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Fumonisins are a category of toxic and
carcinogeneic mycotoxins that bear a remark-
able structural similarity to sphingolipids (1,2).
Many of the fumonisins, particularly of the B
series such as fumonisin B1 (FB1), are potent
inhibitors of ceramide synthase. This disrup-
tion of sphingolipid metabolism is a major con-
tributor to the toxicity and carcinogenicity of
FB1, as described in an accompanying review
(1). In this present article we summarize infor-
mation about basic sphingolipidology that may
be useful in understanding fumonisin action. 

Sphingolipid Structures

Sphingolipids are defined by their characteris-
tic 1,3-dihydroxy, 2-aminoalkane (sphingoid
base) backbones (Figure 1) (2). Sphingosine is
the prevalent backbone of mammalian sphin-
golipids and is sometimes used as a generic
term for all sphingoid bases. However, sphin-
gosine most often refers specifically to D-ery-
thro-1,3-dihydroxy, 2-aminooctadec-4-ene or
trans-4-sphingenine (abbreviated d18:1, for a
dihydroxy-, 18-carbon sphingoid base with 1
double bond). Sphingoid bases vary in alkyl
chain length, position (and number) of dou-
ble bonds, and other functional groups such as
a hydroxyl at position 4 (3). Complex sphin-
golipids (Figure 2) have a fatty acid attached
in amide linkage (forming ceramides) and a
polar headgroup (2). The fatty acids vary in
chain length, degree of unsaturation (most are
saturated), and presence or absence of a

hydroxyl group on the α or ω carbon atom.
The headgroups range in complexity from
simple phosphodiesters to complex carbo-
hydrates (Figure 2). 

Mammalian sphingolipids (sphingo-
myelins, cerebrosides, globosides, ganglio-
sides, sulfatides, etc.) have primarily
sphingosine (d18:1∆4), sphinganine (d18:0)
and 4-hydroxysphinganine (t18:0) as the
sphingoid base backbones; amide-linked
fatty acids of 16–30 carbon atoms in length,
some (e.g., intestinal galactosylceramide)
with an α-hydroxyl group and others (e.g.,
skin ceramides) with an ω-hydroxyl group;
and a variety of headgroups (phospho-
choline, glucose [Glc], galactose [Gal],
N-acetylglucosamine, N-acetylgalactosamine,
N-acetylneuraminic acid, fucose, and other
carbohydrates) (2,4). In contrast, the com-
plex sphingolipids of plants are mainly cere-
brosides (mono- and oligohexosylceramides),
with Glc (the most common hexose), Gal,
mannose, and inositol (5). Fungi, yeast, and
various microorganisms (but few procary-
otes) also have substantial amounts of
sphingolipids (6,7). Additional structural
substitutions include covalent attachment of
sphingolipids to membrane proteins (8). 

Functions of Complex
Sphingolipids
Sphingolipids are located in cellular mem-
branes, lipoproteins (especially low-density

lipoproteins), and other lipid-rich structures.
Complex sphingolipids are critical for the
maintenance of membrane structure (espe-
cially microdomains such as caveolae) (9,10),
serve as binding sites for extracellular matrix
proteins as well as for some microorganisms,
microbial toxins, and viruses (11,12), and
modulate the behavior of growth factor
receptors (9). Complex sphingolipids also
function as precursors for second messengers
that mediate cell responses to growth factors,
cytokines, differentiation factors, 1α,25-
dihydroxy-vitamin D3, and a growing list of
agonists (including stress and toxic insults
such as γ radiation) (12–16). 

This signaling function of sphingolipids is
illustrated in Figure 3. As shown, some ago-
nists, such as platelet-derived growth factor
(PDGF), activate a panel of enzymes that
hydrolyze sphingomyelin to ceramide (sphin-
gomyelinases), ceramide to sphingosine
(ceramidases), and sphingosine to sphingo-
sine 1-phosphate (sphingosine kinases) (17).
Each of these intermediates is a bioactive
compound that can affect protein kinases,
phosphoprotein phosphatases, and other cell
regulatory pathways. Sphingosine 1-phos-
phate is an additionally intriguing compound
because it has both extracellular and intra-
cellular functions (16). 

Other agonists, such as tumor necrosis
factor-α and interleukin-1β, usually activate
only sphingomyelinase, which results in
ceramide accumulation (13,14). These dis-
tinctions are not universal, even within a
single cell type, because interleukin-1β can
activate the entire pathway (sphingomyeli-
nase through sphingosine kinase) at low
concentrations but only sphingomyelinase
(with inhibition of ceramidase) at high con-
centrations in rat hepatocytes (17). The sub-
tle regulation of these steps is clearly
important because the products have such
profound effects on cell behavior: ceramide
and sphingosine are usually growth
inhibitory and cytotoxic (often via apopto-
sis) (13,14,18–21), whereas sphingosine
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1-phosphate is a potent mitogen and an
inhibitor of apoptosis (16,22). 

Sphingolipid Biosynthesis 
in Cell Regulation
The intermediates of de novo sphingolipid
biosynthesis (sphingosine, dihydroceramides,
and ceramides) (Figure 4) are also highly
bioactive, and under normal conditions, the
amounts of these compounds are kept low
(23). However, various forms of cell stress can
induce de novo sphingolipid synthesis and
perturb cell behavior due to increases in these
compounds (24–27). The best characterized
among these insults are the fumonisins,
which inhibit ceramide synthase, the enzyme
that acylates sphingoid bases (sphinganine
from de novo synthesis and sphingosine from
sphingolipid turnover), as illustrated in
Figure 5. Inhibition of ceramide synthase
causes sphinganine to accumulate, as shown,
and sometimes increases sphingosine; the lat-
ter usually occurs later, when there is suffi-
cient cell injury to trigger membrane
degradation (1,28–32).

Inhibition of Ceramide
Synthase by Fumonisins
The nature of the inhibition of ceramide
synthase by FB1 is consistent with the
model shown in Figure 6 (33). That is, FB1
appears to interact with the binding sites for
sphinganine and fatty acyl–coenzyme A
(CoA) because its potency is influenced by
the concentrations of both substrates (34).
This model is further supported by the
finding (35) that removal of the tricar-
ballylic acid sidechain decreases the potency
of ceramide synthase inhibition in vitro by
approximately 10-fold. Moreover, FB1 is
not acylated by ceramide synthase, but
removal of the tricarballylic acid sidechains
(producing the aminopentol or AP1) con-
verts this inhibitor into a substrate, as indi-
cated in Figure 7 (36). This is only possible
if AP1 occupies the sphingoid-base binding
site and leaves the fatty acyl–CoA binding
site accessible.

The product of this reaction (which we
have abbreviated PAP1 for N-palmitoyl-AP1)
has interesting properties. It is also an
inhibitor of ceramide synthase in vitro and
causes a greater increase in sphinganine in
HT-29 cells than FB1 or AP1 causes at com-
parable concentrations (Figure 8, right panel)
(36). Although the mechanism for the inhi-
bition of ceramide synthase by PAP1 is not
known, the simplest explanation is that PAP1
interacts with the hydrophobic binding
domains for the substrates and product
(compare Figures 6 and 7). As would be pre-
dicted from the increase in sphinganine,
PAP1 is more toxic than FB1 or AP1 for HT-
29 cells (Figure 8, left panel) (36). 

Figure 1. Structures of long-chain (sphingoid) bases from various sources. The common name and abbreviation for
each sphingoid base are given. The latter is based on the number of hydroxyl groups (d, two; t, three), the number of
carbon atoms (e.g., 18) and double bonds (0, 1, or 2).

Figure 2. Representative complex sphingolipids. Shown is a ceramide (N-palmitoylsphingosine) and the headgroups
for sphingomyelin and three glycosphingolipids.
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Together, these findings suggest that
when AP1 is taken up by cells, it can be
converted to a more potent (toxic) inhibitor
of ceramide synthase. This may account for
the previously puzzling observation that
although AP1 per se is much less inhibitory
for ceramide synthase than FB1, feeding AP1
to rats causes lesions in liver and kidney that
are indistinguishable from those caused by
FB1 (21). In addition, the organ-specific
effects of feeding nixtamalized Fusarium
moniliforme culture material (which contains
AP1) to rats are similar to those of the diet
prepared from untreated (FB1-containing)
culture material (38). AP1 also appears to
have the same liver cancer-promoting activity
as FB1 (39). 

The toxicity of AP1 warrants further
investigation because nixtamalization of
maize is  a common practice in some
regions, such as Central and South America,
and as much as 185 µg AP1 has been found
per gram of tortillas (40). If significant
amounts of PAP1 are formed (and play a
role in the toxic effects of AP1), it might be
easy to detect this compound because it is
more hydrophobic than other fumonisins
and might accumulate in fatty tissues.

Reversibility of Inhibition 
of Ceramide Synthase
Inhibition of ceramide synthase is reversed
upon dilution of the inhibitor from in vitro
assays, removal of FB1 from the medium of
cells in culture, and changing animals from
fumonisin-contaminated to fumonisin-free
feed (32,41,42). In studies with intact cells,
the inhibition of ceramide synthase has been
evaluated indirectly by the amounts of sphin-
ganine in the cells, culture medium, or bio-
logic fluids (blood and urine). Because FB1
appears to inhibit ceramide synthase through
noncovalent interactions, such reversibility
would be predicted upon reduction of the
concentration of FB1 in the cytosol. Other
factors that probably affect reversibility are
cellular concentrations of the substrates for
ceramide synthase and rate of removal of the
accumulated sphinganine and sphingosine, as
discussed in Riley et al. (1).

In vivo reversibility is illustrated in Figure
9 for rats fed 10 µg FB1/g feed and then
changed to diets containing 0, 1, or 10 µg
FB1/g (42). Urinary sphinganine returned to
basal levels within 10 days when the rats
were changed to 0 µg of FB1/g; however, if
they were changed to 1 µg FB1/g (an amount
that alone did not elevate sphinganine), uri-
nary sphinganine remained elevated (Figure
9). This finding raises the possibility that
amounts of FB1 that are not toxic when con-
sumed alone (e.g., 1 µg of FB1/g) may be
more damaging if there is occasional con-
sumption of higher amounts (e.g., 10 µg/g).

Environmental Health Perspectives • VOLUME 109 | SUPPLEMENT 2 | May 2001 285

OH

NH

HO

O

OH

NH2

HO

NH2

HO OPO3H2

R´

R

R

R

Sphingosine-P

Sphingosine

Ceramide

Ceramidase(s)

Sphingosine
kinase(s)

Sphingomyelinase(s)

Sphingomyelin

Agonist

Receptor

Growth inhibitory,
cytotoxic/pro-apoptotic

Growth inhibitory,
cytotoxic/pro-apoptotic

Growth stimulatory,
anti-apoptotic

Figure 3. Schematic representation of sphingolipid turnover in response to agonists, and the types of responses that can
be achieved depending on the enzymes that are activated. For example, a growth factor may activate all the shown
enzymes, whereas a growth inhibitory (or pro-apoptotic) factor may activate only sphingomyelinase and ceramidase.

Palmitoyl-CoA

Serine palmitoyl
transferase

3-Ketosphinganine
reductase

Ceramide synthase

Complex
sphingolipids

“Desaturase”

Dihydroceramide

Sphinganine

3-Ketosphinganine

Serine

Ceramide

Sphingosine

O

SCoA H

COOH

CH2OH

NH2

CO2

O
CH2OH

NH2

OH
CH2OH

NH2

NADPH + H+

NADP

Fatty acyl-CoA

CoASH

OH
CH2OH

NH

O

OH
CH2OH

NH

O

OH
CH2OH

NH2

NAD(P)H

Figure 4. The de novo biosynthetic pathway for the ceramide backbone of complex sphingolipids. Note that sphingo-
sine is not a direct intermediate of the pathway but is formed only after turnover of ceramide.

109S2.Part 2  04/16/01  5:50 PM  Page 285    (Black plate)



Merrill et al. 

286 VOLUME 109 | SUPPLEMENT 2 | May 2001 • Environmental Health Perspectives

There have been no systematic studies of the
toxicity of fumonisins when consumed in
this manner. 

Elevations in Sphingoid Bases
Also Increase Formation 
of Other Metabolites
Inhibition of ceramide synthase not only
results in accumulation of sphinganine, but it
also changes in other lipids that have impor-
tant cell functions, as summarized in Figure
10. These include:

Depletion of More Complex
Sphingolipids

Fumonisins can completely block synthesis of
new sphingolipids and deplete the total mass
of cellular sphingolipids (1,28–30,34,43).
However, the magnitude of these responses
depends on many factors, such as whether the
cells are growing or are confluent (effects are
usually greatest in growing cells) (37) and the
rate of sphingolipid turnover. For example, in
mouse cerebellar neurons, de novo synthesis is

blocked completely, but there is little change
in total sphingolipids for several days because
turnover is slow (34). 

Changes in the amounts of cellular
sphingolipids can disrupt cell functions
dependent on complex sphingolipids. For
example, FB1 treatment of intestinal cells in
culture blocks folate uptake because the folate
transporter is a glycosylphosphatidylinositol-
anchored protein, which typically requires
sphingolipids and cholesterol to function nor-
mally (44). One would predict that depletion
of complex glycolipids would alter the behav-
ior of growth-factor receptors because these
proteins are often modulated by gangliosides
(4,9,10). Accumulation of sphingoid bases
also perturbs membrane structure and has
been shown to inhibit protein kinase C (45).

Accumulation of Sphingoid Base 
1-Phosphates and Downstream
Metabolites (e.g., Fatty Aldehydes,
Ethanolamine Phosphate)
Sphingoid bases are catabolized by phosphory-
lation and lytic cleavage to a fatty aldehyde
and ethanolamine phosphate (2). FB1
increases the amounts of cellular sphingoid
base 1-phosphates (highly bioactive com-
pounds, as discussed earlier in this review) and
increases the amount of sphingolipid-derived
ethanolamine phosphate incorporated into
phosphatidylethanolamine (46). Perturbation
of fatty acid metabolism would be predicted
because of the accumulation of fatty aldehydes
as well as very long-chain fatty acids (a large
portion of which is found in sphingolipids).
However, as far as we are aware, this has not
been studied in mammalian systems.

Alteration of Other Lipid Metabolic
Pathways
Phosphatidic acid phosphatase is one of the
enzymes of other lipid pathways and is highly
sensitive to cellular amounts of free sphingoid
bases (47–49); FB1 has been shown to alter
this and other) pathway(s) in yeast (50). This
enzyme is a key component of cell signaling
via the phospholipase D, phosphatidic acid,
and diacylglycerol pathway, but it is not the
only enzyme in this pathway that is affected.
Sphingoid bases (51,52) and their 1-phos-
phates (53) can also activate phospholipase D.
Additionally, an enzyme of diacylglycerol syn-
thesis (monoacylglycerol acyltransferase) is
inhibited by sphingoid bases (54). Cholesterol
metabolism would also be expected to be
altered by disruption of sphingolipid metabo-
lism because of the interrelationships between
these pathways (55). 

Formation of N-Acetyl Derivatives 
of Sphingoid Bases (C2-Ceramides)
We recently addressed the hypothesis that
accumulation of free sphingoid bases leads to

Figure 5. A schematic illustration of the inhibition of the ceramide synthase by FB1 and the consequences for acyla-
tion of sphinganine (from de novo biosynthesis pathway) and sphingosine (from sphingolipid turnover) and/or complex
sphingolipid formation.

Figure 6. A model for the active site of ceramide synthase and how FB1 mimics regions of both the sphingoid base
and the fatty acyl-CoA substrates. The likely contact points between ceramide synthase and substrates/inhibitors are
depicted by the dark lines.
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their metabolism by the N-acetyltransferases
that participate in xenobiotic metabolism
(56) or a transacetylase that transfers the
acetyl group from platelet-activating factor to
sphingosine (57). C2-ceramides (N-acetyl-
sphingosine and N-acetylsphinganine) were
measured in livers from rats fed a fumonisin-
free diet and rats fed 150 µg FB1 per gram of
diet. As shown in Figure 11, control livers
contained approximately 0.6 nmol N-acetyl-
sphingosine/g and 0.3 nmol of N-acetyl-
sphinganine. FB1 feeding had no effect on the
amount of N-acetylsphingosine, but increased
N-acetylsphinganine by 4-fold. 

More studies are needed to determine if
elevations in N-acetylsphinganines, and in
some cases, N-acetylsphingosines, are com-
mon in animals exposed to fumonisins. If
confirmed, C2-ceramides may be useful as
biomarkers for long-term exposure to fumon-
isins (vs sphingoid bases, which reflect recent
exposure), as they are lipophilic and are likely
to be stored in fatty tissue.

Additional Issues That Should
Be Borne in Mind
Most of the studies to date using cells in
culture or animals have shown a good correla-
tion between exposure to fumonisins and
accumulation of sphinganine, often expressed
as the sphinganine:sphingosine ratio (1). This
ratio is often used because endogenous sphin-
gosine can serve as an internal standard to
correct for losses of sphingoid bases during
lipid extraction, derivitization, and analysis by
high-performance liquid chromatography.
However, there are circumstances where
sphingosine is also elevated, for example,
when there is extensive cell death and sphin-
golipid turnover; hence, the amounts of both
of these sphingoid bases, as well as the ratio,
should be considered. 

This correlation alone is not proof of a
cause-and-effect relationship between dis-
ruption of sphingolipid metabolism and the
toxicity and carcinogenicity of fumonisins.
The best evidence that such a relationship
exists is that inhibition of serine palmitoyl-
transferase—thereby blocking sphinganine
formation at an earlier step of sphingolipid
biosynthesis—reverses the toxicity of
fumonisins, at least temporarily (37,43,58).
Nonetheless, based on the diversity of the
pathologic effects of fumonisins, one suspects
that they are due to a combination of accu-
mulations of sphingoid bases, reductions in
key complex sphingolipids, and possibly
interactions with additional targets.

A few studies have concluded that
changes in cell behavior without (or before)
increases in sphinganine prove that disruption
of sphingolipid metabolism is not involved in
the action of fumonisins. This interpretation
cannot be made without an in-depth analysis

Environmental Health Perspectives • VOLUME 109 | SUPPLEMENT 2 | May 2001 287

Figure 9. Reversibility of elevations in urinary sphingo-
sine upon ceramide synthase inhibition by FB1 in vivo.
Rats were fed 1 or 10 µg FB1 per gram of diet for 10
days, then one group on 10 µg FB1 per gram was
changed to 0 µg FB1 per gram, and another was changed
to 1 µg FB1 per gram. Data redrawn from reference
Wang et al. (42).

Figure 7. A depiction of the triple effects of AP1: inhibition of the acylation of sphinganine by AP1, acylation of AP1,
and inhibition of ceramide synthase by the product PAP1.

Figure 8. Comparison of the effects of FB1, AP1, and
PAP1 on HT-29 cells. Cells were incubated with the
shown concentrations of fumonisins for 24 hr, then the
number of viable cells were counted using a hemocy-
tometer and expressed as the percentage of the
matched control (left panel) and the amounts of sphinga-
nine were determined (right panel). Results are shown
as mean ± SE (n = 3); groups significantly different from
the control are designated by an asterisk (*). The data in
this figure were compiled from references Humpf et al.
(36) and Schmelz et al. (37).
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of other sphingolipid metabolites because, as
discussed in this review, free sphingoid bases
can be metabolized to other bioactive
metabolites. The situation may be even more
complex in vivo because sphingoid bases pro-
duced in one tissue may be transported to
another (such as liver and kidney). This
might account for the hepatotoxicity and
nephrotoxicity of fumonisins, as these organs
are probably both sources of sphingoid bases
and recipients of sphingoid bases produced
elsewhere in the body. 

Another complicating factor that has
received little attention is the possibility that
other components of the diet might alter the
toxicity of fumonisins. There is considerable
variation in the amounts of sphingolipids in
food (55), as well as in the amounts of pre-
cursors for de novo sphingolipid biosynthesis
(46,59); therefore, the impact of fumonisins
might be greatest when these other compo-
nents of the diet increase the amounts of
sphingoid bases that accumulate. 

Fumonisins may have in vivo effects in
addition to disruption of sphingolipid metab-
olism; however, it is most probable that direct
or secondary changes in cell-signaling path-
ways that involve sphingolipids are major con-
tributors to the toxicity and carcinogenicity of
these mycotoxins. Sorting through these com-
plex interrelationships to identify the most
important remains a daunting challenge.
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