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Abstract

The origin of variation in animal growth rate and body size is not well understood but central to ecological and evolutionary processes.

We develop a relationship that predicts the change in relative body size variation within a cohort will be approximately equal to the

relative change in mean per unit size growth rate, when only size-dependent factors affect growth. When modeling cohort growth,

relative size variation decreased, remained unchanged, or increased, as a function of growth rate-size scaling relationships, in a

predictable manner. We use the approximation to predict how environmental factors (e.g., resource level) affect body size variation, and

verified these predictions numerically for a flexible growth model using a wide range of parameter values. We also explore and discuss the

assumptions underlying the approximation. We find that factors that similarly affect mean growth rate may differently affect size

variation, and competition may increase body size variation without changing size-independent relationships. We discuss implications of

our results to the choice of growth equations used in models where body size variation is an important variable or output.

r 2006 Elsevier Inc. All rights reserved.
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Putter balance equation
1. Introduction

Variation in individual growth rate, reproductive output,
and other properties that influence fitness, is distinctive of
animal populations. A number of ecologists have argued
that it is imperative that we consider the implications of
such individual variation for population and community
properties (Hassell and May, 1985; Lomnicki, 1988;
DeAngelis et al., 1993; Grimm and Uchmański, 2002).
For example, numerous studies indicate that body size
variation can have influential effects on ecological vari-
ables, including population abundance, dynamics, and
extinction risk (Lomnicki, 1988, 1999; DeAngelis et al.,
1993; Grimm and Uchmański, 2002; Kendall and Fox,
e front matter r 2006 Elsevier Inc. All rights reserved.
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2002; Pfister and Stevens, 2003). But a perusal of any
ecological journal shows that there is a focus on the mean
value of such properties, with little attention to variation.
Given that individual variation is a fundamental compo-
nent of evolution, and thus entire disciplines in biology, it
is perhaps surprising that it is often ignored in ecological
studies.
The large variation in size observed in animals from the

same cohort reared together in controlled conditions
illustrates the great propensity of individuals to develop
and grow at different rates (Haynes and Hitz, 1971; Wilbur
and Collins, 1973; McCaughran and Powell, 1977; Seed
and Brown, 1978; Rubenstein, 1981a; Lomnicki, 1988; see
Kooijman, 2000; Peacor and Pfister, 2006, for example
photos of fish and tadpoles, respectively). In this case, the
age and origin are the same, thus any variation can be
ascribed to initial differences among individuals in size at
birth and subsequent differences among individuals in
growth rate that occurred under nearly equal conditions.

www.elsevier.com/locate/tpb
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Table 1

Symbols used in models

Symbol Meaning

t Time

w Final size at time t

w0 Initial size

w Function that transforms initial size into final size

w0 ‘‘Inverse function’’ of w(w0, t) that transforms final size

into initial size

s20 Initial variance

s2ðtÞ Variance at time t

CV0 Initial coefficient of variation

CV(t) Coefficient of variation at time t

w̄0 Mean initial size

w̄ Mean size at time t

~w Size of individual at time t that starts at w̄0

~w0 Initial size of individual that starts at w̄0 (thus ¼ w̄0)

g(.) Growth rate

f tð:Þ PDF of size at time t

f 0ð:Þ PDF of size at time zero

S.D. Peacor et al. / Theoretical Population Biology 71 (2007) 80–94 81
Empirical studies reveal that such individual variation can
be a function of environmental context, such as the
association of increased size variation with an increased
level of competition (Wilbur and Collins, 1973; Ruben-
stein, 1981a; Uchmański, 1985; Irwin et al., 1999).

The origin of within cohort variability in size (hereafter
termed size variation) can be partitioned into two broad
categories, which we denote ‘‘size-dependent’’ and ‘‘size-
independent’’ factors. Size-dependent factors arise from the
advantages or disadvantages to growth that size itself
incurs. Numerous studies document how properties such as
physiological processes (e.g. metabolism) or factors related
to consumption rate (e.g. territory size, ingestion rate,
activity level) scale as a function of size. Thus, if stochastic
environmental, maternal, or other factors cause an initial
size variation, the effect of size on growth can influence the
manner in which size variation progresses. Size-indepen-
dent factors arise from a number of non-size-based
processes that can differentially affect individual growth.
For example, phenotypically based differences in traits that
affect growth (e.g., due to behavioral, morphological, life
historical, and physiological traits differences) could affect
size variation. Such persistent differences could have a
genetic basis (Arnold, 1981; Conover and Munch, 2002;
Sanford et al., 2003) or could be learned (Palmer, 1984;
Dukas and Bernays, 2000). Additionally, stochastic effects
could cause variation in conditional states (i.e., energy level
or disease load) that could affect growth over long periods
of time (DeAngelis et al., 1993; Ludsin and DeVries, 1997).
Finally, resources or other factors that affect growth may
be heterogeneous, which could lead to persistent unequal
resource use or assimilation among individuals and there-
fore affect size variation (Pfister and Peacor, 2003). Such
size-independent factors that can affect size variation have
been referred to as ‘‘growth autocorrelation’’ (Pfister and
Stevens, 2002, 2003), ‘‘residual autocorrelation’’ (Fujiwara
et al., 2004), and ‘‘memory’’ (DeAngelis et al., 1993;
Imsland et al., 1998).

Although important to understanding evolutionary and
ecological problems, we know very little about how size-
dependent and size-independent factors affect size varia-
tion. In this paper, we examine how size-dependent factors
alone can affect within-cohort variation in size. We develop
a simple analytical approximation for the general relation-
ship between changes in size variation and changes in
growth rate. Given moderate initial variation in size and
nonlinearity in how growth changes with size, we show that
our analytical approximation accurately predicts actual
changes in variation, ascertained using numerical methods
(e.g., based on the true probability density function (PDF)
obtained by solving partial differential equations (PDEs)).
When applied to growth following a widely used and
flexible growth equation, our approximation reveals strong
dependence of size variation on environmental factors that
affect growth rate, and the scaling relationships between
size and factors that affect growth rate. The simple nature
of the analytical approximation helps provide a conceptual
understanding of how parameter changes in the flexible
growth equation can lead to surprising changes in how
initial size variation is propagated. Our findings have
important implications for the development and interpre-
tation of models used to examine the consequences of size
variation, and on the effects of environmental factors, such
as competition and temperature, on the origin of size
variation.
2. An approximate relationship between individual size

variation and mean growth rate

We derive an analytical approximation that relates size-
variation (CV) and individual growth rate ðgðwÞ ¼ dw=dtÞ

in the absence of size-independent factors. Thus our
approximation addresses how initial variation in size
changes over time as the individuals grow, when the only
factor causing different individuals to grow differently is
their size, and size distributions are not influenced by size-
dependent mortality. Symbols used in the main text are
described in Table 1.
Our approach treats size at some future time as a

transformation of initial size. We therefore can take
advantage of methods from statistics used to determine
distributions of transformed variables. We use
w ¼ wðw0; tÞ, in which w is a function that transforms
initial size (w0) of an individual into its final size (w) at time t.
The delta method yields an approximation for the variance
in size of a population of individuals after transformation
(e.g., Seber, 1982; Rice, 1995):

s2ðtÞ ffi s20
q ~w
q ~w0

� �2
. (1)

The variance of individual size is s0
2 initially, and s2(t) at time

t. To simplify notation we use ~w ¼ wð ~w0; tÞ to represent the
size at time t of an individual in the population that starts at
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the mean initial size, w̄0. To keep symbolism parallel, we
substitute ~w0 for w̄0. Note that, whereas ~w0 is equal to w̄0 by
definition, that ~w is only an approximation of mean size at
time t, w̄.

Dividing both sides of Eq. (1) by s0
2 and taking the

square root leads to

sðtÞ
s0
ffi

q ~w
q ~w0

. (2)

Dividing the numerator and denominator of the right-
hand side of Eq. (2) by dt (an application of the chain rule
for partial derivatives) and recalling that g(w) ¼ dw/dt

leads to

sðtÞ
s0
ffi

gð ~wÞ

gð ~w0Þ
. (3)

This equation indicates that the ratio of the standard
deviation at time t and initial standard deviation is
approximately equal to the ratio of the growth rates at
time t and initial growth rate.

Dividing both sides of Eq. (3) by ~w= ~w0 and using the
definition for coefficient of variation, CV ¼ standard
deviation/mean, we arrive at an expression for the relative
size variation (rather than absolute as in Eq. (3)):

CVðtÞ

CV0
ffi

gð ~wÞ= ~w

gð ~w0Þ= ~w0
. (4)

The approximation in Eq. (4) arises from the approx-
imations needed for Eq. (1), from which Eq. (3) is derived,
and also uses ~w as an approximation of w̄.

Eq. (4) provides a key (approximate) relationship:
Relative size variation will change in proportion to the

relative change in the per unit size growth rate. The
qualitative nature of this result is intuitive. If the per unit
size growth rate of larger individuals is greater than that of
smaller individuals (right-hand side of Eq. (4)), then we
expect the distribution to spread more rapidly than the
mean size increases, causing the CV to increase. Individuals
above the mean increase in size proportionally more and
individuals below the mean increase in size proportionally
less than individuals of average size. What is perhaps
surprising, however, is the simplicity of this equation, and
further, as we will see, its accuracy under a wide range of
conditions.

3. Exact solution to changes in the size distribution

Here we present an exact solution to how the size
distribution changes as a cohort grows, and describe how
we calculate the CV given these size distributions. We use
the resulting CVs in the rest of the paper to investigate how
CVs change as a cohort grows under different conditions.
Whereas we compare these true CVs with results from our
analytical approximation, the primary purpose of the
approximation is to predict and help understand these
changes in CV. The PDF (relative abundance by size) at
time t, given the PDF at the initial time zero, can be shown
to equal (e.g., by solution of PDEs—Appendix B):

f tðwÞ ¼ f 0ðw0Þ
gðw0Þ

gðwÞ
,

w0 ¼ w0ðw; tÞ, ð5Þ

where f tð:Þ is the PDF of size at time t, f 0ð:Þ is the PDF of
size at time zero, and w0ðw; tÞ is a function that returns size
at time zero given a specified size at time t. Note that w0 is
the ‘‘inverse function’’ of w(w0, t). Thus, for size w, the
probability density at time t is given by first finding the
corresponding initial size and initial probability density for
that initial size, and multiplying this density by a ratio of
growth rates. This ratio represents how the localized size
distribution is contracting or expanding over the time
period (Appendix A). The reciprocal of this same ratio of
growth rates evaluated for w ¼ ~w was used in Eq. (3).
Using Eq. (5) we can then determine the CV from the
definitions:

w̄ ¼

Z
wf tðwÞ dw,

s2ðtÞ ¼
Z
ðw� w̄Þ2f tðwÞ dw. ð6Þ

These integrals usually cannot be solved analytically and
thus will require numerical integration (Appendix B).

4. Development of size variation using a commonly used and

general growth model

Here we examine how relative size variation (CV)
changes as a cohort grows according to a general and
flexible growth model, using the true CVs obtained by
numerical integration of Eq. (6) (Appendix B). The general
growth model we consider here is given by

gðwÞ ¼
dw

dt
¼ a1wb1 � a2w

b2 , (7)

where a1 and a2 are coefficients of gain in size due to
assimilation and loss due to respiration, respectively, and
are due to traits independent of size. We will call this
equation, which balances gain and loss with changes in
growth, the Putter balance equation (Pütter, 1920; Rick-
lefs, 2003). Any differences in the growth due to size are
captured by the exponents, b1 and b2, which are scale
factors that affect growth as a function of size (Sebens,
1982, 1987; Uchmański, 1985; Werner, 1988; Brown et al.,
2004). This model captures the idea that growth rate can be
viewed as resulting from an energy budget (Yodzis and
Innes, 1992), in which growth rate is equal to the rate
acquired resources contribute to growth, minus the rate
these resources are expended on factors such as respiration,
and that rates that determine gain and loss are well
approximated by power functions with constants that scale
contributions to growth as a function of size (Sebens, 1982,
1987; Yodzis and Innes, 1992; West et al., 2001; Brown et
al., 2004). If the rate is proportional to size, the exponent is
one, whereas if the rate decreases (increases) faster than
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proportional to size, the exponent is less than (greater than)
one. This growth equation forms the basis of bioenergetic
models (Hewett and Johnson, 1995) and other more
specific growth equations (Wyszomirski et al., 1999)
including parabolic, logistic, linear, (for b1 ¼ 2/3 and
b2 ¼ 1) weight-based von Bertalanffy with isomorphic
growth, and (for b1 ¼ 1 and b2 variable) Richards’. The
scaling exponents b1 and b2 may take on a wide range of
values, and even for the same species, b1 may be greater or
smaller than b2 depending on environmental factors such
as temperature (see Discussion).

We examine the development of size variation over a
large range of growth conditions by manipulating the
relative contributions of gain and loss represented by a1
and a2 in the Putter balance equation, and the size-
dependent scaling of gain and loss by manipulating b1 and
b2. To determine mean size as a function of time, we solve
Eq. (6) using numerical integration (Appendix B). In each
case a cohort starts with an initial truncated (at zero to
prevent negative sizes) normal size distribution with mean
size 1 and variance 0.1 (CV of 0.316), and grows until mean
size increases 10-fold.

We also apply the analytical approximation to this
growth model. Applying Eq. (4) to a cohort growing
according to Putter balance equation, the size variation is
predicted to be

CVðtÞ ffi CV0
a1 ~w

b1�1 � a2 ~w
b2�1

a1 ~w
b1�1
0 � a2 ~w

b2�1
0

" #
. (8)

Our principal motivation in using this approximation (Eq.
(8)) is to identify and understand qualitative trends in the
development of size variation, and how they relate to
model parameter values. In addition, our analysis allows us
to evaluate whether the approximation is robust when
using this growth model together with moderately large
initial variation and large changes in size over time.

For simplicity, first consider the relationship between
size variation and mean size when loss is negligible (a2 ¼ 0)
and therefore g(w) ¼ a1w

b1 . The analytical approximation
of size variation and mean size (Eq. (8)) then reduces to

CVðtÞ ffi CV0

~w

~w0

� �b1�1

. (9)

This relationship predicts that if larger size provides a
proportionately larger increase in growth rate (b141), then
the relative size variation will increase, whereas if larger
size provides a proportionately smaller increase in growth
rate (b1o1), then the relative variation will decrease. These
qualitative patterns were supported by CVs obtained from
our numerical evaluation for growth according to
g(w) ¼ a1w

b1 for a range of b1 (Fig. 1a), and the CVs
generated by the analytical approximation were in close
quantitative agreement with the numerically derived
values. In the special case of exponential growth (i.e.
b1 ¼ 1), Eq. (9) predicts a constant CV over time, and the
relationship is exact for this case (DeAngelis and Coutant,
1979; Uchmański, 1985, Appendix A).
We next consider the relationship between size variation

and mean size with the inclusion of a loss term. Our
analytic approximation suggests that the inclusion of a loss
term and any increase in its magnitude can either increase
or decrease size variation, with the direction of the effect of
loss being a function of the relative magnitudes of the
scaling relationships (Eq. (8)). Specifically, the approxima-
tion indicates that an increase in loss causes an increase in
relative size variation if the size dependence of gain is
greater than the size dependence of loss, i.e. b14b2. In
contrast, it suggests that there will be no effect if b1 ¼ b2,
and a decrease if b1ob2. The magnitude of these effects is a
function of the relative magnitude of loss relative to gain.
We confirmed these patterns for b1o1 (Fig. 1b) and b141
(Fig. 1c) over a range of scaling of size and loss in which b2
is less than, equal, or greater than b1, and demonstrated
close quantitative agreement between true CVs derived by
numerical integration and values from the approximation.
Particularly noteworthy is that the addition of a loss term
can reverse the trend in relative size variation as a function
of mean size. That is, when b1o1 size variation decreases
without loss (Fig. 1a), but can increase if b1o1 and b14b2
with loss (Fig. 1b). Similarly, when b141 size variation
increases without loss (Fig. 1a), but can decrease if b141
and b1ob2 with loss (Fig. 1c). These results show that
seemingly complex and varied relationships between size
variation and mean size can arise from size-dependent
effects alone (i.e., without size-independent effects).
To gain intuition into the effect of the scaling of gain and

loss with size, consider the effect of an increase in loss (i.e.
an increase in a2) for a species in which larger size has a
greater effect on loss than gain, i.e. b1ob2. If b1ob2 the
mean per unit size growth rate will decrease as the animals
grow, and thus according to Eq. (8) the relative size
variation will also decrease. The increase in loss will reduce
the growth rate of both large and small individuals.
However, the negative effect of loss for larger individuals
relative to smaller individuals will be greater than the
positive effect that size has on growth (since b1ob2). Thus,
as the animals grow, the effect of the increase in loss will
have a proportionately larger negative effect on growth of
the larger individuals relative to smaller individuals, and
consequently the increase in loss will reduce relative size
differences.
We next present a more complex example over larger

changes in size, in order to illustrate a scenario in which the
dependence of size variation on size changes sign, and to
further illustrate the robustness of the analytical approx-
imation. For growth of a cohort over time according to
Putter balance equation (b1 ¼ 0.8, b2 ¼ 0.6, a1 ¼ 1), in the
absence of loss (a2 ¼ 0) mean size increased nearly four
orders of magnitude, whereas with loss (a2 ¼ 0.8) the
increase in mean size was reduced by approximately 10-
fold (Fig. 2a). The observed negative curvature without
loss is characteristic of a scaling relationship of size and



ARTICLE IN PRESS
S.D. Peacor et al. / Theoretical Population Biology 71 (2007) 80–9484
growth rate less than one. In contrast, with loss, there is an
initial positive curvature, because scaling of loss is less than
that of gain, and loss is initially large relative to gain (80%
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as determined by the relative magnitude of a1 and a2). As
time progresses, the magnitude of loss relative to gain
decreases (because b2ob1), and therefore the positive
curvature disappears, and the signature of the scaling of
gain increases until nearly similar to the case without loss.
These changes are reflected in the individual variation in
size (Fig. 2b). As seen previously (Fig. 1), CV falls with
increasing size without loss, and when b1o1 there is a
positive effect of the addition of loss because b2ob1. With
the given parameters, an interesting scenario arises in
which there is an initial increase in relative size variation as
a function of mean size that peaks and then falls with
increasing size. This follows directly from the general
analytical approximation (Eq. (4)), in which the change in
CV is proportional to the per unit size growth rate; a peak
is expected if the derivative with respect to size of the per
unit size growth rate is equal to zero. For the Putter
balance equation, this occurs when

w ¼
a2

a1

ðb2 � 1Þ

ðb1 � 1Þ

� �1=ðb1�b2Þ

(10)

and for our example this predicted peak in CV occurs when
size is equal to 10.5, which is very close to the actual value
obtained by numerical analysis (Fig. 2b).

5. General predictions based on the growth model

In the previous section we examined how scaling
relationships of gain and loss combine to affect the
relationship between size variation and mean size. In this
section, we use these results to derive three more general
predictions.
1. Environmental factors can have a dramatic effect on

size variation even in the absence of size-independent
factors, and the effect of the environmental factor on size
variation is strongly dependent on scaling relationships of
size and growth.
Effects of environmental factors on growth can be

represented by manipulating parameters in the Putter
balance equation (Sebens, 1987). We can therefore use
the approximate relationship for size variation (Eq. (8)) to
predict how changes in environmental factors will affect
size variation. Consider a reduction in resource level, which
can be represented in the Putter balance equation by a
Fig. 1. Development of relative variation in body size (CV) as a function

of mean size (arbitrary units) for animals growing according to the Putter

balance equation (Eq. (7)) using different parameter values (w̄0 ¼ 1, s20 ¼
0:1 (CV0 ¼ 0.316)). Left-hand panels present numerically calculated CV.

For comparison, the right-hand panels show the results of the analytical

approximation (Eq. (8)) and the same initial CV and mean size, and a final

mean size of 10. (a) b1 (magnitude indicated by numbers on lines) is varied

when there is no loss (a2 ¼ 0). (b) Relationship with loss (a2 ¼ 0.5),

b1o1 ¼ 0.9, and b1 ¼ b2, b1ob2 ¼ 1.1, and b14b2 ¼ 0.6 . (c) As in (b) for

b141 ( ¼ 1.1), b2 ¼ 0.9, 1.1 and 1.3. In all cases, a1 ¼ 1. Note that the

results shown in the figure are invariant to equal ratios of a1 and a2. The

analytical approximations were very accurate (within 8% of true values

calculated numerically) for all combinations of loss and gain.
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Fig. 2. Example in which relative size variation reverses as a function of mean size and in which mean size increases greatly. (a) Mean size as a function of

time for growth according to the Putter balance equation (Eq. (7), w̄0 ¼ 1, CV0 ¼ 0.316, b1 ¼ 0.8, b2 ¼ 0.6, a1 ¼ 1) for a case without (a2 ¼ 0) and with

(a2 ¼ 0.8) loss. (b) The corresponding relationships of size variation and mean size (solid lines). The dotted lines are results of the analytical approximation

(Eq. (8)). The approximation at each point in time is made using only the initial mean and variation in size, and the size at the time the approximation is

made of an individual that was originally of mean size.
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by CV for growth according to the Putter balance equation (Eq. (7),

w̄0 ¼ 1, CV0 ¼ 0.316, b1 ¼ 1 and b2 ¼ 0.75). A reduction in resource level

is represented by decreasing a1 from 1.0 to 0.5 for cases without loss

(a2 ¼ 0, squares) and with loss (a2 ¼ 0.3, circles). Empty and filled

symbols represent cases without and with the resource reduction,

respectively. Arrows connect curves without and with the reduction in

resource level with the same assumption about losses. Comparing with and

without resource reduction at the same mean size (but therefore different

times) a reduction in resource level led to a decrease in relative size

variation with losses and no change in relative size variation without losses

(compare filled and empty circle connected by dotted line).
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decrease in the magnitude of a1. If loss is negligible relative
to gain, then the approximation predicts that a reduction in
resource level will have no effect on the relative size
variation as a function of size. That is, mean size and size
variation will change at a slower rate, but the relationship
between mean size and size variation will be unaltered. In
contrast, if loss is not negligible, then a reduction in
resource level will have a positive or negative effect on size
variation depending on the relationship of b1 and b2.
Numerical results confirm these predictions (Fig. 3), in
which a reduction in resource level, represented by 50%
reduction in a1, has a dramatically different effect on size
variation as a function of mean size for two cases with
different relative contributions of loss. This environmental
effect on size variation arises when there is a difference in
the scaling relationships of gain and loss. We note that
competition is one way resource levels (and thus a1) might
be altered, and thus our results suggest that size
dependence alone should lead to changes in size variation
in response to changes in the extent of competition, i.e.,
other inherent differences among individuals are not
required (see Discussion). Similar predictions can be made
for environmental factors that affect loss represented by
changes in a2 (e.g., an increase in temperature, Sebens,
1987).
2. Size variation can yield information on the scaling

relationships between size and growth not possible from
measurements of mean size alone
Inferences on the relationship between individual growth

rate and size based on analysis of only mean size as a
function of time can be seriously incorrect. As animals
grow, they will likely encounter changes in the environment
caused by exogenous or endogenous (e.g. through reduced
resource levels) factors that will cause the underlying
relationship to be obscured when only considering mean
size. In such cases, individual variation can yield informa-
tion into the relationship between size and growth rate not
available from analysis of mean growth. This can be
illustrated by considering growth in a system where
resources are constant and limiting (i.e. nearly all resources
are consumed). In this case, we assume organisms
assimilate resources equivalently, and for simplicity that
losses are negligible (i.e., with g(w) ¼ a1w

b1 and a1 and b1
the same for all individuals at a specified time). Our
assumptions of fully utilized and constant resources
combined with no losses implies that the sum of growth
rates over individuals in the cohort must be a constant and
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balance the resource supply rate. We model this situation
by

dwi

dt
¼ cR

wb1
iPn

j¼1w
b1
j

 !
. (11)

Here R is the resource supply rate, c is the conversion
efficiency of resources into size (mass), and the term within
large braces is the proportion of the total resource supply
rate that is acquired by the ith individual. The actual CVs
obtained numerically for growth according to Eq. (11)
(b1 ¼ 0.75, w̄0 ¼ 1, CV0 ¼ 0.316) are illustrated in Fig. 4.
Because resources are supplied at a constant rate and all
resources are consumed, mean size increased linearly.
Therefore an analysis of size as a function of time might
incorrectly conclude that because mean growth rate is
independent of size that b1 ¼ 0. This apparent discrepancy
can occur because other factors (in this case limited
resource supply) influenced mean growth, causing the
relationship between size and growth over time to deviate
strongly from the scaling relationship of size and growth.
In contrast, we obtain a more accurate estimate of b1 by
analyzing the change in size variation as a function of mean
size. Rearranging Eq. (9) and replacing ~w by w̄ leads to the
approximation

b1 ffi 1þ
lnðCVðtÞ=CV0Þ

lnðw̄=w̄0Þ
. (12)

Using the initial and final CVs and mean sizes (see Fig. 4
caption) obtained numerically in Eq. (12) yields b1 ¼ 0.766,
which is close to the true value of 0.75. This example
illustrates that individual variation can offer a lens into
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Fig. 4. Example for which size variation yields more reliable information

into size-dependent growth than mean growth. Mean (straight solid line)

and variation (CV, curved solid line) in size as a function of time when

growth is limited by a constant and limiting resource supply and follows

Eq. (11) (w̄0 ¼ 1, CV0 ¼ 0.316, b1 ¼ 0.75). Dashed straight lines represent

the size of individuals that were initially greater and less than the mean size

by one standard deviation. Mean size increased 20-fold leading to a

decrease in size variation to CV ¼ 0.156. The linear increase in mean size

indicates that mean growth rate was independent of size, which could

incorrectly be interpreted as indicating b1 ¼ 0. A close approximation of

the correct scaling relationship (b1 ¼ 0.75) can be derived from the data by

examining the change in size variation as a function of mean size (Eq. (12),

see text). These results are independent of the magnitude of the coefficients

c and R.
how size-dependent processes and competition interact,
beyond what is possible if only mean growth is considered.
3. Different environmental factors that have the same

effect on mean growth can have very different effects on
size variation
This prediction is a corollary of our second prediction.

We illustrate this prediction by examining the effect of two
factors that reduce the growth rate of a simple ‘‘base’’ case
in which gain is proportional to size (b1 ¼ 1), and there is
no loss (a2 ¼ 0). In this simple case, relative size variation
does not change as mean size increases. Next, we introduce
two factors that reduce growth by 75%. The first factor
reduces growth rate by reducing gain (by reducing a1),
whereas the second factor reduces growth rate by increas-
ing loss (by increasing a2). In this example, the loss scaling
factor (b2) is 0.75 which is less than b1. Whereas these two
manipulations cause nearly identical reductions in mean
size achieved by a cohort, they have dramatically different
effects on size variation (Fig. 5); the first factor has no
effect, whereas the second has a pronounced positive effect.
Importantly, this prediction and example further highlight
how individual variation can yield insight into animal
growth not available from changes in mean size alone.

6. Discussion

Although patterns of size variation have long been
recognized (Ricker, 1958; Magnuson, 1962; Uchmański,
1985; Lomnicki, 1988; DeAngelis et al., 1993) we have an
incomplete understanding of their origin. We developed an
intuitive approximate relationship between individual size
variation and growth rate; namely that relative size
variation changes in proportion to the relative change in
the mean per unit size growth rate. Our approximation
works well for a widely applicable growth model, showing
that the scaling of size-dependent growth processes has
profound effects on size variation, and that changes in
environmental factors have very different but predictable
effects on size variation depending on growth rate proper-
ties (results summarized in Table 2).
Our results suggest that size variation will develop very

differently for different species, or even different popula-
tions as a function of context, given the large range of
scaling relationships expected for different species and
populations. When compared across species, scaling
relationships derived from physiological studies are re-
markably robust over many orders of magnitude of body
size (Peters, 1983; West et al., 2001). However, within
species there is large variation in the values of scaling
exponents (Sebens, 1982; Peters, 1983). For example, a
review of intraspecific scaling exponents of respiration rate
yielded exponents ranging from below 0 to greater than 2,
with many values deviating by greater than 50% in both
positive and negative directions (Glazier, 2005) from the
mean value of 0.75 found across species (Peters, 1983).
Further, even within a species, context can strongly affect
scaling relationships (reviewed in Kozlowski et al., 2004).
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Fig. 5. Example of two factors having similar effects on mean growth rate, but very different effects on size variation. Exact numerical results using the

Putter balance equation (Eq. (7), w̄0 ¼ 1, CV0 ¼ 0.316), are shown in which a base treatment [a1 ¼ 1, b1 ¼ 1.0 and a2 ¼ 0 (no loss), represented by dashed

line and square symbol] is manipulated first, by decreasing gain (a1 ¼ 0.75, dotted line and circle symbol) and second, by increasing loss (by increasing a2
to 0.32 with b2 ¼ 0.75, solid line and + symbol). (a) The manipulations had nearly identical negative effects on growth rate (curves of mean size as a

function of time nearly overlap). (b) In contrast, the two manipulations had very different effects on size variation; the decrease in gain has no effect on the

relative size difference as a function of mean size (overlaps with base treatment), however the increase in loss has a positive effect on relative size variation

as a function of mean size.

Table 2

Summary of predicted changes in relative size variation as a function of mean size when growth is described by the Putter balance equation (Eq. (7)) (NA

indicates not applicable, downward and upward arrows indicate decrease and increase, respectively)

Contribution of loss? Size-dependent gain and loss

relationships

Change in relative size variation as

function of size

Effect of increase in loss coefficient

(a2) relative to gain on change in

relative size variation

No (a2 ¼ 0) bo0 k NA

b ¼ 0 None NA

b40 m NA

Yes (a240) b1ob2 k or m k
b1 ¼ b2 k or m None

b14b2 k or m m
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Bayne et al. (1977) showed for a mussel species that
metabolism scaled with size with an exponent of 0.35 and
0.84 during different seasons. Strong and Daborn (1980)
showed, for the isopod Idotea baltica, that b1 (describing
ingestion) decreased from approximately 0.94–0.71 with
increasing temperature, while b2 (describing metabolism)
increased from approximately 0.68–1.14 with increasing
temperature. Thus for the same species, an environmental
factor changed the ratio of b1 and b2 from greater than 1, to
less than 1, which is predicted to lead to a decrease in size
variation. Further, published scaling relationships are
typically based solely on physiological factors including
metabolism and respiration measured in laboratory set-
tings, where the animals are isolated from important
ecological processes. Behavioral factors such as competi-
tive hierarchies (Magnuson 1962; Jobling, 1983) or access
to additional resources (Werner and Gilliam, 1984; Ludsin
and DeVries, 1997) could strongly influence scaling factors.
For example, size plays a large role in competitive
hierarchies in fish. Jobling (1983) showed that competitive
hierarchies in Arctic charr led to scaling relationship
between food intake and size greater than 1, and this
relationship increased at reduced feeding frequency which
heightened the competitive hierarchy. Therefore, we expect
that the wide range of magnitudes, and relative magni-
tudes, of b1 and b2 explored here are represented in natural
settings.
We found methods from statistics, based on viewing

future size as a transformation of initial size, useful.
Although these methods are limited to evaluating changes
in size distributions when growth of the cohort is the only
influence on the relative abundances of different sizes, they
provided us a way to understand how size variation could
respond in apparently complex ways to changes in growth
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model parameters. Our analysis explored hypotheses and
properties that could be derived from considering a single
focal process. The analytical approximation was derived to
guide qualitative predictions, as numerical methods can
provide nearly exact quantitative values of how size
variation changes. Nevertheless, we were initially some-
what surprised by how accurately the approximation
predicted changes in relative size variation, and described
in some detail the nature of the approximation and its
influence.

Future work should consider how the size-dependent
growth we investigated interacts with other processes. PDE
approaches can often be useful to gain insight into how size
distributions respond in such more complex situations. For
example, PDEs have been used to explore the effects of
size-dependent mortality and persistent individual differ-
ences in growth rate that may have a genetic basis (size-
independent factors, see Introduction). Indeed, DeAngelis
and Coutant (1982) used a PDE approach to show how a
bimodal size distribution can develop from an initial
unimodal distribution as a consequence of a size-dependent
growth rate relationship derived from the field. For some
yet more complex situations, such as stochasticity in daily
growth that is temporally correlated, PDE analysis cannot
be used and individually based simulation is required
(DeAngelis et al., 1993).

Our results suggest an alternative mechanism can lead to
the frequently observed effect of competition on animal
size variation, where increased competition is associated
with an increase in relative size variation as a function of
mean size in a number of animals (reviewed in Uchmański,
1985) including frog tadpoles (Wilbur and Collins, 1973,
Peacor and Pfister, 2006), fish (Rubenstein, 1981a; Irwin et
al., 1999) and grasshoppers (Wall and Begon, 1987). This
relationship is typically hypothesized to indicate that
competition magnifies inherent non-size-based phenotypic
differences (i.e. size-independent factors, see Introduction)
among individuals in their ability to grow, and therefore
that competition magnifies or reveals these individual
differences not otherwise apparent. This mechanism could
be expressed in the Putter balance equation by introducing
variation in the coefficient a1 or a2 to capture the inherent
phenotypic differences in growth, and increasing this
variation at high competition (as in Uchmański, 1985). In
some cases, such inherent differences have been supported
by direct quantification of individual phenotypic differ-
ences (Rubenstein, 1981b; Jobling and Koskela, 1996),
adding strength to the hypothesis. However, our results
show that a decrease in resource levels, that would
accompany an increase in competition, could cause an
increase in size variation via size-dependent factors alone.
In this scenario, if decreasing resources associated with
increased competition has a proportionally larger negative
effect on gain than loss, then an increase in size variation
would result when the scaling of size-dependent gain
exceeded that of size-dependent loss (b14b2, as in Figs. 1
and 3). Such a difference is plausible given the large range
of potential values for these exponents. Thus the mechan-
ism proposed here could underlie the increased size
variation observed with increased competition, and could
also play a role even in the cases for which a contribution
of inherent phenotypic differences is established. To
accurately model and describe the effects of competition
on size variation, it is therefore important to account for
such size-dependent effects.
Our results have implications to the development and

inferences drawn from individually based models (IBMs)
used to examine the population or community dynamics of
specific ecological communities. A principal motivation
underlying the use of IBMs is that they can capture
processes occurring at the individual level that combine in
complex ways to affect patterns at the population and
community level (DeAngelis and Gross, 1992; Grimm and
Railsback, 2005). For example, a number of studies have
used IBMs to predict the survival of fish cohorts in
complex environmental contexts (Rice et al., 1993; Letcher
et al., 1996; Martinez-Garmendia, 1998; Rose et al., 1999).
Because predation is size selective, variation in growth rate
is hypothesized to have a large effect on survivorship. But
many IBMs start a cohort with a size distribution at a
young age and apply a growth model to all individuals,
with parameters based on the relationship between mean
size and age. Our results show that one should not assume
that the resulting size variation will match what would be
obtained if the correct individual growth versus size
relationship were used (Fig. 5). We urge that when the
goal is to predict how individual variation affects popula-
tion processes, correct prediction of among individual
variation in size-at-age and/or growth be one consideration
when selecting among growth models. Ideally, the correct
scaling relationship between individual growth rate and
size should be used within IBMs, but often information to
base a scaling relationship on is limited. It is therefore
important when constructing IBMs that use size-dependent
processes to consider how robust model predictions are to
the choice of the growth equation.
For analogous reasons, models constructed to examine

the contribution of size-independent factors to the origin of
size variation (e.g., DeAngelis et al., 1993; Imsland et al.,
1998; Pfister and Stevens, 2002) could underestimate the
influence of size-dependent factors, if size dependence were
represented in a way that departs from the true scaling. For
example, Pfister and Stevens (2002) found that size-
dependent growth in an IBM model cannot account for
increases in variability patterns observed in field studies.
The scaling factor of size-dependent growth (gain) in their
IBM lies between 0 and 1, and there is no loss term.
Therefore the size-dependent contribution should be a
decrease in relative variation as growth proceeds. Alter-
native growth models that include loss could produce the
opposite pattern, and thus inferences depend upon the
selected model having correctly represented how contribu-
tions to individual growth rate scale with size. Whereas
theoretical studies clearly point to the importance and need
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to understand size-independent factors (DeAngelis et al.,
1993; Imsland et al., 1998; Pfister and Stevens, 2002),
further work is required to understand the relative
contribution of size-dependent and size-independent fac-
tors, and their potential interactions.

7. Conclusions

Increasing attention devoted to size variation suggests
that understanding its origin is important to a wide range
of ecological problems (Lomnicki, 1988, 1999; Grimm and
Uchmański, 2002; Kendall and Fox, 2002; Bolnick et al.,
2003; de Roos and Persson, 2003). Further, size variation
may provide clues into how species interactions and
environmental conditions affect growth and survival in
general (Lomnicki, 1988), by for example, indicating the
magnitude of competition (Wilbur and Collins, 1973; Wall
and Begon, 1987) and predation risk (Ziemba et al., 2000).
A critical step is increased measurements of individual-
based data (Pfister and Stevens, 2002) to understand the
interaction of size-dependent and size-independent con-
tributions to size variation. Our results, which complement
those from earlier studies using PDEs (e.g., DeAngelis and
Huston, 1987), illustrate the large range of potential
relationships between mean size and size variation due to
differences in the contributions and scaling of components
of growth, and the effect of environmental factors on these
relationships. This large range of relationships, however,
can arise solely from size-dependent growth where relative
size variation changes approximately in proportion to the
changes in mean per unit size growth rate.
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Appendix A. Basis for the analytical approximation for

variance and consideration of nonlinear influences

Our application of the delta method to obtain an
analytical approximation of how the variance in size
changes as a cohort grows is based on the Taylor series.
Recall that if a function S(x) and its n+1 derivatives are
continuous in an interval containing any two values of x, w

and m, the function evaluated at w is equal to the Taylor
series expanded about m with remainder:

SðwÞ ¼ SðmÞ þ Sð1ÞðmÞðw� mÞ þ
Sð2ÞðmÞ
2!
ðw� mÞ2

þ � � � þ
SðnÞðuÞ

n!
ðw� mÞn þ Rnðw;mÞ,
Rnðw;mÞ ¼
Z w

m

ðw� tÞn

n!
Sðnþ1ÞðtÞ dt. ðA:1Þ

Here SðnÞðmÞ denotes the nth derivative of the function
S(x) evaluated at x ¼ m. For many functions the remainder
term Rnðw;mÞ vanishes. In practice, many applications of
the Taylor series use just the first several terms to
approximate the function, as these terms will frequently
dominate.
The usual delta method approximation we used includes

only the first two terms of the series, so that

wðtÞ ffi wðw̄0Þ þ ðw0 � w̄0Þ
gðwðw̄0ÞÞ

gðw̄0Þ
. (A.2)

From this the expected value of size at time t is
approximated by

w̄ffi Eðwðw̄0Þ þ wð1Þðw̄0Þðw0 � w̄0ÞÞ ¼ wðw̄0Þ. (A.3)

Here w is a function returning size at time t, given initial
size as an argument, and is identical to the w used in the
main text, but the second argument, t, has been dropped to
simplify notation. Then the delta method approximation of
the variance is obtained, using this approximation of w̄,

s2ðtÞ ¼ Eð½w� w̄�2Þ ffi E½wðw̄0Þ

þ wð1Þðw̄0Þðw0 � w̄0Þ � wðw̄0Þ�
2Þ

¼ ðwð1Þðw0ÞÞ
2Eð½W 0 � w̄0�

2Þ ¼ ðwð1Þðw0ÞÞ
2s20. ðA:4Þ

This leads directly to Eq. (1) in the main text.
While the delta method is usually applied as in Eq. (A.4),

it is straightforward (but algebraically messy) to extend the
approach to include higher order terms. In the main text we
restricted our attention to the approximation that uses the
first two terms of the Taylor series because our purpose in
presenting the approximation was to aid intuition about
how variance in size develops for a cohort. Here we
develop the approximation including the third (quadratic)
term, as an aid to understanding of how nonlinearities can
influence the approximation.
In a similar fashion to Eq. (A.3), the expected value of

size at time t with the quadratic term included is

w̄ffi E wðw̄0Þ þ
wð2Þðw̄0Þ

2
ðW 0 � w̄0Þ

2

� �

¼ wðw̄0Þ þ wð2Þðw̄0Þ
s20
2
. ðA:5Þ

This emphasizes that in general w̄awðw̄0Þ, i.e., the
average size is not equal to the size of the individual that
was at average size initially. Incorporating the quadratic
term either leads to an increase or decrease from the linear
approximation depending on whether w is an accelerating
(positive second derivative) or decelerating (negative
second derivative) function of the initial value for size.
The absolute value of the adjustment depends on both the
magnitude of the second derivative and the variance.
Now using the new approximation for mean size from

Eq. (A.5) and incorporating the quadratic term (i.e., the
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third term in Eq. (A.1)) when approximating w, the
approximation for variance given by (A.4) is modified to

s2ðtÞ ffi E wðw̄0Þ þ wð1Þðw̄0ÞðW 0 � w̄0Þ

���

þ
wð2Þðw̄0Þ

2
ðW 0 � w̄0Þ

2
Þ

� wðw̄0Þ þ wð2Þðw̄0Þ
s20
2

� ��2!
. ðA:6Þ

After algebraic simplification this can be expressed as

s2ðtÞ ffi ðwð1Þðw̄0ÞÞ
2s20

� �
þ wð1Þðw̄0Þw

ð2Þðw̄0ÞEððW 0 � w̄0Þ
3
Þ

� �
þ

wð2Þðw̄0Þ

2

� �2

EððW 0 � w̄0Þ
4
Þ � s20
� 	2h i( )

. ðA:7Þ

In Eq. (A.7), the first term is the original delta method
approximation based on the first two terms of the Taylor
series. The second term represents an interaction between
the initial skew in the distribution and the nonlinear
(quadratic) term (third term of Eq. (A.1)). If both the skew
and the second derivative have the same sign, the effect of
this term is to cause an increase over the linear
approximation. The third term is also related to skew
and is always positive because the squared second
derivative must be positive and the term in square braces
is of the form E[X2]�(E[X])2 and E[X2]4(E[X])2. Thus we
have the somewhat surprising result that curvature caused
by a non-zero second derivative will generally increase the
variance (provided the initial distribution is symmetric)
over the linear approximation, regardless of the direction
of the curvature in the relationship. Although individuals
with size initially below (with a positive second derivative)
or above (with a negative second derivative) the mean will
end up closer to the center of the distribution than assumed
by the linear approximation, the opposite effect on the
other side of the mean produces larger squared deviations
on average. However, when considering the CV rather than
variance, a positive second derivative could cause a
decrease rather than increase in comparison with the linear
approximation, because s(t) (square root of Eq. (A.7))
could increase proportionately less than the reciprocal of
the mean (reciprocal of Eq. (A.5)) decreases.

To further explore the nature of the delta method
approximation, we compare the size distribution arising
from the approximation with the actual size distribution,
when organisms grow according to the logistic model:

dw

dt
¼ g1w�

g1

wmax
w2,

wðw0; tÞ ¼
wmax

ðwmax=w0 � 1Þ expð�g1tÞ þ 1
,

w0ðw; tÞ ¼
wmax

ððwmax � wÞ=wÞeg1t þ 1
. ðA:8Þ

Fig. A1a shows a normal PDF for initial sizes (truncated
at zero), a final PDF after logistic growth (i.e., using
Eq. (A.8)), and a final PDF corresponding to growth
following the approximation (Eq. (A.2)) used in the
derivation of the delta method approximation for CV
(Eq. (4)). The PDFs were calculated by Eq. (5), but for
approximate logistic growth the ratio of growth rates on
the right-hand side of the equation becomes gð ~w0Þ=gð ~wÞ. As
for logistic growth, for approximate logistic growth the
functions g(.) and w(.) applied in Eq. (5) followed Eq.
(A.8). We chose an initial distribution, parameters, and
time period for growth that accentuate and illustrate the
differences between the approximation and the actual
distribution for true logistic growth (w̄0 ¼ 5, CV0 ¼ 0.316,
g1 ¼ 1, gmax ¼ 20, t ¼ 2.0). These parameters lead to an
277% increase in mean size.
The initial probability density for sizes 2 and 8 were

equal, but after logistic growth the probability density
declined substantially for a size corresponding to an initial
size of 2, and increased substantially for an initial size of 8.
The probability density corresponding to the analytical
approximation remained equal and decreased only slightly
after growth (Fig. A2 panel b). Fig. A2, panels c and d,
show a more detailed view of the PDFs after growth for
sizes corresponding to initial size ranges of 270.2 and
870.2. Individuals near 2 in initial size were spread over a
wider range of sizes after growth than before growth,
whereas individuals initially near 8 were spread over a
narrower range after growth. This reflects the different
growth ratios gðwðw0ÞÞ=gðw0Þ in different parts of the initial
size distribution, which is ignored by the approximation.
The approximation spreads the entire size distribution
based on the ratio at the mean of the initial distribution
gðwðw̄0ÞÞ=gðw̄0Þ, which in this case leads to only modest
change in spread from the initial size distribution. After
growth, the locations along the X-axis for these size
intervals also differed between logistic growth and growth
according to the approximation. For the logistic scenario
we modeled, the average growth ratio between an initial
size of 2 and the initial mean (equal to 5) was greater than
the ratio at the mean, leading to a stretching of this portion
of the distribution relative to what the approximation
assumes and an underestimate of the difference in total
growth for individuals starting at sizes of 2 and 5. Likewise,
the average ratio between an initial size of 5 and 8 is less
than the ratio at the mean, and thus the difference in total
growth for individuals starting at these sizes is over-
estimated by the approximation.
In the above example we deliberately chose a starting

size distribution, logistic parameters, duration for growth,
and focal sizes to emphasize differences between the true
logistic PDF and that presumed by the approximation.
Even so, the overall location and spread of the approx-
imate distribution has roughly tracked the true distribu-
tion. While the approximate mean of 14.79 is somewhat
over the true mean of 13.85, and the approximate CV of
0.109 is substantially below the true CV of 0.149, the
approximation has still captured the substantial decline in
CV for this example deliberately chosen to emphasize
errors due to the approximation. At least in part the
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Fig. A1. Illustration of local expansion of a size distribution and its relationship to the analytical approximation based on the delta method. (a) The initial

size distribution (probability density function, PDF) for a truncated (at zero) normal distribution (w̄0 ¼ 5, CV0 ¼ 0.316). Circles are located on PDF curve

for sizes of 2 (solid) and 8 (open), and are connected by a long dashed line emphasizing that the probability density is the same for these two sizes that are

equal distance from the initial mean. (b) The PDF after logistic growth (g1 ¼ 1, gmax ¼ 20, t ¼ 2.0) (solid curve) as well as an approximation to the PDF

after growth based on the same linearization as our analytical approximation for the CV (dashed curve). Symbols on PDF curves show sizes of individuals

that were initially of size 2 (solid symbols) or size 8 (open symbols). Circles are used for actual logistic growth and are connected by a long dashed line, and

squares connected by a short dashed line are used for approximate logistic growth. The connecting lines emphasize that the probability density remains

equal for individuals of size 2 and 8 according to the approximation, whereas probability density increases for the initially larger size relative to the initially

smaller size for actual logistic growth. (c) Expanded portion of the final PDFs after growth corresponding to individuals that were of initial size 270.2 for

logistic (solid circle on curve) or approximate logistic (solid square on curve) growth. (d) Same as panel c for the portion of the PDFs corresponding to

initial size 870.2, using open symbols instead of solid ones.
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approximate CV bares a relationship to the true CV
because the stretching of the distribution below the mean is
balanced by its contraction above the mean, although there
is some underestimation because the approximation cannot
account for the skew (see general discussion above). Some
may be surprised by how well the approximation performs,
viewing the linearization as assuming that w(w0) changes
linearly with time. In fact, the analytical approximation is
based on a less severe assumption of a linear relationship
between w(w0) and w0 with slope determined by the ratio of
initial and final growth rates for an initial size equal to the
mean and intercept given that slope determined by wðw0Þ.
These assumptions are strictly true for some models where
size changes quite nonlinearly with time, such as exponen-
tial growth ðdw=dt ¼ a1wÞ or the ‘‘length-based’’ von
Bertalanffy ðdw=dt ¼ a1 � a2wÞ, where size (w here) is
usually considered to be length, and for these the
approximation is exact.

Appendix B. Derivation of the exact distribution of size at

time t and calculation of the associated variance

We use two distinct methods to derive the (exact) PDF
for size at time t, f tðwÞ, and then calculate the associated
variance (and CV). The first approach, from statistics, is
based on considering size at time t as a transformation of
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initial size, and thus relates to our delta method approx-
imation. The second is based on solving a partial
differential equation describing the dynamics of a size-
structured population. Rather than follow individuals, this
method quantifies how the density of individuals as a
function of size changes through time (DeAngelis and
Coutant, 1979). PDEs have the advantage that they can be
adapted to incorporate additional influences on size
distributions such as size selective mortality and recruit-
ment (DeAngelis and Huston, 1987).

The first approach is intended for deriving the PDF for a
transformed random variable (Larsen and Marx, 1981, pp.
92–93). Let w0 represent the size of some individual at time
0, with PDF f 0ðw0Þ and cumulative distribution function
(CDF) F0ðw0Þ. The solution of the differential equation
dw=dt ¼ gðwÞ at time t, given an initial size w0, is obtained
by the function wðw0; tÞ. The inverse function w0ðw; tÞ
returns the initial size given the size at time t. We obtain the
PDF for w at time t by first expressing the CDF for w at
time t in terms of the CDF for w0, FtðwÞ ¼ F0ðw0ðw; tÞÞ,
which holds when w(w0, t) is a one-to-one monotonic
function, as is the case for the growth models we are
considering. Next, we differentiate this CDF with respect
to w to obtain (by definition) the PDF f tðwÞ:

f tðwÞ ¼
dF0ðw0ðw; tÞÞ

dw
¼

dF0ðw0ðw; tÞÞ

dw0ðw; tÞ

dw0ðw; tÞ

dw

¼ f 0ðw0ðw; tÞÞ
dw0ðw; tÞ

dw
. ðB:1Þ

We then divide the numerator and denominator of the
last term in Eq. (B.1) by dt, and recalling that dw/dt ¼ g(w),
obtain Eq. (5).

The second approach to obtain the PDF is to use the
method of characteristics to solve a set of PDEs. In this
approach we consider a PDE that describes the dynamics
of a size-structured population for the special case where
individual growth is occurring in the absence of mortality
or recruitment to the population. For this case, the
appropriate PDE is (DeAngelis and Huston, 1987)

qNðw; tÞ

qt
þ

q
qw
ðgðw; tÞNðw; tÞÞ ¼ 0. (B.2)

Here, N(w, t) represents the density of animals of size w

at time t. Eq. (B.2) can be rewritten in the form
Nt þ cNw ¼ b, where Nt and Nw are partial derivatives of
N with respect to t and w, respectively:

Nðw; tÞ þ gðwðtÞÞ
qNðw; tÞ

qw
¼ �Nðw; tÞ

qgðwðtÞÞ

qw
. (B.3)

The method of characteristics recognizes that Eq. (B.3)
can be rewritten as the pair of coupled ordinary differential
equations:

dN

dt
¼ b ¼ �

qgðwÞ

qw
N,

dw

dt
¼ c ¼ gðwÞ. ðB:4Þ
Consequently,

Nðw; tÞ ¼ Nðw0; 0Þ exp �

Z t

0

qgðwÞ

qw
dt

� �

¼ Nðw0; 0Þ exp �

Z gðwðw0;tÞÞ

gðw0Þ

1

g
dg

� �

¼ Nðw0; 0Þ
gðw0Þ

gðwðw0ÞÞ
. ðB:5Þ

In obtaining Eq. (B.5), qg=qw could be equated with dg/
dw because the former does not depend upon t. Without
loss of generality, we can assume

R
Nðw; 0Þ dw ¼ 1 (if this is

not true we can normalize the distribution so it is), so that
Nðw; 0Þ ¼ f 0ðw0Þ. With this substitution in Eq. (B.5) we
again obtain Eq. (5).
With an equation giving the PDF at time t in hand (Eq.

(5)), the task is then to determine variance (and CV). This
requires that Eq. (5) be substituted for ft(w) in Eq. (6) and
the resulting integrals evaluated. The resulting integrals
generally cannot be solved analytically and numerical
integration is required. These integrals have the general
form

R
hðwÞf tðwÞ dw, where h(w) is either w or ðw� w̄Þ2, for

the mean and variance, respectively. We used a simple
brute force approach of varying w over the range of K

values with non-negligible probability density (from a
lower value L to a higher value U) in small increments, and
calculating

Pi¼k
i¼1hðwiÞf tðwiÞdi, where di is the size increment

for which f tðwiÞ is assumed to apply. The limit of this
summation as di ! 0 is the desired integral, so the
summation can be used in place of the integral after
checking that d are small enough so the answer would not
appreciably change with further decreases in the increment
size. Normally, one would use equal size increments, but
this is not generally possible here because this would
require that w0ðw; tÞ be known (so that Eq. (B.1) can be
applied to obtain f tðwÞ for the desired w in the summation).
For a given w0, however, we can numerically solve the
growth model (differential equation) to obtain w. We
therefore specified a sequential series of K values of w0,
found the corresponding w at later times (after growth) by
numerically solving the differential equation for each initial
size, and then used these resulting sizes in the summation.
In this case (for a distribution truncated at zero),
d1 ¼ ðw2 � w1Þ=2þ w1, di ¼ ðwiþ1 � wi�1Þ=2; 1oioK ;
and dK ¼ dK�1. Based on preliminary testing we used
1000 equally spaced increments, between 0 and 5 in our
numerical integrations presented in main text.
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Physiologie Menschen und Tiere 180, 298–340.

Rice, J.A., 1995. Mathematical Statistics and Data Analysis, second ed.

Duxbury Press, Belmont, CA.

Rice, J.A., Miller, T.J., Rose, K.A., Crowder, L.B., Marschall, E.A.,

Trebitz, A., DeAngelis, D.L., 1993. Growth rate variation and larval

survival: inferences from an individual-based size-dependent predation

model. Can. J. Fish. Aquat. Sci. 50, 133–142.

Ricker, W.E., 1958. Handbook of Computations for Biological Statistics

of Fish Populations. Fisheries Research Board of Canada, Bulletin

Number 119.

Ricklefs, R.E., 2003. Is rate of ontogenetic growth constrained by resource

supply or tissue growth potential? A comment on West et al.’s model.

Funct. Ecol. 17, 384–393.

Rose, K.A., Rutherford, E.S., McDermot, D.S., Forney, J.L., Mills, E.L.,

1999. Individually-based model of yellow perch and walleye popula-

tions in Oneida Lake. Ecol. Monogr. 69, 127–154.

Rubenstein, D.I., 1981a. Individual variation and competition in the

everglades pygmy sunfish. J. Anim. Ecol. 50, 337–350.

Rubenstein, D.I., 1981b. Population-density, resource patterning, and

territoriality in the everglades pygmy sunfish. Anim. Behav. 29,

155–172.

Sanford, E., Roth, M.S., Johns, G.C., Wares, J.P., Somero, G.N., 2003.

Local selection and latitudinal variation in a marine predator–prey

interaction. Science 300, 1135–1137.

Sebens, K.P., 1982. The limits to indeterminate growth—an optimal

size model applied to passive suspension feeders. Ecology 63,

209–222.

Sebens, K.P., 1987. The ecology of indeterminate growth in animals.

Annu. Rev. Ecol. Syst. 18, 371–407.

Seber, G.A.F., 1982. The Estimation of Animal Abundance and Related

Parameters, second ed. Macmillan, New York.



ARTICLE IN PRESS
S.D. Peacor et al. / Theoretical Population Biology 71 (2007) 80–9494
Seed, R., Brown, R.A., 1978. Growth as a strategy for survival in two

marine bivalves,Cerastoderma edule and Modiolus modiolus. J. Anim.

Ecol. 47, 283–292.

Strong, K.W., Daborn, R.R., 1980. The influence of temperature on

energy budget variables, body size, and seasonal occurrence of the

isopod Idotea baltica (Pallas). Can. J. Zool. 58, 1992–1996.
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