
# SOIL MOISTURE EXPERIMENTS IN 2002 (SMEX02)



## **Summary of Experiment Plan**

June, 2002









#### 1 OVERVIEW AND SCIENTIFIC OBJECTIVES

Soil moisture is the key state variable in hydrology: it is the switch that controls the proportion of rainfall that percolates, runs off, or evaporates from the land. It is the life-giving substance for vegetation. Soil moisture integrates precipitation and evaporation over periods of days to weeks and introduces a significant element of memory in the atmosphere/land system. There is strong climatological and modeling evidence that the fast recycling of water through evapotranspiration and precipitation is the primary factor in the persistence of dry or wet anomalies over large continental regions during summer. As a result, soil moisture is the most significant boundary condition that controls summer precipitation over the central U.S. and other large mid-latitude continental regions, and essential initial information for seasonal predictions.

A common goal of a wide range of agencies and scientists is the development of a global soil moisture observing system (Leese et al. 2001). Providing a global soil moisture product for research and application remains a significant challenge. Precise *insitu* measurements of soil moisture are sparse and each value is only representative of a small area. Remote sensing, if achievable with sufficient accuracy and reliability, would provide truly meaningful wide-area soil wetness or soil moisture data for hydrological studies over large continental regions.

Development and implementation of the remote sensing component of a global soil moisture observing system will require advancements in science and technology. Many aspects of the research require validation and demonstration, which can only be accomplished through controlled large-scale field experimentation. Large-scale field experimentation requires significant resources to be successful that are usually contributed from several programs.

At the present time there are three programs that significantly influence the direction of research and the requirements of a soil moisture field experiment. These are the Soil Moisture Mission (EX-4a), Global Water & Energy Cycle (GWEC) Research and Analysis, the Advanced Microwave Scanning Radiometers (AMSR) on Aqua and ADEOS-II. The relevant science needs of each program are described in the following sections. These were merged into the SMEX02 experiment plan.

Field experiments, in particular the series that has been conducted at the Southern Great Plains (SGP) site, have been very successful at addressing a broad range of science and instrument questions. The data have been used in studies that went well beyond the algorithm research, primarily due to an emphasis on developing map-based products.

For 2002, a field experiment is proposed that would support the science needs of EX-4a, GWEC, and AMSR. Main elements of the experiment are to understand land-atmosphere interactions, validation of AMSR brightness temperature and soil moisture retrievals, extension of instrument observations and algorithms to more challenging vegetation conditions, and the evaluation of new instrument technologies for soil moisture remote sensing. We have chosen to address the combined objectives with ground/aircraft/spacecraft observations over sites in Iowa during the summer of 2002.

This report is a summary of the full SMEX02 experiment plan.

## 2 SMACEX-Soil Moisture Atmosphere Coupling EXperiment

A number of field experiments in the past, including SGP97 and SGP99, have been designed to investigate land surface-atmosphere coupling and the role of remote sensing in Land Atmosphere Transfer Schemes (LATS). However, in these studies, methodologies for upscaling and aggregation have not been adequately developed, implemented and tested because the necessary measurements, models and other tools to perform these tasks either have not existed and/or have not merged in the necessary way. Moreover data quality depends to a degree on the conditions encountered in a particular experiment. Hence building a diverse knowledge base needed to understand the complex interaction of the land surface and atmosphere requires a continued effort in collecting the necessary field observations over different land cover types and climatic conditions. An integral part of SMEX02 is an experiment designed to address these concerns. The SMACEX project is designed to collect atmospheric and remote sensing data over a range of spatial and temporal scales necessary to investigate local and regional scale impacts of landscape heterogeneity on water and energy exchanges.

SMACEX will address several timely research foci in the area of water and energy cycling across the land-atmosphere interface (see below). With additional support for flying time and data processing, the Twin-Otter can collect surface-layer and atmospheric boundary-layer (ABL) flux data. Support for two other remote sensing activities, namely aircraft-based high resolution optical remote sensing data and ground-based Lidar observations of wind and water vapor concentrations in the ABL, will provide simultaneous landscape and atmospheric properties covering a wide range of temporal and spatial scales. Combining these observations together with a network of 15-20 tower-based flux observations will result in a complete set of distributed surface and atmospheric data, allowing for LATS and Large Eddy Simulation (LES) model validation and development and testing of methodologies to bridge the scales from local to regional. A schematic diagram summarizing the measurement and modeling activities (experimental logistics) proposed for the project and the overall framework addressing upscaling issues is given in Figure 1. This figure also illustrates the interdependency of the proposed activities and that all components of the project are required in order to achieve proposal goals and objectives.

The expected advances with the coupled measurement and modeling program will address one of NASA's core missions of seeking to rigorously bridge between remotely sensed data and operational forecast models, including advances in operational data assimilation schemes.

The overall objective of this work is to use a direct-measurement/remote sensing/modeling approach to understand how horizontal heterogeneities in vegetation cover, soil moisture and other land-surface variables influence the exchange of moisture and heat with the atmosphere.

The field observations will support the analysis of heterogeneities ranging from within field or patch to the regional scales that are commensurate with prediction models of weather and climate. The unique in-situ and aircraft measurements of atmospheric and soil variables and fluxes to be provided in the SMACEX data set are of primary importance. They will be used both to validate fluxes *diagnosed* using remote sensing methods at various scales, and in evaluating results from the LES-remote sensing model that will be used to develop horizontal

scaling relationships. The experimental approach is thus also an "up-scaling" endeavor, investigating how remote sensing data at different horizontal and temporal scales may be utilized for both diagnosis and prediction of the surface energy exchanges from patch to regional scales. In particular, we focus on the effects of observation and model scale on the importance and effectiveness of assimilation techniques.

## Experimental Logistics High-Resolution Optical and Microwave Remote Sensing Data Tower Flux LES Experiments Validation Validation Lidar Diagnostic LATS Up-Scaling (10m to 100m Resolution) Validation Aircraft Flux Prognostic LATS Up-Scaling Validation (1-D)Validation Diagnostic LATS Prognostic LATS >100m to 10km Resolution) (3-D Forecast Model)

Figure 1. Schematic summarizing measurement and modeling activities and their interrelationships. Validation (blue arrows) of both the high resolution (10 to 100 m) output from LATS and LES remote sensing models is performed with the flux towers and Lidar data, while up-scaling techniques (red arrows) to the coarser resolutions (> 100 m to 10 km) validated with Lidar and aircraft fluxes. Validation of the prognostic LATS is achieved through validated up-scaled diagnostic LATS remote sensing models.

#### 3 SATELLITE OBSERVING SYSTEMS

A key element of SMEX02 is the development and validation of soil moisture products from the Aqua Advanced Microwave Scanning Radiometer (AMSR). Other satellite data will also be important in the investigations. These include passive microwave observations from the SSM/I, microwave radar from Radarsat, ERS-2, Quikscat, and Envisat, and visible and infrared observations from Landsat, NOAA AVHRR, Terra ASTER and MODIS, and GOES. Some details on AMSR are provided below. Landsat data are of particular importance in developing the vegetation and land cover information for a variety of SMEX02 studies. Therefore, a summary of the potential data is also presented.

## 3.1 Aqua Advanced Microwave Scanning Radiometer (AMSR-E)

Two versions of the AMSR instrument will be launched in 2002/2003 on the Aqua (AMSR-E) (http://wwwghcc.msfc.nasa.gov/AMSR/) and ADEOS-II platforms (http://adeos2.hq.nasda.go.jp/default\_e.htm). The NASA EOS Aqua platform (http://eospm.gsfc.nasa.gov/) was launched on May 4, 2002. A picture of Aqua is shown on the cover of this plan. It is likely that AMSR data will be available for SMEX02. SMEX02 is designed to support AMSR related algorithm development and validation; however, the experiment has a broad set of objectives.

Low frequencies provide the best information for soil moisture retrieval. As shown in Table 1, the lowest frequency of AMSR is 6.9 GHz (C band). The viewing angle will be 55°. Details on AMSR can be found at <a href="http://wwwghcc.msfc.nasa.gov/AMSR/">http://wwwghcc.msfc.nasa.gov/AMSR/</a>. There are very few data sets that have been obtained that include the low frequencies of the AMSR instruments, especially dual polarization at off nadir viewing angles. Based on the results of SMMR and supporting theory we anticipate that this instrument will be able to provide soil moisture information in regions of low vegetation cover, less than 1 kg/m² vegetation water content.

| Table 1. AMSR-E Characteristics (Aqua) |              |                 |       |  |
|----------------------------------------|--------------|-----------------|-------|--|
| Frequency                              | Polarization | Horizontal      | Swath |  |
| (GHz)                                  |              | Resolution (km) | (km)  |  |
| 6.925                                  | V. H         | 75              | 1445  |  |
| 10.65                                  | V. H         | 48              | 1445  |  |
| 18.7                                   | V. H         | 27              | 1445  |  |
| 23.8                                   | V. H         | 31              | 1445  |  |
| 36.5                                   | V. H         | 14              | 1445  |  |
| 89.0                                   | V. H         | 6               | 1445  |  |

### 3.2 Landsat Thematic Mapper

The Landsat Thematic Mapper (TM) satellites collect data in the visible and infrared regions of the electromagnetic spectrum. Data are high resolution (30 m) and are very valuable in land cover and vegetation parameter mapping. Band 8 (panchromatic) for Landsat 7 has a 10 m resolution. be Additional details Landsat and data found on the program can http://geo.arc.nasa.gov/sge/landsat/landsat.html.

The Iowa site is located in an overlapping area of scenes on paths 26 and 27. It id mostly in row 31. For path 27 the northern portion is not well covered, however, the Walnut Creek area is included. It may be necessary to acquire row 30 for complete coverage. At the present time coverage by both the Landsat 5 and 7 satellites results in frequent temporal coverage. Coverage dates are listed in Table 2 and shown in Figure 2.

| Table 2. SMEX02 Potential Landsat Coverage |             |      |  |
|--------------------------------------------|-------------|------|--|
| Date                                       | Landsat No. | Path |  |
| June 14                                    | 5           | 27   |  |
| June 15                                    | 7           | 26   |  |
| June 22                                    | 7           | 27   |  |
| June 23                                    | 5           | 26   |  |
| June 30                                    | 5           | 27   |  |
| July 1                                     | 7           | 26   |  |
| July 8                                     | 7           | 27   |  |
| July 9                                     | 5           | 26   |  |
| July 16                                    | 5           | 27   |  |
| July 17                                    | 7           | 26   |  |

#### 4 AIRCRAFT REMOTE SENSING INSTRUMENTS

Aircraft remote sensing will include visible, infrared, and microwave instruments. Visible and infrared measurements will be provided by the Utah State University aircraft over the watershed area. A total of five different aircraft microwave instruments may contribute to SMEX02. Two of these instruments are very important to the broad objectives of the experiment: PALS and PSR, which are described below. ESTAR and AIRSAR will contribute to important algorithm development projects. A GPS reflectometer will also be part of the instrument. The potential of this approach to soil moisture sensing will also be explored.

## 4.1 Polarimetric Scanning Radiometer (PSR)

The PSR is an airborne microwave imaging radiometer operated by the NOAA Environmental Technology Laboratory for the purpose of obtaining polarimetric microwave emission. It has been successfully used in several major experiments including SGP99. During SMEX02, the PSR/CX scanhead will be integrated onto the NASA WFF P-3B aircraft in the aft portion of the bomb bay. The PSR/CX scanhead is an upgraded version of the previously successful PSR/C scanhead used during SGP99. The PSR/CX scanhead will have the polarimetric channels listed in Table 3 for SMEX02. The system will be operated in two imaging modes, both using conical scanning. Mapping characteristics are described in Table 4. Additional details on the PSR not presented here can be found at http://www1.etl.noaa.gov/radiom/psr/.

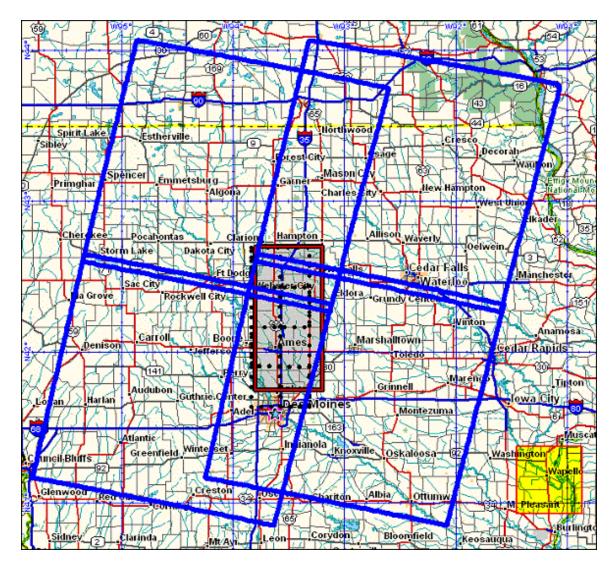



Figure 2. Map showing the SMEX02 region and Landsat TM frame coverage. Blue lines are Landsat scenes, gray area is the SMEX02 region and black lines are Ease Grids. The yellow box is 50 km by 50 km and is used to represent scale.

| Table 3. PSR/CX Channels for SMEX02 |               |           |  |  |
|-------------------------------------|---------------|-----------|--|--|
| Frequency (GHz)                     | Polarizations | Beamwidth |  |  |
| 5.82-6.15                           | V,h           | 100       |  |  |
| 6.32-6.65                           | V,h           | 100       |  |  |
| 6.75-7.10 *                         | v,h,U,V       | 100       |  |  |
| 7.15-7.50                           | V,h           | 100       |  |  |
| 10.6-10.8 *                         | v,h,U,V       | 70        |  |  |
| 10.68-10.70 *                       | V,h           | 70        |  |  |
| 9.6-11.5 um IR                      | V+h           | 70        |  |  |

<sup>\*</sup> Similar to AMSR-E channel.

| Table 4. PSR Flightline and Mapping Specifications for SMEX02 |                    |                 |  |
|---------------------------------------------------------------|--------------------|-----------------|--|
|                                                               | Wide Area Imaging  | High-Resolution |  |
|                                                               |                    | Imaging         |  |
| Location                                                      | Iowa Region        | Walnut Creek    |  |
|                                                               |                    | Watershed Site  |  |
| Altitude (AGL) in m                                           | 7300               | 1800            |  |
| Scan period (seconds)                                         | 8                  | 3               |  |
| Incidence angle (deg)                                         | 55                 | 55              |  |
| 3-dB footprint resolution                                     | 3.0 km at 6 GHz    | 750 m at 6 GHz  |  |
|                                                               | 2.0 km at 10 GHz   | 500 m at 10 GHz |  |
| Sampling                                                      | Oversampling above | Nyquist         |  |
|                                                               | Nyquist            |                 |  |

## 4.2 Passive and Active L and S Band Microwave Instrument (PALS)

In order to evaluate the potential of alternative approaches to soil moisture retrieval, a new L and S band integrated passive/active instrument has been developed (http://eis.jpl.nasa.gov/msh/mission+exp/pals.html). PALS provides single beam observations at L and S bands, dual polarized, passive and active simultaneously. Additional details are described in Table 5. This instrument offers many interesting opportunities for algorithm development and evaluation that have not been available; dual polarization, off nadir viewing typical of conical scanning systems, multifrequency, and both active and passive observations. From these observations we hope to obtain a better understanding of the frequency and polarization characteristics of land surfaces in the L to C-band range, leading to potential improvements in future spaceborne system designs and retrieval algorithms. The PALS instrument was flown successfully in SGP99. PALS will be flown at low altitudes over the Walnut Creek watershed flightlines.

| Table 5. Description of the JPL PALS Instrument |                   |                   |  |
|-------------------------------------------------|-------------------|-------------------|--|
| Parameter                                       | Radiometer        | Radar             |  |
| Frequencies                                     | 1.41 and 2.69 GHz | 1.26 and 3.15 GHz |  |
| Polarization                                    | V and H           | VV, VH, HH        |  |
| Spatial resolution                              | 400 m             | 400 m             |  |
| (@ 1000 m alt)                                  |                   |                   |  |

## 4.3 Electronically Scanned Thinned Aperture Radiometer (ESTAR)

ESTAR is a synthetic aperture, passive microwave radiometer operating at a center frequency of 1.413 GHz and a bandwidth of 20 MHz. As installed in the SMEX02 mission it is horizontally polarized. Aperture synthesis is an interferometric technique in which the product (complex correlation) of the output voltage from pairs of antennas is measured at many different baselines. Each baseline produces a sample point in the Fourier transform of the scene, and a map of the scene is obtained after all measurements have been made by inverting the transform. ESTAR is a hybrid real and synthetic aperture radiometer that uses real antennas (stick antennas) to obtain resolution along-track and aperture synthesis (between pairs of sticks) to obtain resolution across-track (Le Vine et al., 1994). The effective swath created in the ESTAR image

reconstruction (essentially an inverse Fourier transformation) is about 45° wide at the half power points. The field of view is restricted to 45° to avoid distortion of the beam but could be extended to wider angles if necessary. The image reconstruction algorithm in effect scans this beam across the field of view in 2° steps.

ESTAR has demonstrated the potential of L band radiometry and STAR technology (Levine et al. 1994 and 2001, Jackson et al., 1995 and 1999). Details on ESTAR and soil moisture products can be found at the following web site http://daac.gsfc.nasa.gov/CAMPAIGN\_DOCS/SGP97/estar.html. Including ESTAR in SMEX02 is important because it will extend the range of vegetation types that the instrument has been applied to and it will complement the AIRSAR for data fusion and integrated algorithm studies.

## 4.4 Airborne Synthetic Aperture Radar (AIRSAR)

AIRSAR is a side-looking radar instrument developed by the Jet Propulsion Lab <a href="http://airsar.jpl.nasa.gov/">http://airsar.jpl.nasa.gov/</a>. It has several operating modes. In SMEX02 the polarimetric (POLSAR) will be used. In POLSAR mode, fully polarimetric data are acquired at all three frequencies C-, L-, and P-band. Fully polarimetric means that radar waves are alternatively transmitted in horizontal (H) and vertical (V) polarization, while every pulse is received in both H and V polarizations. Therefore, there are four combinations; HH, VV, HV and VH. It is anticipated that the 20 MHz bandwidth data will be requested. This will yield a nominal spatial resolution of 10 m and a swath width of 20 km.

## 4.5 Utah State University Visible and Infrared Airborne System

The Remote Sensing Services Laboratory at Utah State University (USU) will support the experiment with a series of flights using its airborne system of short wave and long wave imagers mounted in a light twin-engine Piper Seneca II. The system consists of three Kodak Megaplus 4.2i digital cameras, with interference filters forming narrow spectral bands centered in the green (0.55  $\mu m$ ), red (0.67  $\mu m$ ) and near-infrared (0.80  $\mu m$ ) portions of the electromagnetic spectrum. The system also supports an Inframetrics 760 thermal infrared scanner that is mounted through a separate porthole for the acquisition of thermal infrared imagery in the 8 - 12  $\mu m$  range.

#### 5 REMOTE SENSING AIRCRAFT MISSION DESIGN

The PSR and ESTAR instruments will be installed on the NASA WFC P3-B aircraft. PALS will be installed on a C-130 aircraft operated by NCAR (<a href="http://raf.atd.ucar.edu/">http://raf.atd.ucar.edu/</a>). A GPS instrument will be part of the C-130 instrumentation and there may also be one on the P3-B. AIRSAR operates from the DC-8. As in previous missions, the goals of the experiment design are to collect data for both algorithm development/verification and soil moisture mapping. The extent and scale of the mapping must satisfy the range of objectives of the land-atmosphere and AMSR components of SMEX02. Unlike recent experiments, low altitude flightlines will be emphasized. The following sections summarize some elements of the flight missions of aircraft that will take part in SMEX02.

#### 5.1 NCAR C-130

The primary mission of the C-130 is to fly low altitude flightlines over the Walnut Creek Watershed area with the PALS instrument. The mission design is similar to SGP99. It will utilize a series of basically East-West lines. These are 800 m apart and offset from the road network by 400 m. Roads are approximately on a square 1600 m grid. With a nominal field size of 800 m and sensor footprint size of 400 m, this procedure provides a reliable sample for the study sites and allows interpolation for mapping.

The flightlines are shown in Figure 3. In past experiments, these types of lines have been flown sequentially in alternating East-West directions. Flights will be conducted in the morning. Each flight will be approximately 2.5 hours in duration. It is anticipated that nine flights will be conducted. The aircraft is expected to arrive in Des Moines on June 20 and be based out of DMS airport. It is scheduled to depart on July 8.

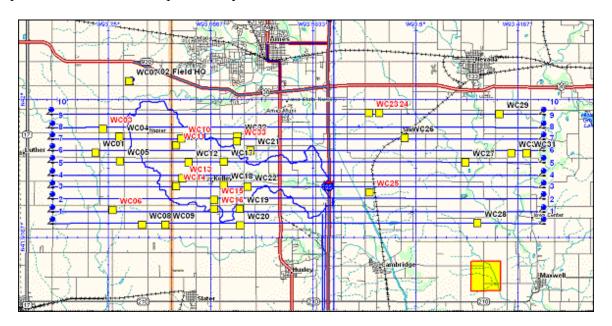



Figure 3. SMEX02 Walnut Creek watershed area and microwave aircraft flightlines. Blue lines are the low altitude microwave flightlines; yellow squares indicate intensive soil moisture sampling sites (those with red text are also flux tower sites). The large yellow square is 2 km by 2 km and is used to illustrate scale.

#### **5.2** NASA P-3B

The primary mission of the P3-B is to collect both low and high altitude data over the Iowa study region with the PSR instrument. Another very important objective is to collect data with the ESTAR over the region.

High altitude mapping flightlines are plotted in Figure 4. High altitude lines will provide coverage of an area that is approximately 40 km wide (East-West) and 95 km long (North-South). The low altitude and water calibration lines will be a subset of the C-130 lines. The PSR and 2DSAR are mapping instruments and require fewer flightlines for covering the watershed area.

Flights will be conducted during the mid day in order to match the nominal Aqua overpass time of 1330. Each flight will be approximately 2.5 hours in duration. It is anticipated that eleven high altitude flights will be conducted. The aircraft is expected to arrive in Des Moines on Mon. June 24 and be based out of DMS airport. It is scheduled to depart on July 12.

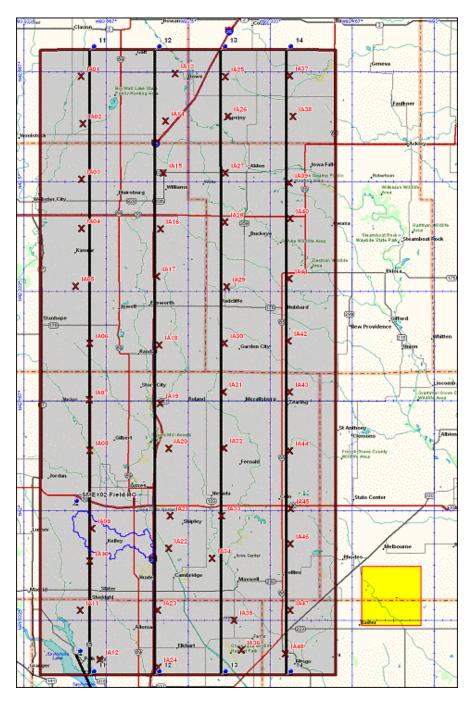



Figure 4. SMEX02 regional flightlines and mapping area. Regional mapping flightlines are indicated in black, regional soil moisture sites are shown as a red X. The yellow box is 10 km by 10 km and is used to illustrate scale.

#### **5.3** NASA DC-8

The AIRSAR instrument will be flown on NASA's Douglas DC-8. This is a four jet engine aircraft operated out of the Dryden Flight Center in California <a href="http://www.dfrc.nasa.gov/airsci/dc-8/dc8page.html">http://www.dfrc.nasa.gov/airsci/dc-8/dc8page.html</a>. AIRSAR flights for SMEX02 will be flown at an altitude of 8 km.

Flights will be conducted between July 1 and July 8, 2002 in order to maximize overlap with PALS on the C-130. Potential to capture several wet and dry conditions for corn and soybeans at different stages of growth. It is anticipated that there will be four flight dates. The arrival and departure dates can also be science data collection dates. Flights will be concentrated over the Walnut Creek Watershed, an area 10 km North-South and 40 km East-West where PALS and intensive ground sampling will be conducted. Multiple flightlines are desired in order to produce a composite image of the watershed with a nominal incidence angle range close to 40 degrees (the PALS and proposed HYDROS incidence angle). This will facilitate the disaggregation studies and use with PALS. In addition, this design will result in multiple incidence angle observations over the test sites, which will allow the exploration of new algorithm concepts. Regional coverage data sets will be collected for extrapolation of the watershed results to larger scales typical of satellite radiometer footprints.

#### 5.4 Canadian Twin Otter

The Twin-Otter aircraft operated by personnel from the National Research Council of Canada will be available for making aircraft-based flux observations over several transects surrounding the watershed. Surface layer flux measurements (~30 m agl) will be conducted using an east-west transect starting west of the watershed and ending west of the interstate (Figure 5). The frequency and timing of the flux-aircraft observations will be subject to the flying schedule for the microwave observations. Ideally, flights in the mid-morning (~1030 local time), around the time of EOS Terra and Landsat 7 overpasses, would be the most useful. Mid-morning is also the typical time for the ALEXI output and when the frequency of clouds via boundary layer convective activity is minor. With length of the flight transects ~ 20 km and flying at ~30 m agl, transect-average fluxes represent aggregated values of length scales ~ 10 km. However, subsampling transects for comparisons with tower-based observations has also been successful.

### 5.5 Utah State University Piper Seneca

High-resolution airborne multispectral imagery will be acquired with the USU airborne digital system (Neale and Crowther, 1994). The optical images provide distributed surface cover characterizations that are necessary for calculation of water and energy exchange rates. Due to the high spatial resolution of the imagery, the system lends itself well to monitor sparse or incomplete cover crops, as it can resolve the soil background and vegetation canopy. The highest resolution imagery will support the ground measurements of LAI and fractional vegetation cover in certain cropped fields. These data add significant value to the planned soil moisture observations.

Three sets of flightlines will be utilized. One series will provide systematic coverage of the watershed area, where the images will be acquired from 3200 meters above ground level. The

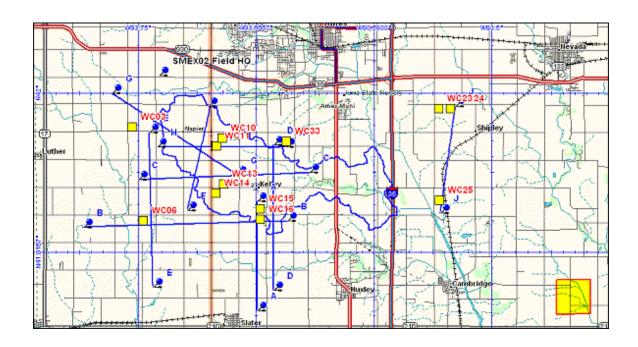



Figure 5. Twin Otter flightlines for SMEX02. Aircraft flux lines are in blue with letter codes. The yellow squares indicate sites with flux towers. The large yellow square is 2 km by 2 km and is used to illustrate scale.

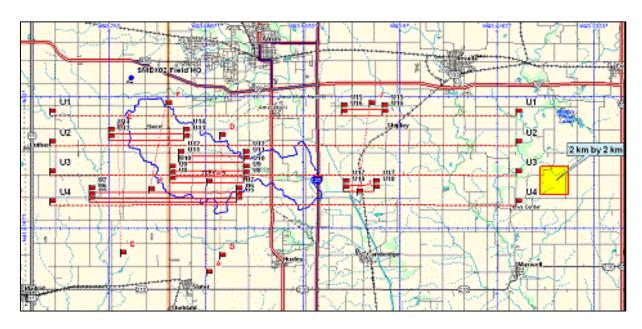



Figure 6. Utah State University (USU) flightlines.

swath width of the short-wave imagery will be approximately 3000 meters. These image acquisition campaigns will coincide with the Landsat satellite overpasses whenever weather permits. We estimate a minimum of three and a maximum of six systematic coverage flights of the entire watershed study area.

A series of lower elevation flightlines have been planned to cover the all the flux stations located within the experimental area. The flight elevation will be 1067 meters (3500 feet) above ground level. This will result in a short-wave image swath width of 1000 meters and a thermal swath width of 587 meters. These flight lines will be flown whenever the weather permits, at different times of the day. At least one pre-dawn campaign of these flight lines will be conducted for thermal inertia estimates.

The third set of flightlines will be used to match several of the Twin Otter flightlines for matching fluxes at this scale. The lines selected are A, D, E, F, and J (figure x). These will be flown at an altitude of 2100 m. The swath width of the thermal imagery will be approximately 1200 m and the pixel size will be 2 m. The shortwave imagery will have a pixel size of 1 m.

The USU team will arrive on June 12<sup>th</sup> to initiate the image acquisition. The campaign will be divided into two periods: (1) from June 12<sup>th</sup> to June 23<sup>rd</sup> and (2) from July 1<sup>st</sup> to July 9<sup>th</sup>. During the period from June 23<sup>rd</sup> to July 1<sup>st</sup>, the aircraft will return to Utah to obtain data for other committed projects as well as to have the annual inspection of the aircraft.

#### 6 IOWA STUDY REGION

In order to satisfy the requirements of the diverse research projects making up SMEX02 it was necessary to include a test site that would provide a data set for the development and verification of alternative soil moisture retrieval algorithms under significant biomass levels associated with agricultural crops and satisfy the land atmosphere investigations described in other sections. It is essential that multi-parameter microwave observations be obtained over a range of soil moisture conditions with moderate to high vegetation biomass conditions. A study site in Iowa was selected. Within this region, is a small watershed, Walnut Creek just south of Ames, IA This watershed has been the focus of research by the USDA ARS National Soil Tilth Lab (NSTL) <a href="http://www.nstl.gov/">http://www.nstl.gov/</a>.

Nearly 95% of the region and watershed is used for row crop agriculture. Corn and soybean are grown on approximately 80% of the row crop acreage, with greater than 50% in corn, 40-45% in soybean and the remaining 5-10% in forage and grains. The watershed is representative of the Des Moines Lobe, which covers approximately 1/4 of the state of Iowa. The climate is humid; with an average annual rainfall of 835 mm. SMEX02 is tentatively planned from mid June through mid-July. At the outset corn will be in early stages of growth and most soybean fields will be essentially bare soil. By the end of June in a typical growing season, corn biomass is expected to range between 3 and 4 kg m<sup>-2</sup>, while soybean will have a biomass of less than 1 kg m<sup>-2</sup>. This translates to leaf-area index (LAI) values on the order of 2 and 0.5 and fractional canopy cover about 0.75 and 0.5 respectively, for corn and soybean.

The area around central Iowa is considered the pothole region of Iowa because of the undulating terrain. This area on the Des Moines lobe represents the youngest of soils in the United States. Two features standout in this terrain. First, the lack of a surface stream channel except for the areas near streams and rivers. Second, the large variation of soil types within a field. Surface organic matter contents often range from 1-2 % to over 8% in a transect from the pothole areas to the eroded knolls within the same field. This is also coupled with a variation in rooting depth. These features create a potential condition in the spring and extremely wet summers of a soil surface covered with random water-filled potholes. Typically, however, these potholes are dry by early spring due to subsurface drainage and farmers are able to plant without any problems. This variation, however, presents a challenge when field sampling to ensure that the surface conditions within the field are adequately sampled. Additional regional information can be found the following sites http://mcc.sws.uiuc.edu/Introduction/micis.html http://www.exnet.iastate.edu/Information/weather.html

Two different sets of sampling sites will be used in SMEX02, Walnut Creek watershed (WC) and Iowa regional (IA). The WC sites shown in Figures 3 and 5 were selected to satisfy the data requirement of the PALS and surface/aircraft flux components of the experiment. Regional IA sites were selected to provide representative coverage over an area large enough to include several AMSR sized footprints. These are shown in Figure 4.

#### 7 GROUND BASED OBSERVATIONS

- Tower-based Flux Measurements
- Lidar/Sodar/Radisonde Measurements
- Sun Photometer
- Vegetation and Land Cover
- Soil Moisture
- Soil and Surface Temperature
- Surface Roughness
- Ground Based Microwave Radiometer

Ground based soil moisture measurements will be made for a variety of investigations. The three primary objectives are:

Provide field (~800 m) average surface volumetric soil moisture for the development and validation of microwave remote sensing soil moisture retrieval algorithms at a range of frequencies primarily from aircraft platforms. This will be called Watershed sampling.

Provide footprint scale ( $\sim 50$  km) average surface volumetric soil moisture for the development and validation of satellite microwave remote sensing soil moisture retrieval algorithms at a range of frequencies. This will be called Regional sampling.

Provide calibrated continuous soil moisture for water and energy balance investigations. This will be called Tower sampling.

#### 8 GROUND BASED OBSERVATIONS

#### **8.1** Tower-based Flux Measurements

Through this project and collaborative relationships a number of eddy covariance systems will be deployed through the study area, with each system consisting primarily of Campbell Scientific CSAT3 3-D sonic anemometer and KH20 krypton hygrometer, measuring momentum flux and sensible and latent heat fluxes between the land and the atmosphere across the watershed. These observations will be representative at the "patch" or local scale (i.e., length scales  $\sim 10^2$  m). Investigators from USDA-ARS, Utah State University, University of Virginia, University of Iowa, and Texas A&M will be involved. These systems will also have a picture of the complete energy balance by including net radiation, soil heat flux, and radiometric surface temperature measurements. There is also an effort planned by NSTL and Iowa State University scientists to make detailed soil heat flux measurements at several locations within the watershed at varying landscape positions to assess within canopy scale variability. In addition, there will be several systems, which will also be measuring net carbon exchange by eddy covariance with the 3D sonic and LiCor LI-7500 open path CO<sub>2</sub>/H<sub>2</sub>0 sensors. This will permit a very detailed assessment of water-energy-carbon fluxes and controls as a function of crop type and amount of cover and tillage practices. For selected sites with a significant fractional bare soil component, there are also plans to make measurements of soil respiration using LiCor LI-6200 sensors. The sites selected for the towers are shown in Figure 5. Details on the flux tower measurements are provided in the full experiment plan..

### 8.2 Lidar/Sodar/Radisonde Measurements

Several ground-based atmospheric sensing systems are proposed for deployment for investigating the role of land surface heterogeneity on atmospheric properties and processes. The Raman scanning Lidar from Los Alamos National Lab (LANL) will provide water vapor concentration fields in the lower boundary layer, and a scanning wind Lidar from the University of Iowa (UI) will provide horizontal winds throughout the boundary layer. A scanning elastic Lidar also from UI will map winds in the area, boundary layer height, entrainment zone properties and cloud information. A sodar and radar/RASS system from LANL will be used to measure meso-synoptic scale atmospheric conditions. The Lidar measurements will be coordinated with tower-based flux measurements conducted over several fields having significant differences in roughness and and/or fractional vegetative cover due to differences in planting dates and/or planting method (i.e., drilled versus row planting). The Lidar data provide distributed water vapor and wind fields over the mapped surface temperature, moisture, and cover data. This would be the first time that such detailed data are collected simultaneously, and will provide the basis for assessing the injection of spatial heterogeneity form the land surface and into the lower atmosphere.

Radiosondes are a key element in upper air observation systems. Balloon-borne radiosondes measure upper air temperature, humidity and pressure during their ascent to the upper atmosphere. Radiosonde signals are received and processed by ground equipment, which automatically computes wind speed and direction using global navigation networks.

### 8.3 Sun Photometer

The NASA Aeronet, which is led by Brent Holben, will provide SMEX02 with an eight channel (Cimel) sun photometer. The sun photometer is designed to view the sun and sky at preprogrammed intervals for the retrieval of aerosol optical thickness and water vapor amounts, particle size distribution, aerosol scattering, phase function, and single scattering albedo. It measures the intensity of sunlight arriving directly from the Sun. Although some Sun photometers respond to a wide range of colors or wavelengths of sunlight, most include special filters that admit only a very narrow band of wavelengths. These measurements are used to radiometrically correct satellite imagery in the visible and infrared bands. By radiometrically correcting these images it is then possible to quantitatively extract physical parameters and compare multiple dates. The instrument will be installed at a central location to provide data appropriate for the intensive site and for the regional area studies.

## 8.4 Vegetation and Land Cover

Vegetation biomass and soil moisture sampling will be performed for all watershed (WC) sites. The measurements that will be made are:

- Plant height
- Ground cover
- Stand density
- Phenology
- Leaf area (LAI)
- Green and dry biomass

Non-destructive sampling of LAI using LiCor LAI-2000 instruments will be conducted. Since the experimental period is likely to be during the active growing stages for both corn and soybeans, efforts will be made to make LAI measurements several times during the study period, including at the beginning and end of the study.

### 8.5 Soil Moisture

Ground based soil moisture measurements will be made for a variety of investigations. The three primary objectives are:

- Provide field (~800 m) average surface volumetric soil moisture for the development and validation of microwave remote sensing soil moisture retrieval algorithms at a range of frequencies primarily from aircraft platforms. This will be called Watershed sampling.
- Provide footprint scale (~ 50 km) average surface volumetric soil moisture for the development and validation of satellite microwave remote sensing soil moisture retrieval algorithms at a range of frequencies. This will be called Regional sampling.
- Provide calibrated continuous soil moisture for water and energy balance investigations. This
  will be called Tower sampling.

## 8.5.1 Watershed Sampling

The goal of soil moisture sampling in the Watershed sites is to provide a reliable estimate of the mean and variance of the volumetric soil moisture of the surface soil moisture for fields that are approximately 800 m by 800 m. These measurements are used primarily to support the aircraft based microwave investigations, which will be conducted between 0900 and 1200 local time. This determines the time window for the Watershed site sampling.

The primary measurement made will be the 0-6 cm dielectric constant (voltage) at fourteen locations in each field using the Theta Probe (TP). Dielectric constant is converted to volumetric soil moisture using a calibration equation. There are built in calibration equations, however, we will develop field specific relationships using supplemental gravimetric soil moisture and bulk density sampling. At four standard locations in each site the gravimetric soil moisture (GSM) will be sampled on each day of sampling. A 0-6 cm scoop tool will be used. This GSM sample be split into 0-1 cm and 1-6 cm samples providing a rough estimate of the site average 0-1 cm GSM. GSM is converted to volumetric soil moisture (VSM) by multiplying gravimetric soil moisture and bulk density of the soil. Bulk density will be sampled one time at each of these four locations using an extraction technique. The composite set of VSM samples and TP dielectric constants will be used to calibrate the TP for each site. It is anticipated that individual investigators may conduct more detailed supplemental studies in specific sites.

## 8.5.2 Regional Sampling

The goal of soil moisture sampling in the Regional sites is to provide a reliable estimate of the VSM mean and variance within a single satellite passive microwave footprint (~50 km) at the nominal time of the Aqua AMSR overpass (1330 local time). The exact center location and orientation of the satellite footprint will vary with each overpass. A grid of 48 individual sites will be sampled each day that covers a domain of approximately 50 km by 100 km (4 by 12 sites). A single location in each of these 48 sites will be sampled. As noted, these measurements are used primarily to support the Aqua AMSR based microwave investigations, therefore, the Regional sampling will be conducted between 1200 and 1500 local time.

The primary measurement made will be the 0-6 cm dielectric constant at a single location in each site using the Theta Probes described above. There are built in calibration equations, however, we will develop field specific relationships using supplemental gravimetric soil moisture and bulk density sampling. A different approach will be used for the Regional sites than the Watershed sites. Each sampling day, a coring tool will be used to extract a single VSM sample of the 0-1 cm and 1-6 cm soil layers. The composite set of VSM samples and TP dielectric constants will be used to calibrate the TP for each site.

#### 8.5.3 *Tower Sampling*

Tower sampling is intended to provide continuous measurements of the surface soil moisture at the locations of the surface flux towers. A single Vitel Hydra capacitance sensor will be installed at a depth of 5 cm. To insure accurate calibration of these devices, the TP and GSM measurements will be made near these locations on each sampling date. This effort will include the SCAN site.

Each surface flux tower will include instruments to measure the surface layer soil moisture and temperature and the surface temperature. This will be a continuous record at a single point within the field site. Cross referencing to the watershed site sampling will be done by collecting Theta Probe soil moisture, gravimetric soil moisture, soil temperature and surface temperature at a location in the vicinity of the tower each time sampling is conducted.

Soil moisture and temperature for the surface layer will be measured using Vitel Type A Hydra Probes. This version is compatible with Campbell CR-10 data loggers, the temperature output voltage never exceeds 2.5 volts.

## 8.6 Soil and Surface Temperature

The objectives of the soil and surface temperature are nearly identical to those of soil moisture. There are a few differences related to the spatial and temporal variability of temperature versus soil moisture. Typically the soil temperature exhibits lower spatial variability, especially at depth. On the other hand surface temperature can change rapidly with changes in radiation associated with clouds. In addition, it can be difficult to correctly characterize surface temperature at satellite footprint scales (30 m - 1 km) using high resolution ground instruments. This is especially true when there is partial canopy cover.

The surface temperature will be sampled using handheld infrared thermometers (IRT). The soil temperatures will be obtained using a temperature probe inserted to depths of 1 cm, 5 cm, and 10 cm depths.

### 8.6.1 Watershed Sampling

Temperature sampling will be conducted at the four locations selected for GSM sampling. These will be distributed over the each site.

#### 8.6.2 Regional Sampling

Temperature sampling will be conducted at the specific single location selected for sampling in the site.

## 8.6.3 Tower Sampling

Tower sampling is intended to provide continuous measurements of the surface temperature and 2.5 cm soil temperature at the locations of the surface flux towers. The Vitel HP sensor also provides temperature at 5 cm. An Apogee infrared sensor will be installed on each tower and will provide surface observations. This device provides the measured surface temperature and the sensor housing temperature. This second observation can be used to adjust for diurnal effects. These will be installed at a height of 2 m on the tower at an angle of 30 degrees. More information can be found in the protocols section of the plan. When GSM is sampled at the towers the surface and soil temperatures will also be sampled. This effort will include the SCAN site. The temperature measurement provided by the Hydra probe is in degrees Celsius.

## 8.7 Surface Roughness

Each Watershed site will be characterized one time during the time frame. The grid board photography method employed in previous experiments will be used.

#### **8.8** Ground Based Microwave Radiometer

The University of Tokyo in cooperation with the Japanese ADEOS-II AMSR program will deploy a ground based microwave radiometer (GBMR) at a site in the Iowa study area. This will most likely be in the watershed. A version of this instrument was part of SGP99.

The observation strategy is to leave the GBMR at a single location for the duration of SMEX02 and collect diurnal data over several adjacent fields (or plots). This location will likely be at the border of sites WC32 and WC33.

### 9 REGIONAL NETWORKS

## 9.1 USDA Soil Climate Analysis Network (SCAN) Site

A SCAN site was installed near Ames, IA at Latitude: 42.00°, Longitude: 93.74° and Elevation: 1073 Feet on 09/23/2001. This is also site WC07. Details and data can be obtained at the following web site <a href="http://www.wcc.nrcs.usda.gov/smst/smst.html">http://www.wcc.nrcs.usda.gov/smst/smst.html</a>. Hourly observations are provided to the public on the Internet in real time. Each system provides hourly observations of:

Air temperature
Barometric pressure
Wind speed
Precipitation
Relative humidity
Solar radiation
Soil temperature at 5, 10, 20, 50 and 100 cm
Soil moisture at 5, 10, 20, 50 and 100 cm

### 9.2 NSTL Meteorological Stations

NSTL operates rain gages, stream gages, and meteorological stations within the Walnut Creek watershed. All are on data loggers, which are downloaded on a weekly basis. Data for the SMEX02 time period will be provided following the experiment. Other periods of record may be obtained by contacting NSTL. Two of the rain gage sites include additional meteorological observations.

#### 9.3 Iowa Environmental Mesonet

The Iowa Environmental Mesonet (IEM) collects environmental data from cooperating members with observing networks. The data is stored and available on the following website.

<a href="http://mesonet.agron.iastate.edu/">http://mesonet.agron.iastate.edu/</a>. Contributors are Iowa State University, the National Weather Service, the Iowa Department of Transportation and local sponsored school networks.

## 10 SCHEDULE

Table 6. SMEX02 Schedule

|                      | 9-Jun        | 10           | 11           | 12           | 13           | 14           | 15           |
|----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Surface Flux/Lidar   |              | AH 8:00 am   | Setup        | Setup        | Setup        |              |              |
| Ground Soil Moisture |              |              | p            |              |              |              |              |
| C-130                |              |              |              |              |              |              |              |
| P3-B                 |              | Return       |              | Installation | Installation | Installation | Installation |
| DC-8                 | -            |              |              |              |              |              |              |
| Twin Otter           |              |              |              |              |              |              |              |
| USU                  |              |              |              | Arrive       | Test Flights |              |              |
| Satellite Data Sets  |              |              |              |              |              | L5           | L7, A        |
| Vegetation           |              |              |              | Set 1        | Set 1        | Set 1        | Set 1        |
|                      | 16           | 17           | 18           |              |              | 21           | 22           |
| Surface Flux/Lidar   |              |              |              |              |              |              |              |
| Ground Soil Moisture |              |              |              |              |              |              |              |
| C-130                |              |              |              |              | Arrive       |              |              |
| P3-B                 | Installation | Installation | Installation | Check        | Installation | Check Flight | Installation |
| DC-8                 |              |              |              |              |              |              |              |
| Twin Otter           |              |              |              | Arrive       | Test Flights |              |              |
| USU                  |              |              |              |              |              |              |              |
| Satellite Data Sets  |              |              |              |              |              |              | L7, A        |
| Vegetation           | Set 1        | Set 1        | Set 1        |              |              |              | ,            |
|                      | 23           | 24           | 25           | 26           | 27           | 28           | 29           |
| Surface Flux/Lidar   |              |              |              |              |              |              |              |
| Ground Soil Moisture |              | AH 8:00 am   |              |              |              |              |              |
| C-130                |              | AH 4:00 pm   |              |              |              |              |              |
| P3-B                 |              | AH 4:00 pm   |              |              |              |              |              |
| DC-8                 |              | •            |              |              |              |              |              |
| Twin Otter           |              | AH 4:00 pm   |              |              |              |              |              |
| USU                  | Depart       | AH 4:00 pm   |              |              |              |              |              |
| Satellite Data Sets  | L5           | •            |              |              |              |              | ES           |
| Vegetation           |              |              |              | AH 1:00 pm   | Set 2        | Set 2        | Set 2        |
|                      | 30           | 1-Jul        | 2            | 3            | 4            | 5            | 6            |
| Surface Flux/Lidar   |              |              |              |              |              |              |              |
| Ground Soil Moisture |              |              |              |              |              |              |              |
| C-130                |              |              |              |              |              |              |              |
| Р3-В                 |              |              |              |              |              |              |              |
| DC-8                 |              | Arrive       |              |              |              |              |              |
| Twin Otter           |              |              |              |              |              |              |              |
| USU                  | Arrive       |              |              |              |              |              |              |
| Satellite Data Sets  | 1.5          | L7, A        | ES           | ES           |              | F2           | ES           |
| Vegetation           | Set 2        | Set 2        | Set 2        | Set 3        | Set 3        | Set 3        | Set 3        |
|                      | 7            | 8            | 9            | 10           | 11           | 12           | 13           |
| Surface Flux/Lidar   |              |              |              |              |              |              |              |
| Ground Soil Moisture |              |              |              |              |              |              |              |
| C-130                |              | Depart       |              |              |              |              |              |
| Р3-В                 |              |              |              |              |              | Depart       |              |
| DC-8                 |              | Depart       |              |              |              |              |              |
| Twin Otter           |              |              |              |              |              |              |              |
| USU                  |              |              |              |              |              |              |              |
| Satellite Data Sets  |              | L7, A, ES    | L5, ES       |              |              |              |              |
| Vegetation           | Set 3        | Set 3        | Set 3        | Set 3        |              |              |              |

#### 11 INVESTIGATOR PROJECTS

As noted in the introduction, SMEX02 is a combined effort of many individual investigations supported by a number of programs. Each investigator provided an abstract describing their project. The titles and investigators are summarized below; abstracts are included in the full experiment plan.

## Flux Measurement and Large Eddy Simulation of Land-Atmosphere Exchange

John D. Albertson and William P. Kustas. Civil and Environmental Engineering, Duke University and USDA ARS HRSL

## Operational Use of Scatterometer Data over Land to Improve Hydro-Meteorological Forecasts

Mark A. Bourassa, James J. O'Brien, David E. Weissman, Jeffrey Tongue, Tom Adams. Florida State University, Hofstra University, National Weather Service

## Scaling Characteristics of Remotely Sensed Vegetation, Surface Radiometric Temperature, and Derived Surface Energy Fluxes

N. A. Brunsell and R. R. Gillies. Utah State University

## **Optimizing Land-Atmosphere Interaction Models For Use With Data Assimilation**

Anthony Cahill. TAMU

#### **Energy Balance and Crop Yield Studies at Walnut Creek Watershed**

Paul Doraiswamy, William Kustas, Jerry Hatfield and John Prueger. USDA ARS HRSL and NSTL

## Field Observations of Soil Moisture Variability from the Point to Remote Sensing Footprint Scale

Jay Famiglietti. UC Irvine

### **Dual C- and X-band High-Resolution Imagery of Soil Moisture**

Albin J. Gasiewski, Aleksandre Yevgrafov, Marian Klein, and Thomas J. Jackson. NOAA Environmental Technology Laboratory, USDA-ARS HRSL

#### Spatial Variation of Surface Soil Water and Crop Growth across Production Scale Fields

J.L. Hatfield, J.H. Prueger, and C. Walthall. USDA ARS NSTL and HRSL

## **Determination of Surface Fluxes and Coupling to the ABL**

Lawrence Hipps. Utah State University

## Improving Hydrologic Models Performance by Better Prediction of Soil Moisture Temporal Variability

Wael Khairy, Teferi Tsegaye, Wubishet Tadesse, Tommy Coleman, Ali Sadeghi, and Gregory McCarty. AAMU and USDA ARS EQL

## Calibration Of SVAT-Microwave Models And Soil Moisture Signature Scaling Behavior Under Higher Vegetation Biomass Conditions

Edward J. Kim. NASA/GSFC

#### **Ground Based Microwave Radiometer Experiments in SMEX02**

Toshio Koike) and Mahadevan Pathmathevan. The University of Tokyo

## **Soil Moisture-Atmosphere Coupling Experiment (SMACEX)**

William P. Kustas, John D. Albertson, Nate Brunsell , Anthony T. Cahill, Daniel J. Cooper, George R. Diak, William Eichinger, Jerry L. Hatfield, Lawrence E. Hipps, J. Ian MacPherson, Christopher Neale, John M. Norman, John H. Prueger. USDA ARS HRSL

### **Soil Moisture Retrieval Using the PALS Sensor**

Venkat Lakshmi. University of South Carolina

### Validation of the AMSR-E Brightness Temperature and Soil Moisture Products

Chip Laymon, Bill Crosson, Ashutosh Limaye, Frank Archer, Global Hydrology and Climate Center

#### Soil Moisture Measurements Using Synthetic Aperture Radiometry

D. M. Le Vine and T. J. Jackson. NASA GSFC and USDA ARS HRSL

#### **Relation of Soil Dielectric Properties to Soil Water Content**

Sally Logsdon. USDA ARS NSTL

## Aircraft Flux Program as Part of SMACEX (Soil Moisture Atmosphere Coupling EXperiment)

Ian MacPherson and Bill Kustas. National Research Council of Canada and USDA ARS HRSL

#### **GPS Bistatic Radar in SMEX02**

D. Masters, P. Axelrad, V. Zavorotny. University of Colorado, Boulder and NOAA Environmental Technology Laboratory

**Evolution of Multi-Scale Soil Hydrologic Processes and its Impact on Land-Atmosphere Interaction** 

Binayak P. Mohanty, Douglas A. Miller, and Todd H. Skaggs. Texas A&M University, Penn USDA ARS SL

## Aircraft Remote Sensing and Energy Balance Based Flux Fields

Christopher Neale. Utah State Univ

Soil Moisture Measurements Over Agricultural Fields in SMEX02 Using the Airborne Passive and Active L- and S-band Sensor (PALS)

E. Njoku, S. Dinardo, W.Wilson, S. Yueh T. Jackson, V. Lakshmi. JPL, USDA ARS HRSL, University of South Carolina

Diagnosing Surface Fluxes from Scales of Meters to Megameters Using Remote Thermal/Optical Observations

John Norman, Martha Anderson, John Mecikalski, George Diak and William Kustas. University of Wisconsin-Madison and USDA ARS HRSL

Validation Work for SSM/IS Land Surface Temperature and Soil Moisture EDRs During SMEX02

Peggy O'Neill, Manfred Owe, Tom Jackson. NASA GSFC and USDA ARS HRSL

Use of Regional Microwave-Derived Soil Moisture in Land Data Assimilation and Atmospheric Boundary Layer Studies

Peggy O'Neill, Paul Houser, Christa Peters-Lidard, Xiwu Zhan. NASA GSFC

An Agroecosystem Water Management Model Prediction and Calibration during SMEX02

Z. Pan, R. Horton, J.H. Prueger, D.P. Todey, M. Segal, and E.S. Takle. Iowa State University, and USDA ARS NSTL

#### Spatial and Temporal Controls of Soil CO<sub>2</sub> Flux

T.B. Parkin and Z. Senwo, USDA ARS NSTL and Alabama A&M University

Turbulence Mechanisms for Heat, Water and CO<sub>2</sub> Exchange over Midwest Corn Soybean Fields.

J.H. Prueger, J.L. Hatfield, W.P. Kustas, and L.E. Hipps. USDA ARS NSTL and HRSL

## **Coupled Heat and Water Flow in Surface Soil Layers**

T. J. Sauer, T. E. Ochsner, and R. Horton. USDA ARS NSTL and ISU

## **Characterization of Vegetation Parameters Within a Footprint Area of SMEX02**

W. Tadesse, T. Coleman, T. Tsegaye, W. Khairy, and Bridget Sanghadasa. Alabama, A&M University

Integration of Depth Dependent Soil Moisture, Flux, and ESTAR Data to Better Characterize Soil Moisture Distribution under Corn and Soybean Fields

Teferi D. Tsegaye, Wael Khairy, Wubishet Tadesse, and Karnita Golson. . Alabama, A&M University

Evaluation of Regression Tree Algorithm (RTA) and Artificial Neural Networks (ANNs) for Developing Pedotransfer Functions of Soil Hydraulic Parameters

Teferi D. Tsegaye, Wael Khairy, Wubishet Tadesse, Karnita Golson, Yakov Pachepsky, and Binayak Mohanty. Alabama, A&M University and USDA ARS

## 12 LOCAL LOGISTICS

### 12.1 Hotels

## Ames, IA

## **Comfort Suites**

2609 Elwood Drive Ames, IA 50010 (515) 268-8808

## **Howard Johnson Express Inn**

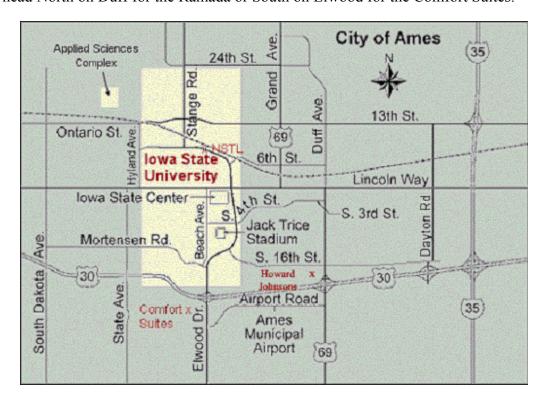
Hwy. 69 & Hwy. 30 (17600 Duff Ave.) Ames, IA 50010 515-232-8363

## Des Moines, IA

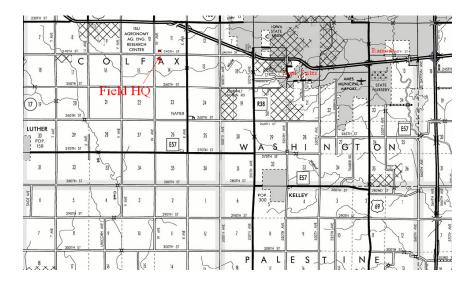
## **Embassy Suites Hotel Des Moines-On The River**

101 East Locust Street Des Moines, IA 50309 515-244-1700

## Four Points by Sheraton Des Moines Airport


1810 Army Post Road Des Moines, Iowa 50325 (515) 287-6464

## 12.2 Directions


The following map indicates one way to get to Ames from Des Moines. If coming from the airport it is more efficient to head east on Army Post Rd. to Rt. 69 North. This intersects I-235 (East) and becomes I-35 N. Maps are available at the airport near baggage claim.



This map shows general features of the City of Ames. All hotels have an excellent street map of Ames available for free. When coming fro Des Moines, get off I-35 at Rt. 30 West and then either head North on Duff for the Ramada or South on Elwood for the Comfort Suites.



The location of the Field Headquarters for SMEX02 is an ARS building located on 240<sup>th</sup> St near W Ave.



## 12.3 Local Contacts

USDA/ARS National Soil Tilth Laboratory 2150 Pammel Drive Ames, IA 50011-4420

Jerry Hatfield John Prueger (515) 294-5723 (515) 294-7694 <a href="mailto:hatfield@nstl.gov">hatfield@nstl.gov</a> prueger@nstl.gov