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The atmosphere is a processing unit for
organic compounds. Many important, com-
plex chemical and physical processes occur
in the atmosphere that modify, transport,
and deposit organic compounds emitted
from natural and man-made sources. One
component of interest is atmospheric fine
particles with nominal diameters of less than
2.5 µm (PM2.5). These particles consist of
complex mixtures of organic compounds
exhibiting a wide spectrum of physical prop-
erties such as molecular weight, polarity, and
pH. Fine particles vary in abundance and
composition both spatially and temporally,
with concentrations highest typically in
urban atmospheres (1–4). Organic aerosols
comprise approximately 10–30% by mass of
the total fine particulate matter present in
urban and rural U.S. atmospheres (4–18).
However, higher ambient concentrations of
combined organic carbon (OC) and elemen-
tal carbon (EC) are possible in urban atmos-
pheres. For example, OC and EC were
measured in Mexico City during a 1997
intensive measurement study and con-
tributed approximately 50% of the ambient
fine-particle mass (19). 

The organic chemical composition of air-
borne fine particles is an important, multidis-
ciplinary research area for several reasons.
First, controlling fine-particle atmospheric
concentrations requires an understanding of
the emission sources. Organic complex mix-
tures contain molecular tracers that can be
linked to specific emission sources or are by-
products from dominant atmospheric photo-
chemical reactions. Identifying the mass
contribution of key source markers in PM2.5

complex mixtures and coupling this informa-
tion with chemical mass balance (CMB)
models provides a quantitative approach for
estimating individual emission source inputs
to urban atmospheres (5–7,20–28). Second,
full chemical descriptions of organic mixtures
collected as PM2.5 have not been achieved.
Approximately 20% of the masses of organic
complex mixtures are resolved quantitatively
as individual compounds (5,6,9,10,29). The
remaining 80% of this organic complex mix-
ture mass may contain individual com-
pounds with great significance as ambient
indicators representing particulate matter
exposure. Incomplete chemical descriptions
of fine-particle complex organic mixtures
have slowed progress in establishing critical
links between specific toxic constituents of
airborne particles with health indicators
(8,17,30). According to a recent National
Research Council (NRC) panel, significant
uncertainty exists in terms of what chemical
components require reduced atmospheric
emissions to achieve cost-effective reductions
in health risks to populations (17,30). The
same NRC panel recommended an aggres-
sive research agenda to examine the chemical
composition of ambient fine particles, fine-
particle emission source chemistry, and toxi-
cological and epidemiological research to
identify the most biologically relevant PM2.5
constituents that produce several acute health
end points. 

From an analytical chemistry perspective,
atmospheric fine particles continue to present
significant challenges, given the large molecu-
lar assemblages and variable concentrations of
the associated organic complex mixtures. The

analytical protocol must be robust and
account for various forms of organic com-
pounds (chemical functional groups and
compound classes). The analytical method
must have low-level detection capability at
the low- to sub-ppb level. Bulk chemical and
molecular properties of the fine-particle
PM2.5 carbonaceous material must link
quantitatively to each other to distinguish
among individual sources of fine carbona-
ceous particles to urban atmospheres. Finally,
the measurement protocol must have good
statistical control so meaningful data are
produced (31). 

A comprehensive chemical assessment of
PM2.5 complex organic mixtures is funda-
mental to understanding associated health
effects and to developing engineering tech-
nologies for effective air quality management.
This article presents a general discussion of
the complex chemical composition of organic
aerosol particles that are the result of many
types of emission sources to the atmosphere.
The discussion of fine-particle chemical com-
position is followed by an overview of a
chemical species mass balance analytical
approach for measuring the organic chemical
composition of fine particulate matter from
bulk chemical constituents to ultimately the
molecular level. This analytical approach is
the underlying method for SuperSite PM2.5
characterization studies funded by the U.S.
Environmental Protection Agency. Finally,
the article describes techniques for relating
chemical properties of the complex mixtures
to ambient trends and emission sources using
data reduction and modeling procedures.

This article is part of the monograph Application of
Technology to Chemical Mixture Research.
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This article describes a chemical characterization approach for complex organic compound mix-
tures associated with fine atmospheric particles of diameters less than 2.5 µm (PM2.5). It relates
molecular- and bulk-level chemical characteristics of the complex mixture to atmospheric chem-
istry and to emission sources. Overall, the analytical approach describes the organic complex mix-
tures in terms of a chemical mass balance (CMB). Here, the complex mixture is related to a bulk
elemental measurement (total carbon) and is broken down systematically into functional groups
and molecular compositions. The CMB and molecular-level information can be used to under-
stand the sources of the atmospheric fine particles through conversion of chromatographic data
and by incorporation into receptor-based CMB models. Once described and quantified within a
mass balance framework, the chemical profiles for aerosol organic matter can be applied to exist-
ing air quality issues. Examples include understanding health effects of PM2.5 and defining and
controlling key sources of anthropogenic fine particles. Overall, the organic aerosol compositional
data provide chemical information needed for effective PM2.5 management. Key words: air pollu-
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Influence of Emission Sources
on Chemical Composition of
Organic Aerosol Particles

A general understanding of major source 
categories is useful in developing a descriptive
basis for fine-particle organic chemistry.
Primary emissions to the atmosphere are from
man-made and natural sources. These primary
organic compounds are modified by chemical
oxidation reactions involving either single-
phase reactants (homogeneous reactions) or
multiphase reactants (heterogeneous reac-
tions). Gas-phase organic compounds reacting
with ozone is an example of homogeneous
reactions, whereas reactions involving PM2.5
organic surface layers and a gas-phase inor-
ganic oxidant compound (hydroxyl radical) is
an example of a multiphase reactant system
(heterogeneous reactions). The reaction by-
products of either homogeneous or heteroge-
neous processes are regarded as secondary
atmospheric organic compounds formed
within the lower troposphere. Figure 1 shows
a simple representation of the major intercon-
nections between primary biogenic and
anthropogenic atmospheric compounds, pho-
tochemical conversion processes, and resulting
secondary gas-phase and particle-phase
organic matter. Typically, compounds emitted
from primary biogenic sources are reduced
(higher elemental C:H compositions) than
either anthropogenic or secondary emissions.
Atmospheric organic matter undergoing pho-
tochemical reactions becomes oxidized via
reactions with several major oxidizing species
in the atmosphere: the hydroxyl radical, the
nitrate (NO3) radical, and ozone (32–34).
The oxidation process decreases the elemental
C:H and adds oxygen-containing functional
groups such as carbonyl, carboxylic acid, and
nitro groups to reactive hydrocarbons.
Examples of biogenic compounds found as
PM2.5 include epicuticular plant waxes rang-
ing from n-C23H48 to n-C33H68 (C:H =
1.0:2.1). Polycyclic aromatic hydrocarbons
(PAHs) are combustion-derived organic
marker compounds often identified with
urban PM2.5. PAHs are emitted from primary

emission sources such as motor vehicle and
diesel truck exhaust (see Table 1 references).
Typical PAH compounds emitted from
vehicular sources include phenanthrene
(C14H10; C:H = 1.0:0.71), benz[a]anthracene 
(C18H12; C:H 1.0:0.67), and coronene
(C24H12; C:H = 1.0:0.5). Examples of sec-
ondary, photochemical organic tracers found
as PM2.5 are dicarboxylic acids such as malic
acid (hydroxy butanedioic acid; C4H16O5,
C:H = 1.0:1.5), glutaric acid (pentanedioic
acid; C5H8O4, C:H = 1.0:1.6), adipic acid
(hexanedioic acid; C6H10O4, C:H = 1.0:1.67),
and azelaic acid (nonanedioic acid; C9H14O4,
C:H 1.0:1.8 ) (5,35). 

The presence of oxygen-bearing func-
tional groups has important consequences
for aerosol hygroscopicity. Groups such as
carbonyls (aldehydes, ketones), alcohols,
and carboxylic acids are polar carbon–oxy-
gen bonds, which serve to increase com-
pound solubility in polar solvents, including
atmospheric water vapor and droplets.
Hence the term “polar organics” is used to
designate the oxygen-containing com-
pounds. Increased polarity is thought to
increase the uptake and retention of fine
particles within the respiratory system, lead-
ing to undesirable health effects for persons
with asthma, children, and individuals with
respiratory illnesses (8,17,30). 

Much effort has been devoted to 
identifying the composition and sources of
organic aerosols (5–7,9,15,21,35–54).
Other research on the chemical composi-
tion of fine particles from major urban
sources of atmospheric organic aerosols has
provided mass inventories describing bulk-
level to molecular-level compositions.
Details of the quantitative mass emission

characteristics corresponding to each of the
source types were published in earlier work
(25,52–77). Table 1 provides a summary of
emission studies corresponding to major
urban sources of fine carbonaceous particles
(specific references included in Table 1).
Typically, several hundred individual mole-
cules have been identified with each emis-
sion source type. However, only a small
suite of individual compounds from each
source is used in subsequent mathematical
models for source apportionment. The
modeling applications using specific organic
compounds for urban sources of fine parti-
cles have been published (6,20).

Chemical Mass Balance

CMB inventories have been developed for
urban fine particles and major emissions
sources (Table 1). This approach documents
the relative mass contribution of compound
classes within a sample and describes at dif-
ferent compositional levels the various com-
ponents within a complex mixture. It relates
quantitatively the total carbon (TC) mass to
constituent subgroups, functional group
types, and individual molecules (marker
compounds). Any one component or combi-
nations of components can be used in com-
paring aerosol chemistry, emission source
chemistry, and biogenic aerosol chemistry, or
to track changes involving a chemical
process. To illustrate the mass balance
approach for ambient PM2.5 organic compo-
nents, Figure 2 shows the chemical species
composition for the 1982 annual mean fine-
particle concentrations for fine particles col-
lected from West Los Angeles, California.
Total organics contained within the total
fine-particle mass (column I) is described
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Table 1. Urban sources of fine carbonaceous aerosol particles.

Source study Reference

Anthropogenic sources
Oil-fired boiler (No. 2 fuel oil) (57,69)
Fireplace

Natural wood (soft and hard woods) (57,58,60,62,71,74–76)
Synthetic log (57,58,71)

Vehicles
Catalyst-equipped (55–57,59,64,77)
Noncatalyst–equipped (55–57,59,64,77)
Diesel trucks (55–57,59,64,73,77)

Home appliances
Natural gas (57,65)

Meat cooking
Charbroiling (extra-lean and regular ground beef) (57,58,61,63,72)
Frying (extra-lean and regular ground beef) (57,58,61)

Road dust (57,67)
Brake dust (57,67)
Tire dust (57,67)
Cigarettes (57,58,68)
Hot asphalt roofing tar pot fumes (57,70)

Biogenic sources
Vegetative detritus

Cultivated and native plant composites (dead leaves) (57,66)
Cultivated and native plant composites (green leaves) (57,66)

Gas phase
Particle
phase

Gas phase Particle phase

Anthropogenic

Photochemistry
Homogeneous Heterogeneous

Gas phase Particle phase

Secondary

Biogenic

cycles linked
C-N

Figure 1. Relationship of atmospheric organic mat-
ter emitted from biogenic and anthropogenic pri-
mary sources to photochemical processing and
subsequent production of secondary atmospheric
organic matter.
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quantitatively in various forms including in
terms of intermediate complex mixture prop-
erties determined by high-resolution gas chro-
matography (HRGC) shown in column II
(elutable organics and nonextractable, none-
lutable organics) and column III (HRGC-
resolved organics and unresolved organics).
Column IV shows the molecular-level com-
position of the total fine-particle organics
mass (7.0 µg/m3) from column I that can be
resolved analytically by HRGC/mass spec-
trometry (HRGC/MS). The total mass of
column IV molecular organic compounds is
910 ng/m3. By depicting the organic complex
mixture in terms of bulk-level (column I),
intermediate-level (columns II and III), and
molecular-level chemical properties (column
IV), it is possible to have quantitative descrip-
tions for the complex organic mixtures col-
lected as fine particulate matter and identify
significant compositional chemical attributes.
The CMB is a convenient chemical book-
keeping method that can assist in mapping
complex mixture chemistries measured for
real atmospheric phenomena. By establishing
a quantitative organizational framework for
the chemical attributes (columns I–IV) of
PM2.5 organic complex mixtures, the data can
be incorporated into CMB receptor models
described in a later section.

Collection requirements for complex mix-
ture chemical mass balance. Specialized sam-
ple collection procedures are required for the
chemical constituent mass determinations cor-
responding to the four columns in Figure 2.
An example of a typical fine-aerosol sampling
system is shown in Figure 3. The sampling
system is based on the Caltech fine-particle
collector developed by Cass and coworkers
(22,78–80). A number of dedicated filters are
configured as part of the apparatus. The dedi-
cated filters are composed of Teflon (Teflo
membrane filters; Pall Corp., East Hills, NY,
USA), other organic polymer membranes
(polycarbonate membrane filters; Whatman
Inc., Clifton, NJ, USA), and prefired quartz
fiber filters (Tissuquartz fiber filters; Pall
Corp.). Bulk organic carbon content and
organic molecular-level measurements use
only quartz fiber filters because this filter
material can be processed thermally to achieve
very low levels of TC background material.

The Caltech sampling system has been
modified for PM2.5 collection and is available
commercially (Thermo Anderson RAAS2.5
Sequential Sample; Thermo Andersen,
Smyrna, GA, USA). This and two other PM2.5
speciation collectors (Met One SASS; Met
One Instruments, Inc., Grants Pass, OR,
USA), (URG Sequential Fine Particle Sampler,
URG, Chapel Hill, NC, USA) were evaluated
recently by the U.S. Environmental Protection
Agency for suitability as PM2.5 chemical
species samplers (81). The performances of the

three candidate samplers were found to be rea-
sonable for preliminary use in the field.
However, real differences were observed for the
three PM2.5 chemical speciation samplers for
NO3 and organic carbon components when
compared with the reference IMPROVE col-
lector (81). The differences in chemical species
measurements were most notable for NO3 and
organic carbon and could have significant con-
sequences when measuring ambient mass con-
centrations. Airflow through a filter (face
velocity) is an active area of research by many
groups because of an incomplete understand-
ing of positive and negative artifacts associated
with semivolatile compounds, especially the
organic carbon fine-particle constituents
(82,83). The current federal reference method

for fine-particle organic carbon measurement
sets a standardized face velocity to reduce mea-
surement variability due to airflow. The stan-
dardized flow for organic carbon collection will
result in similar negative sampling biases when
collecting semivolatile organic carbon com-
pounds (81). However, it is recommended
that fine-particle chemical species samplers be
configured with denuder systems upstream of
the quart-fiber filters to remove potential
volatile organic artifacts adsorbing onto the
sample filters (positive sampling artifact).

Carbon species chemical mass balance
and quantitative links. The analytical objec-
tive of the carbon mass balance approach is to
establish quantitative links among measurable
components of the complex mixture. Four
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Figure 2. Mass balance for the CMB of 1982 annual mean fine-particle concentrations for West Los
Angeles, California. Figure adapted from Rogge et al. (5).
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components of the PM2.5 sample filters are
measured typically: a) total mass, b) TC
(organic + elemental), c) gas chromatography
(GC)-elutable organic complex mixture, d)
molecular tracers. By comparing these chemi-
cal properties from fine ambient particles
with those measured similarly for emission
sources of fine particles (Table 1), it is possi-
ble to quantitatively estimate emissions from
individual sources. For example, work by
Schauer et. al. (6,7) has shown that the mass
of a key organic molecular tracer can be
linked quantitatively to different sources
types. Using the ratio of the molecular
marker mass to the total organic fine-aerosol
mass emitted from a single source type, it is
possible to compute the contribution of the
emission source type to an urban atmosphere.
This source estimation is based on the mass
balance relationship of a molecular tracer to
the other major carbon-containing subfrac-
tions within the aerosol particulate sample
(25,57–59,61–77).

Analytical Measurements for
Fine-Particle Organic Complex
Mixtures

The CMB fine-particle organic mixture
requires several independent and interrelated
chemical analytical measurements. Referring
to the carbon mass balance in Figure 2, the
total fine-aerosol mass is collected on
preweighed Teflon filters. Using a microbal-
ance, the total mass of fine aerosol is deter-
mined gravimetrically under conditions of
constant temperature and humidity. TC
analysis (Figure 2, column I) is performed by
a combined pyrolysis/combustion measure-
ment technique (84,85). The method pro-
vides a quantitative measurement of the mass
concentrations of EC and organic carbon pre-
sent on a sampled quartz microfiber filter and
uses laser transmittance to correct for the con-
version of OC to EC during the initial pyrol-
ysis step. The organics mass (column II) is
calculated using the mass of organic carbon
determined by thermal evolution and com-
bustion analysis (column I). The OC total
mass is multiplied by a conversion factor to
account for the mass of elements other than
carbon present in the organic compounds.
The OC conversion factors are calculated
from the atomic mass compositions of
organic compounds identified by HRGC/MS
analysis of the elutable organics fraction (86).
Typically, the conversion factors vary from
1.38 to 1.46 and reflect, in addition to
carbon atoms, the mass concentrations of
hydrogen and oxygen and trace amounts of
nitrogen, chlorine, and phosphorus present in
the organic compounds (78). Recent work by
Turpin and Lim (87) has identified EC con-
version factors for urban PM2.5 (1.6 + 0.2)
and for nonurban PM2.5 (2.1 + 0.2). The

distinction between conversion factors for
urban and nonurban PM2.5 reflects a rela-
tively greater contribution of biogenic organic
compounds (e.g., higher plant waxes) to the
fine-particle mass.

Quantitation of total solvent-soluble,
elutable organics (i.e., lipids having 6–40 car-
bon atoms) (Figure 2, column III) is
achieved by HRGC-flame ionization detec-
tion (HRGC/FID) analysis employing a sur-
rogate standard (i.e., internal recovery
standard, perdeuterated n-tetracosane) and a
suite of n-alkane external standards
(9,57,86). Individual molecular tracers
(Figure 2, column IV) present in the total
extracts from the source aerosol filters are
identified and measured quantitatively by
HRGC/MS analysis (5,9,86). Isolation of
the GC-elutable organic complex mixture
and the molecular marker components is
described in the following sections.

Solvent extraction of fine-particle filters.
Micromethods have been developed for the
quantitative recovery of solvent-extractable
organic matter (EOM) in fine particulate
matter (5,10,86,88). The analytical protocol
monitors losses associated with volatilization,
incomplete extraction, or instrumental bias.
To provide sufficient organic mass for the
HRGC/FID and HRGC/MS analyses (i.e.,
minimum of 200 µg OC per filter composite
for a single ambient composite), generally six
24-hr organic species filters are combined to
form a filter composite with sufficient mass
loadings for molecular marker measurement
(Figure 2, column IV). The total volume of
air sampled per composite is roughly 1000
m3 (6.7 Lpm × 24 hr × 6 days). Before
extracting the filter composite, an internal
standard, n-C24D50, is added. The amount of
n-C24D50 added is determined from the total
mass of organic carbon contained on the fil-
ters as analyzed by pyrolysis/combustion
(Figure 2, column II). The ratio of OC mass
to the mass of n-C24D50 (surrogate standard)
is 150 µg OC to 1 µg n-C24D50 (86).

The organic complex mixture is extracted
from the filters by ultrasonic agitation using
successive additions of hexane (two volume
additions) and benzene/isopropanol (three
volume additions). The serial extracts are fil-
tered and then combined. The total extracts
are reduced to volumes of 50–300 µL. The
neutral fraction of the organics (neutral
elutable organics) is defined operationally as
the fraction that elutes from the bonded
phase (J&W Durabond 1701 GC Column,
14%-cyanopropyl-phenyl-methylpolysiloxane;
Agilent Technologies, Wilmington, DE,
USA) of the analytical column and is detected
by the FID of the GC without further deriva-
tization. An aliquot of the total extract is
derivatized by addition of diazomethane. This
step converts reactive organic acids and

phenolic hydroxyl groups to the respective
methyl ester or methyl ether analogs.
Injection of the derivatized fraction onto the
HRGC column produces chromatographic
data for the acid plus neutral (acid + neutral)
fraction (total acid + neutral elutable organ-
ics). The mass of the acid fraction (acidic
elutable organics) of the solvent-soluble
organics is determined by difference.

Quantitation of the total extracts is
accomplished by computerized HRGC/FID
analyses that incorporate the combined appli-
cation of: a) area counts relative to a coinjec-
tion standard (1-phenyldodecane); b) relative
response factor for the perdeuterated surro-
gate standard (n-C24D50); c) recovery of the
perdeuterated surrogate standard for each
source sample extract; and d) relative response
factors for a suite of n-alkane external stan-
dards (17 n-alkane homologs from n-C10H22
to n-C36H74) (10,57,86).

Properties of organic complex mixtures by
high-resolution gas chromatography. Major
chemical features of the solvent-soluble
organic aerosol fraction (carbon range of C8 to
C36) are quantified and identified by HRGC/
FID. In particular, bulk characteristics can be
measured, revealing chemical information
relating to carbon mass distributions and to
the content of acidic compounds (polar
organic compounds) present in the fine-parti-
cle complex organic mixtures. Figure 4 shows
examples of HRGC-FID plots for total acid +
neutral organics from fine particles collected at
West Los Angeles, California (88,89). As seen
in Figure 4, aerosol organics are complex mix-
tures of individual organic compounds, some
of which can be measured quantitatively by
HRGC/FID. Dominant peaks in the two
West Los Angeles HRGC plots include nor-
mal alkanes (C25–C31) and normal alkanoic
acids (C12–C28). These molecular determina-
tions are based on comparison with HRGC
analyses of external standards containing
n-alkane and n-alkanoic acid methyl ester
standards. Confirmation of the molecular
markers is confirmed by HRGC/MS analysis
using characteristic fragmentation patterns
produced by electron impact ionization. 

Although is it possible to identify a few
dominant peaks in an HRGC plot of 
fine-particle acid + neutral organics using
retention times compared with those of exter-
nal standards, several important attributes
identify additional chemical properties of the
organic complex mixture. These properties
are the mass distributions of elutable organics
and the acidic and neutral components.

Elutable organics mass distributions. The
fractions of solvent-soluble aerosol organics
identified by HRGC/FID are referred to as
“elutable organics” (Figure 2, columns II, III)
and constitute a subfraction of the PM2.5
EOM. Figure 2 shows the mass relationship
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of EOM for West Los Angeles, California,
which has a total ambient mass of 7.0 µg/m3

(column II). In this example, the organics
mass comprises roughly equivalent masses
corresponding to elutable organics and
nonextractable and/or nonelutable organics.
The nonelutable organics are carbonaceous

substances that cannot be analyzed by the
HRGC/FID procedure because of extremely
high compound polarity and/or too high
molecular weight (e.g., polymeric organic
compounds; cellulose). 

Elutable organics constitute 5–15% of the
fine-particle ambient mass concentrations but

comprise 25–60% of the total mass of aerosol
organics (5,6,10). Organics that are either
solvent insoluble or do not elute from the GC
analytical column used in this analytical pro-
tocol comprise the largest share of aerosol
organics in most cases. With the carbon mass
balance inventory, the elutable organics have
a known and quantitative mass relationship
to the total particle mass and various other
forms of aerosol carbon present in fine-parti-
cle samples, including molecular marker com-
pounds indicative of emission source types.
Table 1 gives a summary of various emission
source studies and the related references that
incorporate CMBs shown in Figure 2. The
reader is referred to these articles for CMBs
corresponding to each of the urban sources of
fine particles. 

HRGC/FID analysis of fine-particle
complex mixtures provides a quantitative
measure of the elutable compounds as a
function of retention time if chromato-
graphic and instrumental  condit ions
remain constant from one injection to the
next. Examples of HRGC retention time
analyses such as these are described in ear-
lier studies of Los Angeles ambient fine
particles (5,57,88–91) and in measure-
ments of urban sources of fine organic
aerosols  (21,86,88) .  HRGC elutable
organic “fingerprints” were constructed for
individual emission sources and for ambi-
ent fine-particle samples in these cited
studies. Figure 5 shows an example of a
mass distribution histogram derived for
HRGC-elutable organics isolated from fine
particles sampled from heavy-duty diesel
truck emissions (57,86).

In this approach, the histogram is con-
structed by summing the mass concentra-
tions of all the organic compounds that elute
between the successive elution points of the
Cn–Cn+1 normal alkanes over the range from
n-C10 to n-C36 (88). The technique employs
HRGC/FID response factors that correspond
to 17 individual n-alkanes ranging from
C10H22 to C36H74. The mass response fac-
tors generated by the n-alkane standard series
are applied to 17 mass intervals, each con-
taining a single n-alkane standard homolog.
By dividing the mass of complex elutable
organics into successive mass intervals (i.e.,
retention volumes) having separate mass
response factors, more accurate measurement
of the mass of total elutable organics is
achieved (57,86,88–90).

Acidic and neutral complex mixture com-
ponents. One other important bulk chemical
characteristic of the elutable organics is the
acidity or relative polarity of the organic com-
ponents that can be studied by HRGC/FID.
Conversion of HRGC/FID area counts to
organic mass concentrations is calculated
using the same procedure as the histogram
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mass distribution plots between adjacent
n-alkanes (10,89). Results of the computed
mass distributions are combined into one plot
for a sample’s HRGC/FID analyses of neutral
and acid + neutral aliquots. The mass of acid
elutable organics for each mass interval is
obtained by subtracting the mass of neutral
elutable organics from the mass of acid + neu-
tral elutable organics. In this HRGC/FID
application, the acidic elutable organics frac-
tion contains those organic compounds
detected by FID only after undergoing a
chemical derivatization step that selectively
targets acidic hydrogen atoms attached to
either aliphatic or aromatic carboxyl groups
or to aromatic hydroxyl groups. The HRGC/
FID analysis of acidic organics provides a
mechanism for selectively evaluating the
ambient mass concentrations and chemical
distribution of the polar organic fraction.

As seen in Figure 6A, B, the two Los
Angeles sites (West Los Angeles and down-
town Los Angeles) exhibit compositional dif-
ferences in terms of the ambient mass
concentrations of complex mixture com-
pounds and the relative proportion of acidic
elutable organic compounds. Motor vehicle
exhaust is the dominant emission source of
fine particles for the downtown Los Angeles
site. The mass of complex organics occurring
between n-C22 and n-C36 (Figure 6B)
exhibits a carbon number distribution charac-
teristic of motor vehicle exhaust and engine
lubricating greases and oils (48,91–93). The
low ratio of acidic to neutral compounds for
each carbon mass interval in Figure 6B shows
relatively lower proportions of oxidized
organic compounds compared with the West
Los Angeles acid and neutral components. A
vast majority of the downtown Los Angeles
fine-particle organic mixture is from fresh
vehicular emissions, whereas the acidic and
neutral fractions from the West Los Angeles
aerosol have other additional sources relative
to motor vehicle emissions and are relatively
more “aged” in terms of residence time
within the urban atmosphere. Increased resi-
dence time allows for photochemical process-
ing of primary organic material, forming aged
and oxidized organic matter (polar organics). 

Identification of fine-particle complex
organic mixtures at a molecular level . Many
individual organic compounds within the
complex mixtures can be identified by
HRGC/MS. For example, over 80 individual
organic compounds were determined in the
complex organic mixtures (elutable organics)
from urban Los Angeles fine particles (West
Los Angeles, 1982) (Figure 4A, B) (5). The
compounds were identified by HRGC/MS
analysis with electron impact ionization and a
quadrupole mass analyzer (Finnigan MAT
4000 series GC/MS with Incos data system;
Thermo Finnigan, San Jose, CA, USA).

Compounds were identified and confirmed by
a sequential process. First, compound identifi-
cation was conducted by comparing the
unknown compound mass fragmentation pat-
tern with the National Institute of Standards
and Technology mass spectral library con-
tained in the Finnigan 4,000 data-handling
application. Second, confirming the identity of
a compound was achieved by comparing the
mass fragmentation patterns and elution times
with those of external standards. Relative ion
counts were converted to compound mass
concentrations using relative response factors
obtained by injection of external standards
containing the compound of interest.
Identifiable compound peaks were quantified

using the HRGC data system for compounds
with mass abundances above 60–80 ng.

Major compound groups in the West Los
Angeles fine-particle samples included n-alka-
nes, n-alkanoic acids, aliphatic dicarboxylic
acids, aromatic polycarboxylic acids, PAHs,
polycyclic aromatic quinones, diterpenoid
acids, and nitrogen-containing compounds.
Identifiable single compounds such as one
n-alkenoic acid and one n-alkanal (aldehyde)
were found also. These are common com-
pound groups found in urban fine particles.
In the West Los Angeles, California, 1982
example, the identified compounds account
for 74–81% of the resolved organic mass
comprising the fine-particle organic complex
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mixture (Figure 2, column III). Normal alka-
noic acids, aliphatic dicarboxylic acids, and
aromatic polycarboxylic acids are the major
constituents of the resolved organic mass,
with annual averages of 250–300, 200–300,
and approximately 100 ng/m3. 

Sources of organic compounds within
fine-particle complex mixtures. The molecular
marker content from fine particles collected
from ambient samples and emission sources
(Table 1) can be used in developing CMB
receptor models. Receptor-oriented models
infer source contributions by determining the
best-fit linear combination of emission source
chemical composition profiles that recon-
struct the measured chemical composition of

ambient fine-particle samples (6,21,51,94).
Once developed, the models provide assess-
ments of the amount of fine-particle mass
contributed by discrete sources to that recep-
tor site (6,7,12,15,20,21,51). 

Table 2 lists the source apportionment of
fine-particle ambient mass concentrations for
West Los Angeles and downtown Los Angeles
(6). The data represent the computed 1982
annual average mass emissions from major
sources of fine particles at the two metropoli-
tan Los Angeles sites. The mass emissions are
reported in terms of a computed CMB and
refer to the fine-particle complex organic mix-
tures for the West Los Angeles, California
(1982) example, whose analytical results are

shown in Figures 2, 4, 5, and 6. The sum of
the computed ambient fine-particle annual
average concentrations is 25.3 ± 1.4 µg/m3 and
is within 3% of the measured annual average
ambient fine-particle mass concentration. 

Numerous manmade emission sources
contribute to the atmospheric concentrations
of fine particles at the West Los Angeles site.
The largest contributor is diesel exhaust, fol-
lowed by paved road dust, wood smoke,
meat-cooking processes, and catalyst- and
non–catalyst-equipped vehicles. Biogenic
emissions from vegetation (waxy coatings
from leaves) contribute seasonal emissions to
fine-particle loadings. Photochemical pro-
cessing of primary emissions from man-made
and biogenic sources was about 6% of the
total organic fraction and 4% of the total
fine-particle ambient mass concentration. 

Referring to downtown Los Angeles
(Figure 6B), the 1982 annual average for sec-
ondary organics was estimated by the CMB
model as 5% of the total organic fraction and
3% of the total fine-particle organic aerosol
mass (Table 2). The CMB for downtown Los
Angeles shows diesel exhaust contributing 50%
of the total organic fine-particle fraction. Paved
road dust and catalyst and noncatalyst vehicle
exhaust contributed 16 and 9%, respectively.
From the CMB sum of total vehicular and
traffic-related emissions (diesel + catalyst and
noncatalyst exhaust + paved road dust), the
downtown Los Angeles site had an annual mass
loading of 76% of the total organic fine parti-
cles and 49% of the total fine-particle annual
average mass concentration. 

The distribution of the complex mixture
organics for downtown Los Angeles (Figure
6B) shows a chemical composition ranging
from C12 to C36 with the most mass con-
tributed by compounds in the C24 to C36
range. This complex mass distribution can be
compared with the organics complex mixture
mass distribution determined for diesel fine-
particle emissions (Figure 5) (56,64). Although
some of the more volatile complex mixture
constituents (C16–C22) from the heavy-duty
trucks are not apparent to the same degree as
the higher molecular weight components, the
downtown Los Angeles complex organic mix-
ture (Figure 6B) contains substantial com-
pounds in the C24–C36, mass interval. Even
though the fine-particle complex mixture may
not be fully characterized in terms of resolvable
organics (Figure 2, column IV), major features
of the mass interval distribution are compara-
ble to those determined for the major emission
sources measured similarly and reported
in Table 1.

Concluding Remarks

The organic chemical composition of airborne
fine particles is complex, and currently less
than two-thirds of its mass can be measured
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and described at a molecular level. Despite
the analytical limitations of current measure-
ment technologies, much can be determined
chemically for organic complex mixtures by
using a CMB approach. Bulk chemical and
molecular properties of the fine-particle
PM2.5 carbonaceous material can be linked
quantitatively to each other using a CMB
framework. This quantitative framework
makes it possible to distinguish among indi-
vidual sources of fine carbonaceous particles
to urban atmospheres using receptor-oriented
models based on best-fit linear combinations
of source profiles. Very good agreement
between computed and measured ambient
concentrations of the source apportionment
profiles have been achieved for fine-particle
complex mixtures in metropolitan Los
Angeles, California. The agreement for two
sites is 3% (West Los Angeles) and 9%
(downtown Los Angeles), for example. 

An effective measurement and modeling
procedure exists for understanding the
sources and chemical composition of organic
complex mixtures associated with ambient
fine particles. However, much additional
research is required that would link the vari-
ous chemical attributes of complex mixtures
to toxicological and epidemiological research
on PM2.5. For example, by using a CMB
framework for fine-particle organic matter, it
is possible to target specific chemical proper-
ties of the complex mixture by targeting
properties described in columns I–IV (Figure
2) or by acidic or neutral properties that can
be identified with additional chemical deriva-
tization and chromatographic analysis (Figure
6A, B). Pursuing the interface between
aerosol complex mixture chemistry and toxi-
cological and epidemiological research on
PM2.5 is the great research challenge for

understanding the most biologically relevant
fine-particle constituents responsible for acute
health end points.
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Table 2. Source apportionment of fine ambient particles for West Los Angeles, California, computed as the
1982 annual average. Data indicate computed ambient concentrations. Data from Schauer et al. (6). 

Computed ambient concentration (average ± SD, µg/m3)
Source West Los Angeles Downtown Los Angeles

Organic components
Diesel exhaust 4.36 ± 0.64 11.6 ± 1.19
Paved road dust 3.00 ± 0.39 3.62 ± 0.46
Wood smoke 2.65 ± 0.41 1.85 ± 0.31
Meat charbroiling and frying 2.03 ± 0.39 1.74 ± 0.34
Catalyst and noncatalyst gasoline-powered 1.44 ± 0.16 2.12 ± 0.23

vehicle exhaust
Organics (other + secondary) 1.03 ± 0.71a 1.16 ± 0.66a

Vegetative detritus 0.38 ± 0.11 0.24 ± 0.12
Tire wear debris 0.22 ± 0.09 0.22 ± 0.09
Cigarette smoke 0.20 ± 0.028 0.26 ± 0.045
Natural gas combustion aerosol 0.034 ± 0.016 0.040 ± 0.019

Total organic components 16.37 22.85
Inorganic components

Sulfate ion (secondary + background) 5.9 ± 0.60 6.6 ± 0.65
Secondary NO3 ion 1.9 ± 0.29 3.0 ± 0.54
Secondary ammonium ion 2.3 ± 0.23 3.0 ± 0.37

Sum (above computed values) 25.3 ± 1.4 35.5 ± 1.9
Measured (ambient concentrations) 24.5 ± 2.0 32.5 ± 2.8
aNot statistically different from zero with > 95% confidence.
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