
-1 if present

The B_i are in effect the negative weight for each stressor i that best calibrate the rapid score to the intensive IWC


Multiple Regression Procedure

- How to fit model? -- Avoid over fitting
- Used all subsets regression and AIC
 - Calculate ΔAIC=AIC_{model}-AIC_{min}
 - keep all models with ΔAIC < 4.</p>
 - Weight each model by exp(-0.5*△AIC)
 - Calculate the importance of each stressor by proportion of models it occurs in (weighted)
- Variables in over 0.4 of all models used in final regression model
 - One variable with negative coefficient dropped

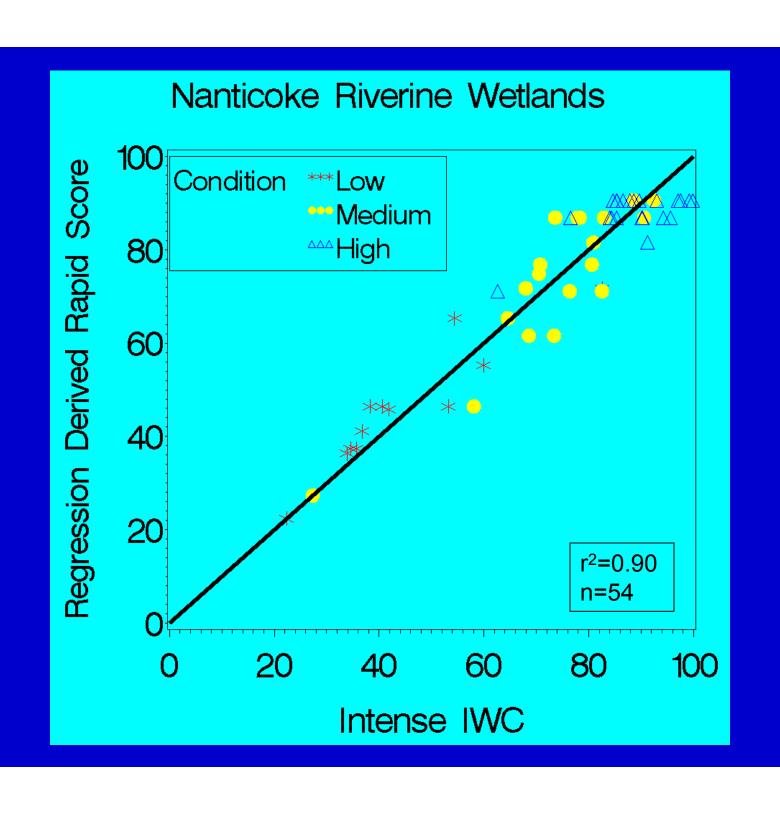
Fitted Regression Model for Flat Wetlands (n=89)

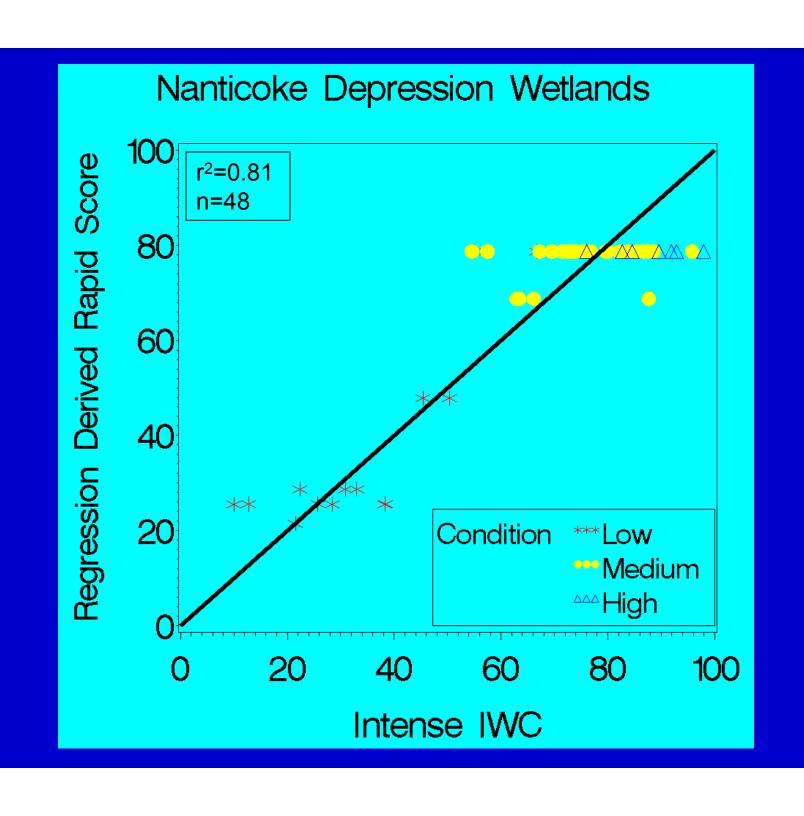

Variables	Proportion of Models	Coefficient (Scoring)
Intercept		93
Forest harvest – recent	1.00	-22
Forest harvest - recovering	1.00	-7.3
Mowed area	1.00	-11
Microtopographic alteration 10-100%	1.00	-15
Ditching – severe	1.00	-18
Ditching - moderate	1.00	-14
Ditching - slight	0.99	-13
Managed or converted to pine	0.88	-5.9
Microtopographic alteration <10%	0.55	-5.0
Road - Dirt/Paved	0.51	-3.2
Development	0.48	-3.0

Regression Derived Rapid Score vs. Intense IWC

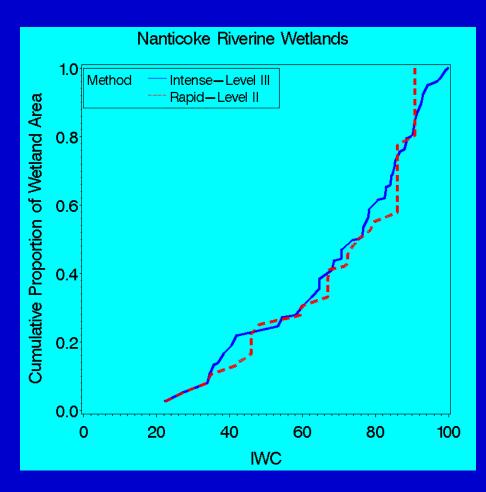
Population estimates of condition

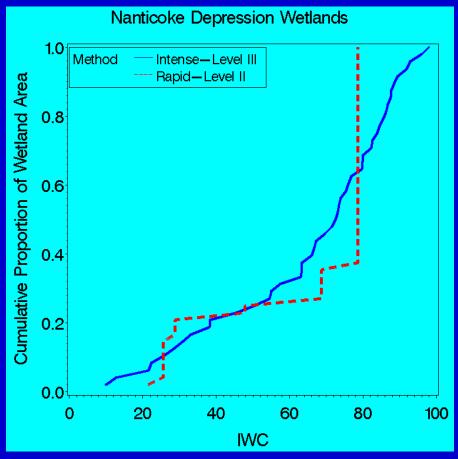
Used site weights from probability design to make inference to entire wetland area in Nanticoke


Regression Derived Rapid Scoring Equations


Riverine

Variable	Scoring
Intercept	90.6
Filling 10-100%	-19
Microtopo. Alt. 10-100%	-34
Channelized	-25
Impoundment 10-100%	-16
Invasives - dominant	-23
Forest harvest-recent	-10
Ag - row crops, nursery	-4
Forest harvest-recover	-5


Depressions


Variable	Scoring	
Intercept	78.7	
Chemical defoliation	-57	
Garbage/dumping	-50	
Farmed	-53	
Mowed area	-31	
Forest harvest-recover	-53	
Ditching - moderate	-10	

Riverine and Depression Population Estimates

Statistically Derived Rapid Scoring Pros and Cons

- Objective, quantifiable process for
 - Selecting significant stressors
 - Scoring coefficients
- Excellent agreement with intense IWC for flats and riverine, fair agreement for depressions

- Rare stressors may not show up in model
- Fitted to specific data
 - Needs to be validated
 - Calibration necessary for each new region or wetland type
- Rapid scoring is based on observed stressors not function, assumes constant effect of stressor

Summary

- Developed one overall intense IWC that was highly discriminatory of three condition classes
- We were able to calibrate the Delaware rapid method stressor observations to the intense IWC to get a rapid IWC that can be done with much less effort
- Future efforts will work on extending to other systems and validation with new data

Special Thanks to

- many volunteers that assisted in data collection
- Rich Sumner
- John VanSickle
- Funding provided through EPA's REMAP

