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Background

Human Ozone Exposure

Considerable progress has been made in
improving U.S. air quality in the last decade.
Significant decreases have occurred in the
ambient concentrations of the criteria air pol-
lutants, specifically carbon monoxide (39%
decrease), lead (56%), nitrogen dioxide
(14%), particulate matter with a mass median
aerodynamic diameter less than 10 µm (PM10)
(25%), and sulfur dioxide (39%) (1).
However, ambient ozone concentrations have
decreased by only 4% nationwide and have
increased by as much as 10–20% in some
parts of the country. In 1998 it was estimated
that 51 million people in the United States
lived in areas that were not in compliance
with the 1-hr National Ambient Air Quality
Standard (NAAQS) (1) of 0.12 ppm.
Furthermore, almost 50% of the U.S. popu-
lation (131 million people) currently live
where the average ambient concentrations of
ozone exceed the 8-hr standard of 0.08 ppm. 

High ambient concentrations of ozone
result from the interaction of ultraviolet light
(sunlight) with airborne volatile organic com-
pounds (VOCs) and nitrogen oxides derived
primarily from combustion of fossil fuels.
Large urban and industrial areas in the
Western and Southern United States are espe-
cially prone to high levels of ambient ozone.
For example, several communities in southern
California and Texas often experience ambient
ozone concentrations of 0.2 ppm or higher
that pose significant health risks to humans
(1). Less severe ozone levels above or near the
NAAQS standards also occur in several regions
of the Midwest and Northeast United States
during the summer months. Despite the large
numbers of human and animal studies docu-
menting the health risks of exposure to ambi-
ent ozone concentrations, controversy exists
over the implementation of newly proposed
standards (2). Recent U.S. Supreme Court rul-
ings upheld the U.S. Environmental
Protection Agency’s (U.S. EPA) scientific basis
for determining new air quality standards but

found some of the timetables for compliance
to meet these standards to be ambiguous and
therefore unlawful (3). The Court left it to the
U.S. EPA to formulate more reasonable imple-
mentation strategies of ozone standards. 

Health Effects of Ozone Exposure
Controlled studies of ozone exposure
(0.08–0.18 ppm) in healthy adults document
increases in airway reactivity and decreases in
respiratory function and athletic performance
(4). People who live in Mexico City, Mexico,
which has high ambient air concentrations of
ozone, have substantially more histologic
alterations in their nasal mucosa than people
living in areas of Mexico with little air pollu-
tion (5). Ozone inhalation also exacerbates the
bronchoconstrictive and allergic symptoms in
asthmatic individuals (6,7) and causes nasal
inflammation in both healthy and allergic
adults (8,9). Epidemiologic studies show simi-
lar results. In two separate studies, increases in
airway inflammatory responses of asthmatics
correlate with the fluctuations in ambient
ozone concentrations that occur between May
and October (9,10). High levels of ozone are
associated with increased hospital emergency
room visits, especially from asthmatics, the
elderly, and individuals with preexisting
obstructive pulmonary disease (11–14). As
such, asthmatics and people with chronic or
preexisting respiratory diseases are deemed
susceptible groups to the health risk of ozone.
In addition, otherwise healthy individuals
who spend several hours outside during the
summer months, such as children, outdoor
workers, and physically active adults, have
greater rates of ozone exposure and therefore
greater risks of adverse health effects. 

Ozone: Pollutant Coexposure as a
Susceptible Risk Group
Exposure of people to more than one air
pollutant is common, but there is little
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understanding of the risk to human health of
coexposure to multiple pollutants relative to
that presented by a single pollutant.
Tropospheric ozone most always occurs in
combination with nitrogen oxides and VOCs
and is frequently present with criteria air pol-
lutants such as sulfur oxides and PM.
Laboratory rats chronically exposed to combi-
nations of ozone and nitrogen dioxide
develop fibrotic lung lesions greater than
those produced by either toxicant alone (15).
Conversely, chronic coexposure of rats to
ozone and sulfuric acid produces neither
additive nor synergistic responses in the struc-
tural and biochemical end points induced by
each pollutant alone (16). After acute 3-hr
coexposures, however, sulfuric acid antago-
nizes ozone-induced airway hyperreactivity
(17). These results suggest that the pathologic
interaction between ozone and co-pollutants
is both complex and variable. Indeed, epi-
demiologic studies demonstrate that increased
respiratory symptoms and hospital admissions
are correlated not only with ozone exposure,
but also with the overall air quality as deter-
mined by the mixture of ozone with other
criteria air pollutants (18–21). 

Because NAAQS are primarily based on
the toxicologic effects of single pollutants, it
is probable that the health risk of breathing a
mixture of air pollutants is underestimated.
Currently there are no guidelines for estimat-
ing the health risk of human exposure to
more than a single air pollutant. As such,
people routinely exposed to certain pollu-
tants in addition to ozone may represent a
unique group of at-risk, or susceptible, indi-
viduals. Even if exposures to more than one
pollutant do not occur simultaneously, the
long-term effects of exposure may alter the
normal respiratory response to a second
exposure for days or weeks. 

In addition to the other criteria air pollu-
tants, ozone exposure may alter or enhance
the respiratory responses to the inhalation of
other airborne materials. Compounds present
in occupational, agricultural, and domestic
environments make a significant contribution
to the morbidity and mortality of respiratory
disease. Health effects and risks associated
with exposures to many widely used, man-
made compounds such as formaldehyde and
benzene are well documented. However, a
large class of naturally occurring biogenic
substances also elicit adverse respiratory
responses when inhaled. Biogenic substances
are agents derived from a broad range of liv-
ing organisms, including plants, fungi, molds,
and bacteria. Some of these materials are anti-
gens, and exposure to these substances may
induce asthmatic or allergic-type symptoms.
Despite the clear relationships between
adverse respiratory symptoms and exposure to
pollen, mold spores, and bacterial toxins,

there are no occupational exposure limits to
many of these biogenic substances. 

Airborne Bacterial Endotoxin
Bacterial endotoxins are lipopolysaccharide-
protein compounds derived from the cell wall
of Gram-negative bacteria (e.g., Escherichia
coli, Pseudomonas aeruginosa). Endotoxins are
the principal etiologic agents responsible for
the acute inflammation in pneumonia and
sepsis caused by infections of these bacterial
organisms. Inhalation exposure can occur
occupationally (endotoxin-contaminated
organic dusts in waste treatment plants, tex-
tile mills, swine or poultry confinement
buildings, and grain silos) and domestically
(inadvertent bacterial contamination of
aerosols produced by ultrasonic humidifiers
and evaporative cooler-type air conditioners).
Human exposure to endotoxin has been
implicated as the principal pathogenic agent
in several occupational diseases including
byssinosis (22), mill fever (23), bagassosis
(24), and asthmalike or bronchitislike diseases
induced by exposure to machining fluid
aerosols (25–27). 

Endotoxins have been detected at biologi-
cally active concentrations in air humidifica-
tion systems (0.13–0.3 µg/m3) (28,29), in
house dust extracts (0.45–500 mg/mL) (30),
and in organic dusts associated with animal
handling (150–1,000 ng/mg) (31).

Inhaled endotoxin causes nose and throat
irritation in humans, and the production in
the nasal and pulmonary airways of soluble
inflammatory mediators such as interleukin
(IL)-8, tumor necrosis factor-α (TNF-α) and
IL-1, and large infiltrates of inflammatory
cells, particularly polymorphonuclear neu-
trophils (PMNs) (32–35). Instillation of
endotoxin into the airways of laboratory
rodents causes a similar inflammatory
response to that observed in humans, includ-
ing neutrophil infiltration and cytokine pro-
duction. We have further documented some
structural and cellular changes in the airways
of laboratory rodents elicited by intranasal
instillation (36–38) and aerosolized endo-
toxin (39). Among these are epithelial cyto-
toxicity, hyperplasia, and increased synthesis,
storage, and secretion of products by airway
secretory cells. 

Mucous Cell Metaplasia in 
Respiratory Disease
The protective mucus blanket that coats
respiratory airways is a mixture of secretions
from serous and goblet cells and consists of
electrolytes, antibacterial and antioxidant
products, and cross-linked mucin glycopro-
teins. Normal mucus secretions are essential
for clearance and transport of inhaled parti-
cles and pathogenic substances. People with
chronic airway conditions such as asthma,

bronchitis, and other obstructive pulmonary
diseases commonly have abnormally high
numbers of mucous cells in submucosal
glands and respiratory surface epithelium lin-
ing the conducting airways. When an increase
occurs in the number of mucous cells in an
airway epithelium that normally contains
some of these secretory cells, this epithelial
cellular change is referred to as mucous cell
hyperplasia (or secretory cell hyperplasia).
However, when numerous mucous cells are
present in areas of the respiratory tract that
are normally devoid of these cells, this change
in epithelial phenotype is designated as
mucous cell metaplasia. Mucous cell hyper-
plasia, metaplasia, and hypersecretion of
mucus can lead to mucus plugs and severe
airway obstruction observed in patients with
severe asthma, bronchitis, and other airway
diseases such as cystic fibrosis. 

The core protein of mucin glycoproteins
is the product of 1 of 12 reported genes
encoding mucin molecules (MUC1-4, 5AC,
5B, 6-9, 11, and 12) (40). Seven of these 12
genes are found in lung tissue, and upregula-
tion of MUC2 and MUC5AC is most often
associated with inflammation and allergic
responses in nasal and pulmonary airways
(41). Upregulation of mucin genes during
disease and inflammation may be critical for
the overproduction and hypersecretion of
mucus that contributes to airway obstruction.
Several studies demonstrate that inflamma-
tory mediators (e.g., IL-1, TNF-α), neu-
trophil-derived proteases, and bacterial
products can elicit the overexpression of
mucin genes (e.g., Muc5AC) in airway
epithelial cells (42–44).

Ozone-Induced Mucous Cell
Metaplasia in Nasal Epithelium
In 1989, we first reported that Fischer rats
(F344/N) exposed for 7 days to 0.8 ppm
ozone for 6 hr/day developed a conspicuous
mucous cell metaplasia in the nasal transi-
tional epithelium (NTE) lining the maxillo-
turbinates, lateral wall, and lateral aspects of
the nasoturbinates in the proximal nasal pas-
sages of these rodents (45). The ozone-
induced lesions in the F344/N rats resembled
those that we previously observed in the nasal
cavity of bonnet monkeys repeatedly exposed
to 0.15 or 0.3 ppm ozone for 6 or 90 days
(46). We further demonstrated in rats that
the cellular population in the ozone-exposed
NTE was markedly hyperplastic and meta-
plastic, with approximately 15% of the cell
population consisting of mucous cells com-
pared to a normal mucous cell density of
0–1% in the NTE of control rats exposed to
filtered air (45,47). 

In 1991 we reported that ozone-induced
mucous cell metaplasia and epithelial hyper-
plasia in the NTE of rats can be induced
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with only three consecutive 6-hr/day
exposures to 0.5 ppm ozone (48). Seven
days after the start of the exposures, rats
exposed to ozone for 3 days had mucous cell
metaplasia indistinguishable from that in
rats exposed to the same concentration of
ozone for 7 consecutive days. Thus, once
initiated, the development of ozone-induced
phenotypic changes within the epithelium
are not dependent on additional ozone
exposure. As depicted in Figure 1, the prolif-
eration of mucous cells in the NTE is pre-
ceded by a cellular inflammatory response,
(i.e., neutrophilic influx), an initial loss of
sensitive nasal epithelial cells, and subse-
quent proliferation of resistant epithelial
cells and mucin gene overexpression (49,50). 

Endotoxin, Ozone, and
Coexposure: Summary 
of Experimental Results 
We are primarily interested in the premeta-
plastic events and inflammatory responses
that precede the onset of epithelial lesions in
rats. In recent studies we have used two dif-
ferent airway toxicants to initiate these
changes—ozone and endotoxin. Ozone
induces mucous cell metaplasia in the NTE
(i.e., a surface normally devoid of mucous
cells) after short- (days) or long-term expo-
sure to near-ambient concentrations.
Conversely, airway endotoxin induces
mucous cell metaplasia rapidly (within 48 hr)
in the tracheobronchial airways (i.e., a sur-
face containing respiratory epithelium and
preexisting secretory cells) of rats after a sin-
gle or repeated treatments. Interestingly, the
metaplasia induced by ozone exposures
appears to be restricted to the nasal airways
of these rodents. Ozone does not cause meta-
plasia in the epithelium lining the pulmonary
airways of rats. In contrast, mucous cell
metaplasia induced by endotoxin is restricted
to the tracheobronchial epithelium.
Endotoxin instillation does not cause
mucous cell metaplasia in the NTE such as
that observed in rats exposed to ozone. Using
these two novel models of mucous cell meta-
plasia, we performed a series of studies to
examine the effects of a) endotoxin instilla-
tion on ozone-induced mucous cell metapla-
sia and b) ozone exposure on endotoxin-
induced mucous cell metaplasia. Our overall
goal was to characterize morphometrically
the potential interactions of ozone and endo-
toxin exposure on airway inflammatory and
epithelial cell responses. Our specific aims
were to test the hypotheses that endotoxin
would enhance the epithelial and inflamma-
tory responses induced by ozone in the NTE
of rats and that ozone exposure would
enhance the epithelial and inflammatory
responses induced by endotoxin in
pulmonary airways. 

Protocols and Methodologic
Approaches for Assessing Mucous 
Cell Metaplasia
Below are descriptions of the standard
methods and procedures we follow to induce
mucous cell metaplasia in the airways of labo-
ratory animals, and the morphometric, histo-
chemical, and molecular approaches we used
to assess metaplasia lesion in rat airways. 

Animals. Male F344/N (Harlan Sprague-
Dawley, Indianapolis, IN, USA) rats 10–12
weeks of age were used in all studies. Rats
were free of specific pathogens and respiratory
disease and used in accordance with guide-
lines set forth by the All-University
Committee on Animal Use and Care at
Michigan State University.

Ozone exposures. Rats were exposed to
filtered air (controls) or 0.5 ppm ozone for 3
days, 8 hr/day. At this concentration (0.5
ppm), ozone produces epithelial lesions in
NTE of F344/N rats by 4 days after expo-
sure, with little or no effect on adjacent nasal
respiratory epithelium (51). The methods of
ozone generation and monitoring of air con-
centrations have been previously described in
detail (50,52). 

Endotoxin instillations. To induce
mucous cell metaplasia in pulmonary airways,
rats are first anesthetized with 4% halothane
in oxygen and 50 mL endotoxin (lipopoly-
saccharide from P. aeruginosa) in pyrogen-free
saline is instilled into each nasal passage (total
doses of 0 or 20 mg). A second instillation
was given 24 hr later. This dosing regimen
induces a dose-dependent mucous cell meta-
plasia in the distal axial airways of the lung 48
hr after the second endotoxin instillation. 

Neutrophil depletion. We determined the
role of neutrophilic inflammation in our ani-
mal models by using a rabbit anti-rat PMN
antiserum. Treatment with this antiserum is
known to deplete circulating blood neu-
trophils below 1% of normal levels by 12 hr,
and depletion persists for up to 5 days (53).
Anesthetized animals were injected intraperi-
toneally with either 1 mL of antiserum or
normal rabbit serum (control serum).
Depending on the study design, animals were
depleted of circulating neutrophils before
inhalation exposure to ozone, or in endotoxin
studies, before intranasal instillations. 

Necropsy and tissue preparation. Rats were
sacrificed and complete necropsies performed.
The procedures for collection of nasal and
pulmonary tissues have been previously
reported in detail (38,50). Briefly, the trachea
and lungs were excised intact and intratra-
cheally perfused with zinc formalin fixative for
2 hr. The head of each rat was removed from
the carcass, and the lower jaw and skin were
removed. The skull was split in a sagittal plane
adjacent to the midline and one-half of the
head was immersed in zinc-formalin for at

least 48 hr. After fixation this half of the head
was decalcified in 13% formic acid. A tissue
block was removed from the anterior nasal
cavity by making two cuts perpendicular to
the hard palate: a) immediately posterior to
the upper incisors and b) at the level of the
incisive papilla. This procedure results in a
proximal section of the nasal cavity containing
the proximal nasal septum, which consists of
respiratory epithelium, and the maxillo-
turbinates, which are lined with NTE. The
tissue blocks were then embedded in paraffin
and 5- to 6-mm thick sections were cut from
the anterior surface. Nasal sections were then
stained with hematoxylin and eosin (H&E)
for routine histology or with Alcian blue (pH
2.5)/periodic acid-Schiff (AB/PAS) to detect
intraepithelial mucosubstances. The maxillo-
turbinate from the other half of the head was
removed by microdissection and homogenized
in TriReagent (Sigma Chemical Co., St.
Louis, MO, USA) and kept at –80°C until
further processing for RNA isolation. 

After fixation the left lung lobe was
microdissected along the axial airways, and
two sections were then excised at the level of
the fifth and eleventh airway generation, as
we have described previously in detail (38). 

Morphometry of stored intraepithelial
mucosubstances. To estimate the amount of
the intraepithelial mucosubstances in NTE
lining maxilloturbinates and the respiratory
epithelium lining the axial pulmonary air-
ways, the volume density of AB/PAS-stained
mucosubstances was quantified using
computerized image analysis and standard
morphometric techniques. The area of
AB/PAS-stained mucosubstance was calcu-
lated from the automatically circumscribed
perimeter of stained material using a personal
computer and the public domain U.S.
National Institutes of Health Image program
(54). The length of the basal lamina underly-
ing the surface epithelium was calculated
from the contour length of the digitized
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Figure 1. Temporal sequence of inflammatory and
epithelial cell responses in the rat nasal mucosa after 4
days of ozone exposure (0.5 ppm, 8 hr/day). 
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image of the basal lamina. The volume of
stored mucosubstances per unit of surface
area of epithelial basal lamina was estimated
using the method described in detail by
Harkema et al. (46) and is expressed as nano-
liters of intraepithelial mucosubstances per
square millimeter of basal lamina (i.e.,
volume density). 

Morphometry of cell densities. Neutrophil
influx within the NTE of maxilloturbinates
was determined in H&E-stained sections by
counting the total number of neutrophils
within the nasal mucosa (area between the
turbinate bone and airway lumen) and divid-
ing by the total length of the basal lamina.
Mucous cells with the epithelial layer were
counted and expressed as the total number of
AB/PAS-staining cells per millimeter basal
lamina.

Mucin gene expression. Total RNA was
isolated from microdissected and homoge-
nized maxilloturbinates and pulmonary axial
airways by following the method of
Chomczynski and co-workers (55,56).
Steady-state levels of rat mucin 5AC
(rMuc5AC) mRNA were then determined in
RNA samples using a quantitative reverse
transcriptase–polymerase chain reaction
(RT–PCR) technique. This method employs
a recombinant competitor RNA (rcRNA),
used as an internal standard (IS), that is
reverse transcribed and amplified in the same
tubes as the target sequence (rMuc-5AC).
The IS rcRNA was synthesized as described
previously (57). RT–PCR for rMuc-5AC was
performed as outlined by Gilliland and co-
workers (58,59), except that known amounts
of the IS rcRNA are reverse-transcribed into
complementary DNA. For each RNA sample
a known concentration of IS rcRNA mole-
cules was added that is similar in concentra-
tion to the RNA samples. The density ratio of
the rMuc-5AC PCR product band to the cor-
responding IS PCR product band present in
each sample was determined as described by
Gilliland and colleagues (58,59). We report
our data as the number of rMuc-5AC mRNA
molecules per nanogram of total sample RNA
that was added to the RT–PCR reaction. 

Statistical analysis. Data are expressed as
mean ± standard error of the mean (SEM)
and were analyzed by using a completely ran-
domized analysis of variance. Multiple com-
parisons were made by Student-Newman
Keuls post hoc test. Criterion for significance
was taken to be p < 0.05.

Neutrophil Depletion of Ozone-
Exposed Animals
As mentioned earlier, exposure of humans to
ozone causes neutrophil influx into nasal air-
ways (8,9). Although epithelial lesions have
not been characterized during human ozone
inhalation studies, inflammatory responses

and nasal epithelial alterations similar to those
induced in ozone-exposed rats are common
in people living in areas with high ambient
ozone concentrations (60,61). We recently
performed studies to determine the role of
neutrophilic inflammation on the develop-
ment of ozone-induced mucous cell metapla-
sia in rats exposed to ozone (0.5 ppm, 8 hr/
day) for 3 consecutive days. We depleted ani-
mals of circulating neutrophils with a rat-spe-
cific neutrophil antibody to assess the
ozone-induced epithelial alterations in the
absence of neutrophilic inflammation.
Circulating neutrophils were approximately
1% of normal levels throughout the ozone
exposure, and nasal lesions were examined 2
hr or 4 days after the last ozone exposure. 

Ozone exposure of rats caused the infiltra-
tion of neutrophils into the NTE and under-
lying lamina propria that cover the proximal
aspects of the maxilloturbinates. The signifi-
cant increase in mucosal neutrophils present 2
hr after the last ozone exposure in neutrophil-
sufficient rats was attenuated in neutrophil-
depleted rats (Figure 2A). We estimated the
degree of mucous cell metaplasia by counting
the number of mucous cells in the NTE over-
lying maxilloturbinates (Figure 2B) and by
measuring the volume density of intraepithe-
lial mucosubstances in nasal sections stained
with AB/PAS, which indicates the presence of
acidic and neutral mucosubstances (Figure
2C). Four days after the last ozone exposure,
the number of mucous cells and volume den-
sity of intraepithelial mucosubstances was

significantly increased in rats exposed to
ozone. In neutrophil-depleted animals,
metaplastic responses were only 40% of
those observed in ozone-exposed rats.
Overexpression of the mucin gene encoding
for rMuc-5AC occurred during the first day of
ozone exposure and stayed elevated during the
postexposure period (50). In rats depleted of
circulating neutrophils, ozone-induced overex-
pression of rMuc-5AC was similar to that
measured in neutrophil-sufficient animals
(Figure 2D). 

These findings suggest that ozone-
induced mucous cell metaplasia is in part
neutrophil dependent, whereas the increase
in mucin-specific mRNA is independent of
the ozone-induced neutrophil influx into
nasal tissues. These results are consistent with
those of our previous work in which ozone-
induced mucous cell metaplasia in the NTE
of rats was attenuated by treatment with a
topical steroid (62). In that study, neu-
trophilic inflammation was markedly
decreased in steroid-treated animals. Because
the effects of steroids are broad and affect
several cell types other than neutrophils,
including possibly epithelial cells, it was
unclear from those studies if inhibition of
metaplastic responses was due to the steroid-
induced blockade of neutrophilic influx.
Thus, our studies using neutrophil-depleting
antibodies provides stronger evidence that
neutrophils specifically play a critical role in
ozone-induced mucous cell metaplasia in rat
nasal epithelium.

Figure 2. Effect of neutrophil-depletion on ozone-induced neutrophilic inflammation (A), mucous cell numbers (B),
intraepithelial mucosubstances (C), and mucin gene expression (D) in rat maxilloturbinates. Bars represent group
mean ± SEM (n = 6 animals /group). aSignificantly different from respective group exposed to air. bSignificantly differ-
ent from respective group given control serum.
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Endotoxin Enhancement of Ozone-
Induced Mucous Cell Metaplasia
The acute inflammation caused by endotoxin
in both upper and lower airways of laboratory
animals is well documented. A robust migra-
tion of neutrophils is an early response elicited
by instilled and aerosolized endotoxin, and the
oxidant and proteolytic potential of activated
neutrophils have been implicated in epithelial
cell alterations in endotoxin-treated airways
(63,64). Furthermore, we have used endo-
toxin-instilled animals to document epithelial
cell changes such as hyperplasia and metapla-
sia in the respiratory epithelium, which nor-
mally consists of some secretory cells (36,37).
As mentioned previously, endotoxin does not
cause mucous cell metaplasia in rat NTE. 

Because airway endotoxin elicits a signifi-
cant infiltration of neutrophils into airways,
we exposed rats to both ozone and endotoxin
to determine the effects of augmented neu-
trophilic inflammation on the pathogenesis of
ozone-induced mucous cell metaplasia that
occurs in the NTE and the pathotoxicologic
interaction of two common air pollutants on
the development of nasal epithelial cell alter-
ations. In these studies rats were first exposed
to ozone for 3 consecutive days; some animals
were then instilled intranasally with endo-
toxin (100 mg) for 2 more days after ozone
exposures (52). We evaluated epithelial and
inflammatory responses at both 6 hr and 3
days after the last endotoxin instillation. 

Endotoxin instillation caused a significant
neutrophilic inflammation in the mucosa
underlying the NTE in both ozone and air-
exposed–animals 6 hr after instillations
(Figure 3A). By 3 days postinstillation the
ozone-induced increases in stored mucosub-
stances were increased 5-fold when animals
were also exposed to endotoxin (Figure 3B).
Despite increasing tissue neutrophils in air-
exposed animals, endotoxin treatment alone
did not cause any metaplastic lesions in the
NTE. These results suggest that neutrophilic
inflammation alone is not sufficient to pro-
duce metaplasia and that additional compo-
nents (e.g., ozone exposure, neutrophil
activation) are necessary for mucous cell
metaplasia to develop in the NTE. 

Neutrophil Depletion and
Endotoxin/Ozone Coexposure 
To determine the role of neutrophilic inflam-
mation in the potentiation by endotoxin of
ozone-induced mucous cell metaplasia, we
depleted rats of circulating neutrophils after
ozone exposures but during the time of endo-
toxin-induced inflammation. Neutrophilic
inflammation elicited by endotoxin instilla-
tion was completely inhibited in neutrophil-
depleted rats (Figure 4A). Moreover, the
augmentation by endotoxin of ozone-induced
increases in stored mucosubstances in the

NTE was blocked completely in neutrophil-
depleted rats (Figure 4B). Thus, endotoxin-
induced neutrophilic inflammation is
required for endotoxin-induced enhancement
of ozone-initiated metaplastic responses.
However, neutrophils do not appear to be
involved in the endotoxin-induced overex-
pression of mucin mRNA in ozone-exposed
animals. Overexpression of rMuc5AC after
endotoxin instillation was similar in both
neutrophil-sufficient and neutrophil-deficient
rats exposed to ozone (Figure 4C). We inter-
preted these results to mean that neutrophils
mediate metaplastic responses by a mecha-
nism other than just turning on the mucin
gene. These results are reminiscent of the
results of neutrophil depletion studies of
ozone-induced mucous cell metaplasia
described above, where mucin gene over-
expression caused by ozone exposure was
unaffected by neutrophil depletion (65).

Ozone Enhancement of Endotoxin-
Induced Mucous Cell Metaplasia 
In 1992 we demonstrated that intranasal
instillation of endotoxin causes significant
alterations in the mucous apparatus lining
axial pulmonary airways of rats (37).
Specifically, increases in stored mucosub-
stances, secretory cell hyperplasia, and secre-
tory cell metaplasia occurred in the
respiratory epithelium of airways that nor-
mally consist of ciliated and secretory cells.
This is in contrast to ozone-induced mucous
cell metaplasia that occurs in the NTE that

contains no secretory cells. Furthermore,
unlike endotoxin, ozone exposure has no
effect on the mucous apparatus in axial
pulmonary airways of rats. 

To test the effects of ozone exposure on
endotoxin-induced mucous cell metaplasia,
we treated rats with intranasal endotoxin for 2
consecutive days, postexposed rats to ozone (1
ppm, 8 hr/day) for 2 days, and then morpho-
metrically estimated the number of inflamma-
tory cells and amount of secreted mucus in
the lavage fluid and characterized epithelial
lesions on the fifth day. Endotoxin caused an
increase in the number of neutrophils recov-
ered in lavage fluid that was further increased
after exposure to ozone (Figure 5A).
Instillation of endotoxin also induced hyper-
secretion of mucus into airways compared
with saline instillation (Figure 5B). Ozone
alone did not cause mucus hypersecretion, but
the combination of ozone exposure with
endotoxin enhanced the endotoxin-induced

Environmental Health Perspectives • VOLUME 109 | SUPPLEMENT 4 | August 2001 595

Figure 3. Effect of intranasal endotoxin instillation on
ozone-induced neutrophilic inflammation (A) and intraep-
ithelial mucosubstances (B) in rat maxilloturbinates.
Bars represent group mean ± SEM (n = 6 animals/
group). aSignificantly different from respective group
exposed to air. bSignificantly different from respective
group given intranasal saline.
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Figure 4. Effect of neutrophil depletion on ozone/endo-
toxin-induced changes in neutrophilic inflammation (A),
intraepithelial mucosubstances (B), and mucin gene
expression (C) in rat maxilloturbinates. Bars represent
group mean ± SEM (n = 6 animals/group). aSignificantly
different from respective group exposed to air.
bSignificantly different from respective group given
intranasal saline.
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secretion of mucin protein (Muc5AC) in
airway fluid. Lastly, endotoxin caused an
increase in the amounts of stored intraepithe-
lial mucosubstances in axial airways; these
amounts were further increased in rats subse-
quently exposed to ozone (Figure 5C). Thus,
ozone exposure enhances both the secretion
and storage of mucin glycoprotein induced by
endotoxin instillation.

We have previously shown that
endotoxin-induced mucous cell metaplasia in
the pulmonary airways is partially dependent
on neutrophils (66). Thus, ozone may aug-
ment the metaplasia initiated by endotoxin
by increasing the neutrophilic inflammation,
as suggested by the increase in lavage neu-
trophils. In the future, neutrophil-depleted
rats will be coexposed to ozone and endo-
toxin to test this hypothesis. 

Neutrophils, Inflammatory
Mediators, and Mucous Cell
Metaplasia 
Based on our experimental results, it is clear
that ozone and endotoxin elicit mucous cell
metaplasia in different locations in the

respiratory tract (Figure 6). Interestingly, each
toxicant acts to enhance the metaplastic
lesions induced by the other toxicant.
Specifically, endotoxin enhances ozone-
induced metaplasia in the NTE but does not
itself cause metaplasia in the NTE.
Conversely, ozone does not cause metaplasia
in the respiratory epithelium in pulmonary
airways, but it does augment endotoxin-
induced mucous cell metaplasia in that tissue.
This unique, reciprocal potentiation of
epithelial cell alterations by ozone and endo-
toxin extends the toxicologic profile of each
agent beyond what is described in studies
where each toxicant is used by itself. As such,
regulatory standards derived primarily from
studies that employ a single pollutant may
underestimate the risk of adverse health
effects when more than one co-pollutant is
present. It is likely that both ozone and endo-
toxin will exacerbate the respiratory responses
to other inhaled criteria air pollutants and
biogenic substances. 

Our results clearly implicate neutrophils
in the development of mucous cell metaplasia
in both the respiratory epithelium of pul-
monary airways and in the NTE lining the
proximal nasal airways. Importantly, our
results suggest that neutrophils are not
entirely responsible for metaplasia initiated by
either ozone in the NTE (only a 60% reduc-
tion in metaplasia in neutrophil-depleted ani-
mals) (65), or by endotoxin in the respiratory
epithelium (only 50% reduction in metapla-
sia in neutrophil-depleted animals) (66).
These results suggest that ozone or endotoxin
may be having direct effects on epithelial
cells, or that other inflammatory mediators
(cellular or soluble) account for the remainder
of the metaplastic response. We recently used
an in vitro tissue culture system to show that
endotoxin, in the absence of neutrophils,

increases mucin gene expression in preexist-
ing secretory cells (57). This result is consis-
tent with our in vivo findings of both ozone-
and endotoxin-induced mucous cell metapla-
sia, which indicate that neutrophils are
required for some (increased storage of muco-
substances) but not all (hyperplasia and
mucin gene overexpression) events leading to
the development of metaplastic lesions. 

Whereas ozone- and endotoxin-induced
mucous cell metaplasia is partially dependent
on neutrophilic inflammation, endotoxin
enhancement of ozone-induced metaplasia is
blocked completely in neutrophil-depleted ani-
mals. This difference may be due to the type of
epithelium where the metaplasia occurs.
Potentiation by endotoxin of ozone-induced
metaplasia occurs in the NTE, whereas
mucous cell metaplasia elicited by endotoxin
treatment alone occurs in preexisting secretory
cells of the respiratory epithelium. We have
yet to examine the contribution made by
neutrophilic inflammation to ozone enhance-
ment of endotoxin-induced metaplasia in res-
piratory epithelium. It may be that the
potentiation pathways elicited by both toxi-
cants are entirely mediated by neutrophils. 

It is interesting that in all our studies
where neutrophil depletion inhibited mucous
cell metaplasia, the mucin gene overexpres-
sion normally associated with metaplasia was
unaffected. Thus, the upregulation of mucin
mRNA alone is insufficient for the full phe-
notypic development of mucous cell metapla-
sia induced by ozone or endotoxin. The
protein product of mucin gene translation
undergoes considerable modification by gly-
cosyltransferases, which catalyze the addition
of fucose and sialic acid among other saccha-
ride groups, and sulfotransferases, which add
sulfur-containing groups, to the core mucin
apoprotein. It is these sugar groups and

Figure 5. Effect of ozone inhalation on endotoxin-
induced increase in lavaged neutrophils (A) mucus
hypersecretion (B), and increase in intraepithelial muco-
substances (C) in pulmonary airways. Bars represent
group mean ± SEM (n = 6 animals/group). aSignificantly
different from respective group exposed to air.
bSignificantly different from respective group given
intranasal saline. 
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upper airways and respiratory epithelium in pulmonary conducting airways.
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Ozone/endotoxin coexposures and airway epithelium

sulfated residues within mucous cell globules
that react histochemically with AB/PAS stains
and are used to quantitate intraepithelial
mucosubstances. Thus, unmodified, nongly-
cosylated, and nonsulfated mucin apoprotein
may be present in epithelial cells, but it is
undetected by AB/PAS staining because it
lacks reactive groups. One interpretation of
these results is that neutrophils mediate the
pathways responsible for the glycosylation
and sulfation of mucin proteins. In the
absence of neutrophils, the signals to modify
the core mucin protein by glycosylation
might not be present. Alternatively, mucin
protein may not be translated despite the
transcription of mucin genes. Either possibil-
ity requires further study.

Neutrophils are primary sources of
inflammatory mediators. Proteases derived by
neutrophils (e.g., cathepsins, elastase) are
well-known mucous secretogogues in airway
epithelial cells (67,68). Intraairway instilla-
tion of neutrophil elastase induces mucous
cell metaplasia in hamster airways (67,69).
Elastase inhibitors can prevent mucous cell
metaplasia induced by neutrophil elastase
(70) and mucus hypersecretion caused by
ozone (71). Furthermore, elastase has been
shown to increase mucin-specific mRNA and
protein expression in cultured human airway
cells (44). It is unclear how neutrophil-
derived proteases induce mucus secretion and
mucin gene expression in epithelial cells.
Elastase binds to an extracellular site on
bronchial epithelium prior to initiating meta-
plasia in hamster airways (72). Elastase and
cathepsin G may promote cellular responses
by cleaving and thereby activating a protease-
activated receptor (PAR) on airway epithelial
cells (73). In this regard, mucus secretion has
been shown to be triggered by activation of a
membrane-bound PAR in the rat sublingual
gland (74). It is possible that PAR activation
on airway epithelial cells may promote path-
ways that lead to the expression of mucin and
glycosyltransferase genes.

In addition to proteases, neutrophils can
release other inflammatory mediators, includ-
ing TNF, platelet activating factor, and IL-1
and IL-6, that can induce mucus secretion
and/or mucin gene upregulation in airway
epithelial cells (43,75,76). It should be noted
that these mediators can be produced by
other inflammatory cells (i.e., monocytic
cells) as well as by activated epithelial cells. A
common effector pathway of proteases and
inflammatory mediators to induce metaplasia
in airway epithelial cells may be the epidermal
growth factor receptor (EGFR) system. EGF
is an important growth factor for the develop-
ment of neonatal lungs and is often expressed
during repair processes in adult lung (77,78).
Airway instillation of EGFR ligands into rat
airways can lead to the development of

mucous cell metaplasia, but only after EGFR
expression is induced on airway epithelium
by prior treatment with TNF-α (79).
Exposure of humans to ozone causes expres-
sion of EGFR and production of EGFR lig-
ands in the nasal mucosa, suggesting a similar
process of activation may occur during ozone-
induced mucous cell metaplasia that we
observe in the rat NTE (80). We have
addressed the role of the EGFR system in the
development of mucous cell metaplasia by
using a novel in vitro system of cultured nasal
explants (81). In these studies neutrophil-
derived products enhanced the increase in
intraepithelial mucosubstances in respiratory
epithelium initiated by treatment of cultures
with endotoxin. When treated with kinase
inhibitors that block pathways of EGFR sig-
nal transduction, we observed an attenuation
of the metaplastic response elicited by the
neutrophil-derived products. Other recent
studies have implicated the EGFR system in
mucous cell metaplasia in models of allergic
airway disease (82) and in response to ciga-
rette smoke (83). We are presently perform-
ing studies to further elucidate the role of the
EGFR system in the neutrophil-mediated and
toxicant-induced mucous cell metaplasia in
nasal and pulmonary airways. 

Clearly, further studies are needed to clar-
ify the mechanisms by which ozone and
endotoxin, which target different airway
epithelium, enhance the metaplastic response
of each other. Although some of the potential
factors involved in mucous cell metaplasia,
such as the EGFR system, proteases, and
mucin and transferase gene induction, have
been suggested by results from other studies,
the complete pathway and processes are unre-
solved. If the development of mucous cell
metaplasia is a multicomponent process, then
endotoxin and ozone engender all the
required components in the respiratory
epithelium and nasal transitional epithelium,
respectively. Our results show that endotoxin
by itself does not cause, but can enhance,
mucous cell metaplasia in the NTE caused by
ozone exposure. Therefore, endotoxin must
enhance at least one, and maybe all, of the
necessary components in the development of
mucous cell metaplasia in NTE. Likewise,
ozone may enhance one or all of the steps in
the development of mucous cell metaplasia in
the respiratory epithelium. Discerning the
specific points in the metaplastic process tar-
geted by each toxicant in each epithelium
type is the focus of ongoing research in our
laboratory.

Taken together, our results illustrate a
unique interaction between two airborne tox-
icants to alter airway epithelium that would
not have been predicted from the known tox-
icologic profile of either pollutant given
alone. The importance of these findings is

2-fold. First, they provide a biologic rationale
from which to better evaluate the risk of coex-
posure to ozone and endotoxin. In addition,
our results with ozone and endotoxin might
be extended to predict the potential airway
responses to exposures to other oxidant gases
and biogenic substances. Second, the mecha-
nism of toxicity in this model of mucous cell
metaplasia implicates a major role for neu-
trophilic inflammation. Therapeutic
approaches that target neutrophils, their
recruitment, or their products (i.e., proteases)
may protect from toxicant-induced alter-
ations in the airway mucous apparatus.
Increased research efforts are needed to clarify
the true risk of exposures to multiple airborne
pollutants and to determine the most effec-
tive interventions to prevent or reverse the
overproduction and hypersecretion of mucus
in human airways. 

REFERENCES AND NOTES

1. U.S. EPA. National Air Quality and Emissions Trends Report,
1998. EPA 454/R-00-003. Washington, DC:U.S. Environmental
Protection Agency, 2000.

2. Breslin K. EPA: airing on the side of caution or pulling standards
out of thin air? Environ Health Perspect 108:A176–A177 (2000).

3. Whitman, Administrator of the Environmental Protection
Agency et al., v. American Trucking Associations Inc. et al. Case
No 99-1257. U.S. Supreme Court, 2001.

4. Lippmann M, Schlesinger RB. Toxicological bases for the set-
ting of health-related air pollution standards. Annu Rev Public
Health 21:309–333 (2000).

5. Calderon-Garciduenas L, Osorno Velazquez A, Bravo Alvarez H,
Delgado Chavez R, Barrios Marquez R. Histopathologic changes
of the nasal mucosa in southwest metropolitan Mexico City
inhabitants. Am J Pathol 140:225–232 (1992).

6. Hiltermann TJN, Peters EA, Alberst B, Kwikkers K, Borggreven
PA, Hiemstra PS, Dijkman JH, van Bree LA, Stolk J. Ozone-
induced airway hyperresponsiveness in patients with asthma:
role of neutrophil-derived serine proteases. Free Radic Biol Med
24:952–958 (1998).

7. Vagaggini B, Carnevali S, Macchioni P, Taccola M, Fornai E,
Bacci E, Bartoli ML, Cianchetti S, Dente FL, Di Franco A, et al.
Airway infllammatory responses to ozone in subjects with diffe-
ent asthma severity. Eur Respir J 13:274–280 (1999).

8. Graham DE, Koren HS. Biomarkers of inflammation in ozone-
exposed humans. Comparison of the nasal and bronchoalveolar
lavage. Am Rev Respir Dis 142:152–156 (1990).

9. Hiltermann TJN, de Bruijne CR, Solk J, Zwinderman AH,
Speoiksma FTM, Roemer W, Steerenberg PA, Fischer PH, van
Bree L, Hiemstra PS. Effects of photochemical air pollution and
allergen exposure on upper respiratory tract inflammation in
asthmatics. Am J Respir Crit Care Med 156:1765–1772 (1997).

10. Frischer TM, Kuehr J, Pullwitt A, Meinert R, Forster J, Studnicka
M, Koren H. Ambient ozone causes upper airway infllammatio
in children. Am Rev Respir Dis 148:961–964 (1993).

11. Cody RP, Weisel CP, Birnbaum G, Lioy PJ. The effect of ozone
associated with summertime photochemical smog on the fre-
quency of asthma visits to hospital emergency departments.
Environ Res 58:184–195 (1992).

12. Thurston GD, Ito K, Kinney PL, Lippmann M. A multi-year study
of air pollution and respiratory hospital admissions in three
New York State metropolitan areas: results for 1988 and 1989
summers. J Expos Anal Environ Epidemiol 2:429–450 (1992).

13. Stieb DM, Burnett RT, Beveridge RC, Brook JR. The association
between ozone and asthma emergency department visits in
Saint John, New Brunswick, Canada. Environ Health Perspect
104:1354–1360 (1996).

14. Fauroux B, Sampli M, Quenel P, Lemoullec Y. Ozone: a trigger
for hospital pediatric asthma emergency room visits. Pediatr
Pulmonol 30:41–46 (2000). 

15. Farman CA, Watkins K, van Hoozen B, Last JA, Witschi H,
Pinkerton KE. Centriacinar remodeling and sustained procolla-
gen gene expression after exposure to ozone and nitrogen diox-
ide. Am J Respir Cell Mol Biol 20:303–311 (1999). 

Environmental Health Perspectives • VOLUME 109 | SUPPLEMENT 4 | August 2001 597



Wagner et al.

598 VOLUME 109 | SUPPLEMENT 4 | August 2001 • Environmental Health Perspectives

16. Last JA, Pinkerton KE. Chronic exposure of rats to ozone and
sulfuric acid aerosol: biochemical and structural responses.
Toxicology 116:133–136 (1997).

17. el Fawal HA, McGovern T, Schlesinger RB. Nonspecific
bronchial responsiveness assessed in vitro following acute
inhalation exposure to ozone and ozone/sulfuric acid mixtures.
Exp Lung Res 21:129–139 (1995).

18. Gold DR, Damokosh AI, Pope CA III, Dockery DW, McDonnell
WF, Serrano P, Retama A, Castillejos M. Particulate and ozone
pollutant effects on the respiratory function of children in
southwest Mexico City. Epidemiology 10:8–16 (1999).

19. Sheppard L, Levy D, Norris G, Larson TV, Koenig JQ. Effects of
ambient air pollution on nonelderly asthma hospital admissions
in Seattle, Washington, 1987-1994. Epidemiology 10:23–30.

20. Wong TW, Lau TS, Yu TS, Neller A, Wong SL, Tam W, Pang
SW. Air pollution and hospital admissions for respiratory and
cardiovascular diseases in Hong Kong. Occup Environ Med
56:679–683 (1999). 

21. Linn WS, Szlachcic Y, Gong H Jr, Kinney PL, Berhane KT. Air
pollution and daily hospital admissions in metropolitan Los
Angeles. Environ Health Perspect 108:427–434 (2000).

22. Rylander R, Nordstrand A. Pulmonary cell reactions after expo-
sure to cotton dust extract. Br J Ind Med 31:220–223 (1974).

23. Pernis B, Vigliani EC, Cavagna C, Finuli M. The role of bacterial
endotoxins in occupational diseases caused by inhaling veg-
etable dusts. Br J Ind Med 18:120–129 (1961).

24. Salvaggio J, Bucchner HA, Seabury JA. Preciptins against
extracts of crude bagasse in the serum of patients. Ann Intern
Med 61:748–758 (1966).

25. Jarvholm B. Cutting oil mist and bronchitis. Eur J Respir Dis
Suppl 118:79–83 (1982).

26. Jarvholm B, Bake B, Lavenius B, Thiringer G, Vokmann R.
Respiratory symptoms and lung function in oil-mist-exposed
workers. J Occup Med 24:473–479 (1982).

27. Oxhoj H, Andreasen H, Henius UM. Respiratory symptoms and
ventilatory lung function in machine shop workers exposed to
cooler lubricants. Eur J Respir Dis Suppl 118:85–89 (1982).

28. Flaherty DK, Deck FH, Cooper J, Bishop K, Winzenburger PA,
Smith LR, Bynum L, Witmer WB. Bacterial endotoxin isolated
from a water spray air humidification system as a putative
agent of occupation-related lung disease. Infect Immun
43:206–212 (1984).

29. Rylander R, Haglind P. Airborne endotoxin and humidifier dis-
ease. Clin Allergy 14:109–112 (1984).

30. Peterson RD, Wicklund PE, Good RA. Endotoxin activity in
house-dust extracts. J Allergy 35:134–142 (1964).

31. Simpson JC, Niven RM, Pickering CA, Oldham LA, Fletcher AM,
Francis HC. Comparative personal exposures to organic dusts
and endotoxin. Ann Occup Hyg 43:107–115 (1999).

32. Wesselius LJ, Nelson ME, Bailey K, O’Brien-Ladner AR. Rapid
lung cytokine accumulation and neutrophil recruitment after
lipopolysaccharide inhalation by cigarette smokers and non-
smokers. J Lab Clin Med 129:106–114 (1997).

33. Michel O, Nagy AM, Schroeven M, Duchateau J, Neve J, Fondu
P, Sergysels R. Dose-response relationship to inhaled endotoxin
in normal subjects. Am J Respir Crit Care Med 156:1157–1164
(1997).

34. Peden DB, Tucker K, Murphy P, Newlin-Clapp L, Boehlecke B,
Hazucha M, Bromberg P, Reed W. Eosinophil infllux to the nasa
airway after local, low-level LPS challenge in humans. J Allergy
Clin Immunol 104:388–394 (1999).

35. Eldridge MW, Peden DB. Allergen provocation augments endo-
toxin-induced nasal inflammation in subjects with atopic
asthma. J Allergy Clin Immunol 105:475–481 (2000).

36. Harkema JR, Hotchkiss JA. In vivo effects of endotoxin on nasal
epithelial mucosubstances: quantitative histochemistry. Exp
Lung Res 17:743–761 (1991).

37. Harkema JR, Hotchkiss JA. In vivo effects of endotoxin on
intraepithelial mucosubstances in rat pulmonary airways.
Quantitative histochemistry. Am J Pathol 141:307–317 (1992). 

38. Steiger D, Hotchkiss J, Bajaj L, Harkema J, Basbaum C.
Concurrent increases in the storage and release of mucin-like
molecules by rat airway epithelial cells in response to bacterial
endotoxin. Am J Respir Cell Mol Biol 12:307–314 (1995).

39. Gordon T, Harkema JR. Effect of inhaled endotoxin on intraep-
ithelial mucosubstances in F344 rat nasal and tracheobronchial
airways. Am J Respir Cell Mol Biol 10:177–183 (1994).

40. Hanisch F-G, Muller S. MUC1: the polymorphic appearance of a
human mucin. Glycobiology 10:439–449 (2000).

41. Wills-Karp M. Trophic slime, allergic slime. Am J Respir Cell
Mol Biol 22:637–639 (2000).

42. Basbaum C, Lemjabbar H, Longphre M, Li D, Gensch E,
McNamara N. Control of mucin transcription by diverse injury-
induced signaling pathways. Am J Respir Crit Care Med
60:S44–S48 (1999).

43. Borchers MT, Carty MP, Leikauf GD. Regulation of human air-
way mucins by acrolein and inflammatory mediators. Am J
Physiol 276:L549–L555 (1999).

44. Voynow JA, Young LR, Wang Y, Horger T, Rose MC, Fischer
BM. Neutrophil elastase increases MUC5AC mRNA and protein
expression in respiratory epithelial cells. Am J Physiol
276:L835–L843 (1999).

45. Harkema JR, Hotchkiss JA, Henderson RF. Effects of 0.12 and
0.8 ppm ozone on rat nasal and nasopharyngeal epithelial
mucosubstances: quantitative histochemistry. Toxicol Pathol
17:525–535 (1989). 

46. Harkema JR, Plopper CG, Hyde DM, St. George JA, Wilson DW,
Dungworth DL. Response of the macaque nasal epithelium to
ambient levels of ozone. A morphologic and morphometric
study of the transitional and respiratory epithelium. Am J
Pathol 128:29–44 (1987).

47. Harkema JR, Hotchkiss JA. Ozone-induced proliferative and
metaplastic lesions in nasal transitional and respiratory epithe-
lium: comparative pathology. Inhal Toxicol 6:187–204 (1994).

48. Hotchkiss JA, Harkema JR, Henderson RF. Effect of cumulative
ozone exposure on ozone-induced nasal epithelial hyperplasia
and secretory metaplasia in rats. Exp Lung Res 17:589–600
(1991).

49. Hotchkiss JA, Harkema JR, Johnson NF. Kinetics of nasal
epithelial cell loss and proliferation in F344 rats following a sin-
gle exposure to 0.5 ppm ozone. Toxicol Appl Pharmacol
143:75–82 (1997).

50. Cho HY, Hotchkiss JA, Harkema JR. Infllammatory and epithelia
responses during development of ozone-induced mucous cell
metaplasia in the nasal epithelium of rats. Toxicol Sci
51:135–145 (1999).

51. Harkema JR, Hotchkiss JA. Ozone- and endotoxin-induced
mucous cell metaplasias in rat airway epithelium: novel animal
models to study toxicant-induced epithelial transformations in
airways. Toxicol Lett 68:251–263 (1993).

52. Fanucchi MV, Hotchkiss JA, Harkema JR. Endotoxin enhances
ozone-induced mucous cell metaplasia in rat nasal epithelium.
Toxicol Appl Pharmacol 152:1–9 (1998). 

53. Snipes MB, Barnett AL, Harkema JR, Hotchkiss JA, ReBar AH,
Reddick LJ. Specifiic biological effects of an anti-rat PMN ant-
serum intraperitoneally injected into F344/N rats. Vet Clin
Pathol 24:11–17 (1995). 

54. National Institutes of Health. NIH Image. Available:
http://rsb.info.nih.gov/nih-image [cited 2 July 2001].

55. Chomczynski P, McKay K. Substitution of chloroform by bromo-
chloropropane in a single-step method of RNA isolation. Anal
Biochem 225:163–164 (1995).

56. Chomczynski P, Sacchi N. Single-step methods of RNA isolation
by acid guanidinium thiocyanate-phenol-chloroform extraction.
Anal Biochem 162:156–159 (1987).

57. Fanucchi MV, Harkema JR, Plopper CG, Hotchkiss JA. In vitro
culture of microdissected rat nasal airway tissues. Am J Respir
Cell Mol Biol 20:1274–1285 (1999).

58. Gilliland GS, Perrin K, Blanchard K, Bunn HF. Analysis of
cytokine mRNA and DNA: detection and quantitation by com-
petitive polymerase chain reaction. Proc Natl Acad Sci U S A
87:2725–2729 (1990).

59. Gilliland GS, Perrin K, Blanchard K, Bunn HF. Competitive PCR
for quantitation of mRNA. In: PCR Protocols: A Guide to
Methods and Applications (Innes M, Gelfand DH, Sninsky JJ,
White T, eds). San Diego, CA:Academic Press, 1990;60-66.

60. Calderon-Garciduenas L, Rodriguez-Alcaraz A, Garcia R,
Sanchez G, Barragan G, Camacho R, Ramirez L. Human nasal
mucosal changes after exposure to urban air pollution. Environ
Health Perspect 102:1074–1080 (1994).

61. Calderon-Garciduenas L, Rodriguez-Alcaraz A, Garcia R,
Ramirez L, Barragan G. Nasal inflammatory responses in chil-
dren exposed to polluted urban atmosphere. J Toxicol Environ
Health 45:427–437 (1995). 

62. Hotchkiss JA, Hilaski R, Cho H, Regan K, Spencer P, Slack K,
Harkema JR. Fluticasone propionate attenuates ozone-induced
rhinitis and mucous cell metaplasia in rat nasal airway epithe-
lium. Am J Respir Cell Mol Biol 18:91–99 (1998).

63. Davreux CJ, Soric I, Nathens AB, Watson RW, McGilvray ID,
Suntres ZE, Shek PN, Rotstein OD. N-Acetyl cysteine attenuates
acute lung injury in the rat. Shock 8:432–438 (1997).

64. Kawabata K, Hagio T, Matsumoto S, Nakao S, Orita S, Aze Y,
Ohno H. Delayed neutrophil elastase inhibition prevents subse-
quent progression of acute lung injury induced by endotoxin
inhalation in hamsters. Am J Respir Crit  Care Med
161:2013–2018 (2000).

65. Cho HY, Hotchkiss JA, Bennett CB, Harkema JR. Neutrophil-
dependent and neutrophil-independent alterations in the nasal
epithelium of ozone-exposed rats. Am J Respir Crit Care Med
162:629–636 (2000).

66. Hotchkiss JA, Harkema JR. Effect of neutrophil depletion on
endotoxin-induced mucous cell metaplasia in pulmonary air-
ways of F344 rat. Am J Respir Crit Care Med 149:A994 (1994).

67. Breuer R, Christensen TG, Lucey EC, Stone PJ, Snider GL.
Elastase causes secretory discharge in bronchi of hamsters
with elastase-induced secretory cell metaplasia. Exp Lung Res
19:273–282 (1993). 

68. Takeyama K, Agusti C, Ueki I, Lausier J, Cardell LO, Nadel JA.
Neutrophil-dependent goblet cell degranulation: role of mem-
brane-bound elastase and adhesion molecules. Am J Physiol
275:L294–L302 (1998).

69. Jamil S, Breuer R, Christensen TG. Abnormal mucous cell phe-
notype induced by neutrophil elastase in hamster bronchi. Exp
Lung Res 23:285–295 (1997).

70. Breuer R, Christensen TG, Lucey EC, Bolbochan G, Stone PJ,
Snider GL. Quantitative study of secretory cell metaplasia
induced by human neutrophil elastase in the large bronchi of
hamsters. J Lab Clin Med 105:635–640 (1985). 

71. Nogami H, Aizawa H, Matsumoto K, Nakano H, Koto H,
Miyazaki H, Hirose T, Nishima S Hara N. Neutrophil elastase
inhibitor, ONO-5046 suppresses ozone-induced airway mucus
hypersecretion in guinea pigs. Eur J Pharmacol 390:197–202
(2000).

72. Christensen TG, Alonso PA. Immunocytochemical evidence for
extra-cellular initiation of elastase-induced bronchial secretory
cell metaplasia in hamsters. Eur J Respir 9:535–541 (1996).

73. Matthews JL, Shaw RJ, Bunce KT. Effects of elastase on
bronchial epithelial cells may involve activation of protease
activated receptors [Abstract]. Am J Respir Crit Care Med
159:A448 (1999).

74. Kawabata A, Morimoto N, Nishikawa H, Kuroda R, Oda Y,
Kakehi K. Activation of protease-activated receptor-2 (PAR-2)
triggers mucin secretion in the rat sublingual gland. Biochem
Biophys Res Commun 270:298–302 (2000). 

75. Lou YP, Takeyama K, Grattan KM, Lausier JA, Ueki IF, Agusti C,
Nadel JA. Platelet-activating factor induced goblet cell hyper-
plasia and mucin gene expression in airways. Am J Respir Crit
Care Med 157:1927–1934 (1998). 

76. Levine SJ, Larivee P, Logun C, Shelhamer JH. IL-6 induces res-
piratory mucous glycoprotein secretion and MUC-2 gene
expression by human airway epithelial cells [Abstract]. Am J
Respir Crit Care Med 149:A27 (1994).

77. Holgate ST. Epithelial damage and response. Clin Exp Allergy
30:37–41 (2000).

78. Fisher DA, Lakshmanan J. Metabolism and effects of epidermal
growth factor and related growth factors in mammals. Endocr
Rev 11:418–442 (2000). 

79. Takeyama K, Dabbagh K, Lee HM, Agusti C, Lausier J, Ueki I,
Grattan KM, Nadel JA. Epidermal growth factor system regu-
lates mucin production in airways. Proc Natl Acad Sci U S A
96:3081–3086 (1999). 

80. Polosa R, Krishna MT, Holgate ST, Howarth HP, Frew AJ,
Davies DE. Effect of ozone exposure on EGFR, EGF, TGFα
expression in human bronchial and nasal epithelium [Abstract].
Am J Respir Crit Care Med 159:A493 (1999).

81. Hotchkiss JA, Farraj AK, Harkema JR. The epidermal growth
factor receptor system mediates neutrophil-dependent mucous
cell metaplasia induced by bacterial endotoxin [Abstract]. Am J
Respir Crit Care Med 161:A778 (2000).

82. Shim JJ, Dabbaugh K, Takeyama T, Dao-Pick T, Ueki IF, Nadel
JA. The cytokine IL-13 induces mucus production by stimulating
EGF receptors in rats [Abstract]. Am J Respir Crit Care Med
161:A245 (2000).

83. Takeyama K, Burgel P-R, Shim JJ, Dao-Pick T, Ueki IF, Nadel
JA. Cigarette smoke causes mucin synthesis in NCI-H292 cell
via transactivation of epidermal growth factor receptors
[Abstract]. Am J Respir Crit Care Med 161:A156 (2000).




