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Determining and characterizing the nature
of interactions among components of a
combination of c drugs or chemicals is a
problem of current interest (where c is the
number of drugs/chemicals in a mixture).
Although assessments based on single-
drug/chemical exposure enable us to acquire
fundamental knowledge about individual
drugs or chemicals under carefully con-
trolled conditions, they do not reflect real-
world exposures. Thus, it is often of interest
to study the effects of exposure to multiple
drugs/chemicals. Of ultimate interest in
such studies is the determination and
characterization of interactions among the
components in a mixture. For example,
Gennings et al. (1) report on a study of the
nature of the interaction involving the mix-
ture of four metals. The four metals chosen
for the study were arsenic (As), cadmium
(Cd), chromium (Cr), and lead (Pb), which
are among the top contaminants in site fre-
quency count by the Agency for Toxic
Substances and Disease Registry (ATSDR)
Completed Exposure Pathway Site Count
Report (2). In addition, human health risk
assessment associated with exposure to disin-
fection byproducts in drinking water is of
concern because of the widespread exposure
of persons who receive disinfected water.
Other examples of human exposure to com-
binations of agents can be found in the
treatment of numerous diseases including
cancer, AIDS, diabetes, and asthma. These
examples illustrate the importance of study-
ing mixtures/combinations of drugs or
chemicals. Determining departures from addi-
tivity for a combination of drugs or chemicals
is a problem that has been considered by many
authors (3–7).

Classic Methodology for
Detecting and Characterizing
Departures from Additivity

Isobolograms. The classic method for detecting
and characterizing departures from additivity
between combinations of drugs or chemicals
is the isobologram. The isobologram, intro-
duced as a graphical tool by Fraser (8,9), is a
plot of a contour of constant response of the
dose–response surface associated with the
combination superimposed on a plot of the
same contour under the assumption of addi-
tivity. Its use was extended by Loewe and
Muischnek (10), Loewe (11), and Berenbaum
(12), and reviewed by Gessner (13),
Wessinger (14), and Berenbaum (15). For a
two-component mixture, the analysis of an
isobologram compares the observed isobol
(e.g., combination dose/concentration associ-
ated with 50% response [ED50]) to the line
of additivity. The line of additivity is formed
by joining the ED50 associated with each of
the individual components calculated from
the dose–response data for the individual
components. Figure 1 presents illustrations
of possible isobolograms for a combination
of two drugs/chemicals. As indicated, if the
isobol is below the line of additivity, a syner-
gism is claimed. On the other hand, if the
isobol is above the line of additivity, an
antagonism is claimed. However, there are
shortcomings associated with the use of
isobolograms. For instance, the method used
in the construction of an isobologram typi-
cally does not take data variability into
account. Additionally, because it is a graphi-
cal method, isobolograms effectively are lim-
ited to the study of combinations of two or
three drugs or chemicals.

Interaction index. The interaction index,
introduced by Berenbaum (12), provides a
convenient method to determine and
characterize departures from additivity for a
combination of c > 2 or 3 components. The
interaction index, II, is defined by

[1]

where c is the number of components, X1,
X2,…,Xc are the doses in combination
associated with a desired effect, and ED100µ
(CHEMi), i = 1,…,c is the dose of the ith com-
ponent that, when administered alone, pro-
duces the same effect. When the interaction
index, defined in Equation 1, is equal to 1, the
c components interact additively. When II is
greater than 1, the components interact antag-
onistically; when II is less than 1, the compo-
nents interact synergistically. Again, it should
be noted that the individual component
dose–response information is required to cal-
culate the interaction index. As described by
Berenbaum (12), the interaction index is
directly related to the isobologram, i.e., when
II = 1, the isobol is coincident with the line of
additivity; when II > 1, the isobol bows above
the line of additivity; and when II < 1, the
isobol bows below the line of additivity. An
advantage of using the interaction index over
the isobologram is that the interaction index is
not limited to combinations/mixtures of just
two or three components. However, as devel-
oped by Berenbaum (12), the biological
variability associated with the data is not taken
into account by the interaction index.

Statistical models. Statisticians frequently
use models of the form
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Experimental design is important when studying mixtures/combinations of chemicals. The
traditional approach for studying mixtures/combinations of multiple chemicals involves
response surface methodology, often supported by factorial designs. Although such an approach
permits the investigation of both the effects of individual chemicals and their interactions, the
number of design points needed to study the chemical mixtures becomes prohibitive when the
number of compounds increases. Fixed ratio ray designs have been developed to reduce the
amount of experimental effort when interest can be restricted to a specific ray. We focus on the
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fixed ratio rays of the compounds. To obtain the inference regarding the interactions among the
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to approximate the relationship between a
response of interest, Y, and concentrations of
c chemicals (x1,x2,…,xc).

Carter et al. (4) showed that a relationship
exists between the interaction index proposed
by Berenbaum (12) and the parameter in a sta-
tistical model associated with the interaction of
the components of the combination. Without
loss of generality, consider that the combina-
tion/mixture of interest involves two chemicals
and that the response is continuous. Therefore,
following the logic of Carter et al. (4), for the
linear models case, the relationship between
the response and the doses or concentrations of
the components in combination can be
expressed as

[2]

where
µ is the mean response, E(Y),
β0 is the unknown intercept,
β1 is the unknown slope parameter associ-

ated with the first component,
β2 is the unknown slope parameter associ-

ated with the second component,
β12 is the unknown parameter associated

with the interaction of the two components,
and

x1 and x2 are the doses of the respective
chemicals.

From the model defined in Equation 2,
the ED100µ (CHEMi) for the respective
components can be derived to be

Thus, after algebraic manipulation, the model
defined in Equation 2 becomes

or

Therefore, it follows that when β12 = 0, the
combination of components 1 and 2 is
additive, i.e., the isobologram is coincident
with the line of additivity and the interaction

index equals 1. Similarly, when β12 > 0, the
combination of components 1 and 2 is syner-
gistic, i.e., the isobologram bows below the
line of additivity and the interaction index is
< 1; and when β12 < 0, an antagonism is pre-
sent, i.e., the isobologram bows above the line
of additivity and the interaction index is > 1.
This demonstrates the algebraic equivalence
between the statistical model and the interac-
tion index. Gennings et al (16) demonstrated
the experimental convergence of the statistical
modeling approach and the interaction index.
The number of components that can be con-
sidered in the statistical model can be general-
ized to c, and data variability is appropriately
accounted for in the resulting inference.

The various methods used to determine
and classify departures from additivity
described above use both single-compound
data as well as combination data. Consider
the situation in which the single-compound
dose–response data are not available. The
approach discussed in the following sections
of this article allows one to test the null
hypothesis of additivity using only combina-
tion/mixture data collected along a fixed ratio
ray. Thus, single-compound dose–response
data are not needed.

New Methodology

Problems with statistical modeling are associ-
ated with the size of the experiment required
to generate data to support the model.
Factorial experiments, e.g., 2c or 3c, are often
considered. When c is large such experiments
may not be feasible, so in a sense, this
approach is limited to combinations of rela-
tively few drugs or chemicals. An alternative
to the traditional factorial design for studying
interactions, and the design to be considered
here, is the ray design. Ray designs, described
by Martin (17), Mantel (18), Finney (19),
Bruden and Vidmar (20), and others, are
used to study mixtures of c drugs or chemicals

at a fixed mixing ratio, [a1:a2:…:ac], where ∑
i = 1

c

with the total dose, t, varying. The fraction of
the total dose represented by the ith drug or
chemical is ai, and the amount of the ith drug
or chemical in the mixture is a it. This
approach is appealing because the dimension-
ality of the study is reduced along each ray,
i.e., each ray can be considered as an individ-
ual drug or chemical, with only the total dose
varying. For example, in a study involving c
drugs or chemicals, the fitted model based on
a response surface approach is a (c + 1)-
dimensional surface. In contrast, the fitted
model based on a ray design defines a set of
two-dimensional dose–response curves.

What can be stated about departures from
additivity in the mixture? Meadows (21)
showed that when mixture data are collected
along a fixed ratio ray, the additivity model

reduces to a simple linear regression model. In
addition, the interaction model reduces to a
higher-order polynomial model. Thus, the test
for additivity is equivalent to the test of the
adequacy of the simple linear regression model.
Consider that the combination/mixture of
interest involves c drugs or chemicals and that
the response of interest is continuous. The
underlying additivity model, i.e., the model
with no cross-product terms is defined by

Y = β0 + β1x1 + … + βcxc , [3]

where
Y is the observed response,
xi is the dose of the ith drug or chemical,
β0 is an unknown parameter associated

with the intercept, and
βi is an unknown parameter associated

with the slope of the ith drug or chemical.
When the mixing ratios are invoked, the

dose of the ith drug or chemical is xi = ait,
where ai is the mixture fraction for the ith
drug or chemical and t is the total dose. As a
result, the additivity model becomes

[4]

where

For convenience, we assume the experimental
region along the fixed ratio ray in terms of total
dose is transformed to the region –1 ≤ t ≤ 1.
Thus, under additivity, the dose–response rela-
tionship along the ray can be described with a
simple linear regression on total dose.

It also follows that when the slope of the
regression line for total dose is β1a1 + β2a2 +
… + βcac , the interaction index, defined in
Equation 1 equals 1. This would suggest that
single-component dose–response data would
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Figure 1. I l lustrations of isobolograms for a
combination of two drugs/chemicals. The dashed
line is the line of additivity. When the isobol bows
below the l ine of addit ivity,  a synergism is
claimed; when the isobol bows above the line of
additivity, an antagonism is demonstrated.
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be required. In the absence of single-chemical
data, the slope βi for each drug/chemical
alone is unknown, so that the hypothesis

H0:β1
* = ∑

i = 1

c
βiai cannot be directly tested.

However, consider the following model:

Notice that this model is the model that
would be supported by a factorial experiment,
and the βij,βijk,…β12…c terms are coefficients
associated with the various two-factor, three-
factor, and higher-order interactions. The ray
design will not support this model; however,
invoking the mixing ratio associated with the
ray design results in

[5]

It follows that interactions among pairs of
chemical components are associated with sec-
ond-degree terms, interactions among three
chemicals are associated with third degree
terms, and so on.

Of ultimate interest is the determination
of departure from additivity among a particu-
lar combination/mixture of drugs or chemi-
cals. When comparing the model under
additivity to the interaction model, defined in
Equations 4 and 5, respectively, evidence of
curvature indicates departure from additivity,
i.e., there is interaction among the com-
pounds if at least one β*

i ≠ 0, i = 1,…,c.
Thus, any polynomial lack of fit associated
with the additive model Y = β0 + β1

*t would
be associated with a lack of additivity.
Meadows (21) showed that the test statistic
for the null hypothesis of additivity,

is given by

[6]

Experimental Design
Experimental design implications for studying
a c component mixture include the following:
• Place a minimum of c + 1 points on the ray

of interest to maximize the power of the test
for lack of fit of the additivity model, i.e.,
Y = β0 + β1

* t .
• Replicate the experiment at these points to

make the lack of fit test possible.
When the response variable is continuous

and the method of least squares has been used
to estimate the model parameters, Meadows
(21) showed that we can incorporate the sta-
tistical results of Jones and Mitchell (22) to
determine values of total dose that maximize
the design’s ability to detect lack of fit or
departure from additivity.

The overall lack of fit answers the question
of whether there is a departure from additiv-
ity. Rejection of his hypothesis that simultane-
ously tests that the interaction parameters are
equal to zero, i.e., H0: β2 = β3 =…= βc = 0,
implies that interaction is present among the
chemicals globally. Thus, if the overall test for
additivity is rejected, tests of the form

using Hochberg’s (23) correction for multiple
testing, can be used to answer the question of
whether a j-factor interaction exists. If such
an interaction is detected, recall that

Here, interest will be focused on which of the
j-factor interactions are present. This can be
determined by performing �cj � additional ray
experiments at the same ratio as were present
on the original ray.

Illustration

The methodology introduced in this article is
illustrated with cytotoxicity data obtained from
assessing interactions among As, Cd, Cr, and

Pb in human keratinocytes. The experimental
data were obtained from R. Yang and col-
leagues at Colorado State University (Fort
Collins, Colorado). The end point of interest
is the percent viability of treated NHEK (nor-
mal human epidermal keratinocytes) cells
using the MTT (3-[4,5-dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide) assay. The
mixture point of interest for As, Cr, Cd, and
Pb contained the estimated dose/concentra-
tions associated with 50% lethality (LD50s) of
7.7 µM, 4.9 µM, 6.1 µM, and 100 µM,
respectively. This 1X solution was serially
diluted at a 1:3 ratio to get 0.333, 0.111,
0.037, 0.0123, 0.004, and 0.0014 dilution
groups. Double deionized water was used as
the vehicle control in all cases.

After exposure to individual metals or
metal exposure, cells were re-fed with fresh
metal-free KGM medium and incubated for
3 days prior to viability analysis by the MTT
assay. Details of the experimental protocol
and methods are described elsewhere (1,24)
and are not included here. The summary sta-
tistics for the LD50 mixture data presented in
Table 1 are linearized cytotoxicity response
data from Gennings et al. (1).

The nonlinear additivity model selected
for fitting the single-compound data by
Gennings et al. (1) was based on a Gompertz
function where the mean viability was
modeled as

From this model, α is the parameter associated
with the minimum mean response, and γ is the
range of mean response values. Therefore, for
this example, it is reasonable to assume that a
transformation on the response, conditioning
on the values of α = 8.76 and γ = 109 obtained
by Gennings et al. (1), will induce linearity in
the additivity model. As a result, the additivity
model becomes
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Table 1. Summary statistics for the LD50 mixture data based on linearized cytotoxicity response data from
Gennings et al.a—NHEK cells.

Mixture dilution Total doseb (µM) Sample mean Sample variance Sample size

0 0 1.81 0.23 9
0.0014 0.2 2.24 0.20 6c

0.004 0.5 1.65 0.55 9
0.0123 1.5 1.58 1.07 8c

0.037 4.4 0.77 0.11 9
0.111 13.2 0.40 0.01 9
0.333 39.6 0.02 0.18 9
1 118.7 –0.55 0.27 9
aData from Gennings et al. (1). bLD50 mixing ratio (7.7 µM, 4.9 µM, 6.1 µM, and 100 µM) for As, Cr, Cd, and Pb, respectively.
cOverall, four data values are missing because of transformation on the response.



As shown in “New Methodology,” because the
mixture data were collected along a fixed ratio
ray, the additivity model can be rewritten as

[7]

Additionally, the interaction model along
the same fixed ratio ray becomes

[8]

Therefore, conditioning on the values of
α = 8.76 and γ = 109, the transformation

on the observed responses for the mixture data
was performed. The additivity model given in
Equation 7 and the interaction model given in
Equation 8 were fit to the mixture data using
the method of least squares. The GLM (gen-
eral linear model) procedure of SAS (25) was
used to estimate the unknown parameters in
Equations 7 and 8. Parameter estimates and
their p values are provided in Table 2. Figure 2
presents the fitted concentration effect curve
under additivity for total concentrations of the
four metals along the ray associated with the
LD50 mixing ratio. Asterisks (*) indicate the
observed transformed responses at the seven
dilution points. From this figure, there is some
question as to whether the data fall along the
line of additivity. In comparison, Figure 3 pre-
sents the observed mixture data and the fitted
interaction (higher-order polynomial) model.
Dots (•) indicate the design locations of the
total dose values selected by the Λ1-optimal

design, which are presented by total doses of 0,
16, 59.4, 102.7, and 118.7 µM. Notice that
the values selected as the Λ1-optimal design are
symmetrically spread throughout the total dose
region, whereas the majority of the points used
in the current study are directed toward the
lower total dose region. An enlarged version of
the lower total dose region of the plot of the
fitted interaction model is presented in Figure
4. The test statistic for the null hypothesis of
additivity,

is given by

Table 3 presents the overall test for departure
from additivity given in Equation 6. Based on
this test, we reject the null hypothesis of addi-
tivity (p value < 0.001) and conclude that at
least one of the j-factor interactions exists,
j = 2,…4. Because the overall test for additivity
is rejected, it is of interest to determine
whether two-, three-, or four-factor interac-
tions are present. Therefore, we want to test
the following hypotheses using Hochberg’s
correction (23) for multiple testing:
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Table 2. Estimated model parameters for the additivity model given in Equation 7 and the interaction model
given in Equation 8.

Parameter Estimate SE p-Value

Additivity model
β0 1.36 0.12 < 0.001
β1* (t) –0.02 2.34 × 10–3 < 0.001

SSRES = 38.04, dfRES = 66
Interaction model
β0 1.96 0.12 < 0.001
β1 (t) –0.36 0.09 < 0.001
β2 (t2) 0.03 0.01 0.010
β3 (t3) –0.0006 2.44 × 10–4 0.024
β4 (t4) 0.00000319 1.43 × 10–6 0.030

SSRES = 20.49, dfRES = 63

Abbreviations: dfRES, degrees of freedom associated with SSRES; SSRES, residual sum of squares.
Figure 2. Observed responses and fitted curve
under the additivity model for the fit of the mixture
data using the NHEK cells.
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Figure 3. Observed and predicted responses for the
higher-order polynomial model for the fit of the
mixture data using the NHEK cells. Dots (•) indicate
the design locations of the total dose values
selected by the Λ1-optimal design.
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Figure 4. Observed and predicted responses for the
higher-order polynomial model for the fit of the
mixture data using the NHEK cells (enlarged).
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Table 3. Test results for testing the hypothesis of
additivity, as well as the hypotheses that the j-factor
interactions do not exist, j = 2,…,4.

Hypothesis F p- Value

Overall test for additivity
H0: β2 = β3 = β4 = 0 17.99 (3, 63) < 0.001

Individual tests
H0A: β2 = 0 23.95 (1, 65) < 0.001**

H0B: β3 = 0 16.54 (1, 64) < 0.001**

H0C: β4 = 0 4.92 (1, 63) 0.0302*

*Using Hochberg’s correction (23) for multiple comparisons,
these tests are associated with a significant j-factor inter-
action using an overall 5% test. **Significant with an overall
significance level of 1%.



Table 3 also presents the single-parameter
tests associated with each of the j-factor inter-
actions, j = 2,…4. Using Hochberg’s (23) cor-
rection for multiple comparisons, all three
parameters are significantly different from zero
when the overall significance level is set at 5%.
However, if we consider the case where an
overall significance level of 1% is used, only
the two smallest p values are significant using
Hochberg’s correction (23). Therefore, we
conclude that a three-factor interaction exists,
implying that the two-factor interactions are
not constant. Now it is of interest to determine
which three metals are interacting with one
another. This can be accomplished by per-
forming �43 � = 4 additional experiments at the
same ratios of metals that were used in the
original ray. Table 4 gives the ratios of com-
pounds along with the corresponding total
dose to be used for the four additional experi-
ments. This approach limits the inferences of
the original experiment, as well as the four
additional experiments, to be made about the
particular mixing ratio used in the experiment.

Conclusion

It was shown that the classic methodology used
in evaluating an interaction requires single-
drug/chemical data. In “New Methodology”
it was shown that the evaluation of interac-
tions could be accomplished with a ray design
that did not generate single-drug and single-
chemical data. When a ray design is used,

departure from additivity is associated with
higher-order polynomial terms in a linear
model. Additivity, or absence of interaction, is
described by a simple linear model in terms of
total dose. As a result, we have shown that we
can obtain information about departures from
additivity from data collected along a fixed
ratio ray. This result is important in that it
permits a reduction in the total experimental
effort for studying a combination when com-
pared with that associated with a traditional
factorial design. Additionally, by incorporat-
ing the approach taken by Jones and Mitchell
(22), we have presented methodology for
determining optimal levels along the fixed
ratio ray (total dose) to be considered in the
experiment for detecting model inadequacy.
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Table 4. Ratios (%) of compounds to be used for the four additional experiments, which are based on the
LD50 mixing ratio (7.7 µM, 4.9 µM, 6.1 µM, and 100 µM).

As Cr Cd Pb Total dose

Four-factor combination
Original experiment 6.5 4.1 5.1 84.3 118.7 µM

Three-factor combination
Experiment #1 41.2 26.2 32.6 — 18.7 µM
Experiment #2 6.8 4.4 — 88.8 112.6 µM
Experiment #3 6.8 — 5.3 87.9 113.8 µM
Experiment #4 — 4.4 5.5 90.1 111.0 µM

—, indicates the metal is not used in the mixture experiment.


