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One question frequently asked in the area of
toxicology of chemical mixtures is, “How
does one deal with a complex chemical mix-
ture?” Here, when we discuss complex chemi-
cal mixtures, we are referring to something
such as the smoke from the burning oil fields
in Kuwait during the Persian Gulf War. That
smoke not only contains hundreds or even
thousands of chemicals but also has the char-
acteristics of changing composition with time.
When we say “deal with,” we are referring to a
systematic way of deducing the composition
of the complex chemical mixture as well as the
effect(s) from exposure to such a complex
chemical mixture. In other words, we are
implying some sort of predictive capability.
For many years even the eternal optimists
have not been able to provide a reasonable
answer to this question, though we believe
intuitively that there might be a solution to
this complex problem.

Soon after the last mixture conference at
Colorado State University (1), we felt, for the
first time since our involvement with chemical
mixture research, that there is hope in dealing
with complex chemical mixtures. The
approach we are advocating is integrated com-
puter modeling of complex biologic processes.
In this article we begin the discussion with

some background information, present some
recent successes in computer modeling of rel-
atively simple chemical mixtures (i.e., fewer
than five chemicals), and then conclude the
discussion by introducing reaction network
modeling and its integration into physiologi-
cally based pharmacokinetic/pharmacody-
namic (PBPK/PD) modeling.

Experimental and
Computational Approaches

Chemical Mixtures and Multiple
Stressors
Just as we cannot ignore the scientific issues
on chemical mixtures because they are com-
plex, we should not be looking at chemicals
alone when we are interested in the global
issue of public health. The Gulf War syn-
drome taught us to look beyond the chemi-
cals into the area of multiple stressors (2,3).
Thus, the smoke in the burning oil field is
but one piece of the puzzle in the overall
assessment of Gulf War syndrome (2,3).

A more detailed discussion on multiple
stressors was given elsewhere (3). Briefly,
any chemical, physical, or biologic insult on
the body is a form of stress; therefore, mul-
tiple stressors include chemicals, drugs, and

physical and biologic agents. However, in
the context of the Gulf War syndrome,
multiple stressors may also include environ-
mental hardship (e.g., extreme heat, poor
resting conditions, poor food or water
intake, heavy and nonbreathable equipment
and clothing, insect or other pests), occupa-
tional hazard (e.g., dangerous tasks; injuries
from work; exposure to fuels, burning oil
fields, possible nerve gases, radioactive
residues), and psychologic stress (e.g., threat
of death and injuries, fear of exposure to
chemical and biologic warfare agents, being
away from home, poor living conditions).

If chemical mixtures are already sufficiently
complicated, would not the addition of multi-
ple stressors render the situation impossible?
Indeed it might. However, our thinking is that
although the number of combinations of
chemicals or stressors is infinite, the number of
biologic processes is finite. Therefore, in con-
sidering an integrated computer modeling
approach, we must work on the finite biologic
processes rather than the infinite combinations
of chemicals and stressors.

Simple Chemical Mixtures: Interaction
Thresholds
We first demonstrate one utility of PBPK
modeling by estimating the threshold point
for toxicologic interactions in the low occupa-
tional exposure region. Co-exposure to multi-
ple chemicals may significantly affect the
pharmacokinetics of one or more mixture
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components and alter the target tissue dose of
the toxic moiety. In 1996 we introduced the
idea of interaction thresholds as the minimal
level of change in tissue dosimetry associated
with a significant health effect (4). When two
or more interactive chemicals are studied
together, theoretically there could be infinite
interaction thresholds. This is because, in the
case of a binary or higher-order chemical mix-
tures, if we vary the concentrations of two or
more chemicals, we would get, theoretically,
an infinite number of interaction thresholds.
However, if we specify certain occupational or
environmental exposure concentrations for all
the other chemicals in the mixture except one,
we may obtain an interaction threshold for
that set of exposure conditions. This is impor-
tant because human risk from exposure to
multiple chemicals may not always obey the
rule of additivity. In a 2001 publication from
our laboratory (5), Dobrev et al. estimated the
interaction thresholds of three common
volatile organic solvents, trichloroethylene
(TCE), tetrachloroethylene (perchloroethyl-
ene, PERC), and 1,1,1-trichloroethane
(methyl chloroform, MC), under different
dosing conditions. Briefly, an interactive
PBPK model was built where PERC and MC
are competitive inhibitors for TCE. The
model was developed and validated by gas
uptake pharmacokinetic studies in Fischer
344 (F344) (Harlan Sprague Dawley,
Indianapolis, IN, USA) rats at relatively high
doses of single chemicals, binary mixtures,
and the ternary mixture. Using computer
simulation to extrapolate from high to low
concentrations, we investigated the toxico-
logic interactions at occupational exposure
levels, specifically at around threshold limit
value/time-weighted average (TLV/TWA).
Because long-term toxicity and carcinogenic-
ity of these three solvents are clearly associ-
ated with their metabolism, and TCE is the
most extensively metabolized among them,
we focused our study on changes in internal
TCE dose measures related to the mixture co-
exposure. Using a 10% elevation in parent
compound blood level as a criterion for sig-
nificant interaction, we estimated interaction
thresholds with two of the three chemicals
remaining at constant concentrations. Thus,
we fixed the TCE and PERC exposure con-
centrations in the gas uptake pharmacokinetic
studies to 50 and 25 ppm, respectively, their
TLVs/TWAs, and estimated the interaction
threshold by varying the exposure concentra-
tion of MC to 0, 100, 130, 175, 250, or 350
ppm (350 ppm is the TLV for MC). This lat-
ter work is based on computer simulations
using the interactive PBPK model; thus, it is
experimentation in silico. Dobrev et al. (5)
reported that under the above exposure con-
ditions (i.e., TCE and PERC at their TLVs),
the interaction threshold for the ternary

mixture is 50, 130, and 25 ppm for TCE,
MC, and PERC, respectively. If one wishes to
use a higher criterion than 10% elevation in
blood level for interaction threshold, Dobrev
et al. (5) provide possible interaction thresh-
olds for 17% (50, 250, 25 ppm for TCE,
MC, PERC) and 22% (50, 350, 25 ppm for
TCE, MC, PERC) elevations in blood level
of TCE. This work has recently been
extended, in silico, to human exposure to this
three-chemical mixture and the estimation of
interaction thresholds for humans (6).

Simple Chemical Mixtures: 
Mixture Formula
In the derivation of an occupational exposure
limit (OEL) of chemical mixture exposure,
the general approach is to first determine if
those chemicals in the mixture cause similar
toxic responses and then to implement the
“mixture formula” (Equation 1) to assess if
the exposure might be problematic.

[1]

The mixture formula, also referred to as the
“unity calculation” (denoted Em), calculates
the ratio of worker exposure to OEL for each
chemical in the mixture. If the sum of these
ratios exceeds unity (1.0), an overexposure is
suggested. The potential problems with this
approach are that it assumes additivity, and
pharmacokinetics and pharmacodynamics are
not taken into consideration. To illustrate
these points, Dennison et al. (7,8) first modi-
fied the Em by incorporating PBPK modeling
and came up with a new pharmacokinetically
based Em, the Em

PK, shown in Equation 2:

[2]

where Ci is the concentration of the chemical
in the target tissue (obtained through PBPK
modeling) either during an exposure to mix-
tures or to the OEL for the single chemical.
As with the Em formula, the Em

PK is a sum-
mation of ratios of the doses for the chemical
in a mixture to those of the single chemicals.
Using an established PBPK model for alkyl-
substituted benzenes published by Tardiff 

et al. (9), Dennison et al. (7,8) took into con-
sideration both pharmacokinetics and the
interactive enzyme inhibition among the
component chemicals in the mixture.
Dennison et al. (7,8) then gave a few case stud-
ies, one of which is reproduced in Table 1, to
illustrate the differences between the conven-
tional Em approach versus the Em

PK approach.
As shown in Table 1, Dennison et al.

(7,8) provided five hypothetical chemical
mixtures by varying the concentrations of the
three component chemicals, toluene, ethyl-
benzene, and xylenes. The four columns of
data on the left are for the Em approach and
the four columns of data on the right are
derived from the Em

PK approach. Mixtures
2–5 are all at allowable exposure concentra-
tions under the present Em approach because
the Em values derived are all under unity.
However, when we take pharmacokinetics
(tissue dosimetry from PBPK modeling) and
pharmacodynamics (critical effects) into con-
sideration, we see an immediate problem,
which is explained below.

Critical effects for toluene and ethylben-
zene, which are used to set the OELs, include
depression of the central nervous system.
Because it is not clear if xylene also causes
such a critical effect, under the Em approach,
xylene is not considered in the derivation of
Em. This results in the Em values being less
than unity in mixtures 2–5. However, as
xylene interferes with the metabolism of
toluene and benzene thereby increasing their
tissue dosimetry, the Em

PK derived in mixtures
2–5 went over unity by about 1.2- to 3-fold
(Table 1). Thus, under the Em

PK approach,
these mixtures would have been unallowable.
This exercise demonstrates some inadequacies
in current risk assessment methodology for
chemical mixtures.

A Ray of Hope for Complex Chemical
Mixtures: Reaction Network Modeling
Reaction network modeling and its application
to petroleum engineering. Reaction network
modeling has been used very successfully in the
area of petroleum and chemical engineering
for very complex chemical processes involving
hundreds and even thousands of chemicals. It
had never been applied to biology until the
interdisciplinary collaborative effort between
Colorado State University and Rutgers
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Table 1. Comparison between the Em and our new approach of Em
PK: a case study on OEL of chemical 

mixture exposure.
Exposure dosimetry (Em) Tissue dosimetry (Em

PK)
Toluene Ethylbenzene Xylene Em Toluene Ethylbenzene Xylene Em

PK

Single chemical 50 100 100 — 0.62 2.29 1.74 —
Mixture 1 50 100 100 2.0 1.25 3.42 3.29 5.40
Mixture 2 10 79 9 0.99 0.19 1.82 0.18 1.21
Mixture 3 10 79 99 0.99 0.23 2.34 2.84 3.02
Mixture 4 40 19 9 0.99 0.59 0.39 0.15 1.21
Mixture 5 40 19 99 0.99 0.78 0.52 2.55 2.95
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University. To appreciate the potential of this
modeling approach, it is helpful to understand
its historical development.

Reaction network modeling in the fields
of chemical and petroleum engineering has
progressed greatly over the past 25 years,
including developments in the areas of group
contribution methods (10), graph theory
(11,12), Monte Carlo techniques (13–15),
and quantum chemistry (16,17).

Intense activity in molecular reaction
engineering has generated several approaches
to the creation of molecular reaction models
by computer (18–23). The essential idea is to
input some representation of reactant struc-
ture and chemical reaction. Algorithms and
grammar for representing and determining
species connectivity, uniqueness, and rela-
tionships (the reaction network) create an
output that is, in some form, the controlling
kinetic equation (governing ordinary differen-
tial equations) for the reaction model.

Developing a fundamental kinetic scheme
requires modeling of the chemistry at the
mechanistic level. This, in turn, leads to a
large number of species, reactions in the gov-
erning network, and associated rate constants.
Therefore, although a mechanistic model
incorporating detailed molecular representa-
tions and fundamental kinetic data is needed,
the inherent complexity and size of such a
model is a deterrent to its development. This
motivates a simplification of the system
through the organization of species into
related families of compounds and the
automation of not only the solution but also
the construction of the model.

In an attempt to describe hydrocarbon
mixture properties, early models relied on the
techniques of lumping (24), where a relatively
small number of lumps were used to describe
the mixture. In these coarsely lumped kinetic
models, thousands of individual constituents
in a complex feedstock were grouped into
broad but measurable categories of com-
pound classes or boiling range, with simpli-
fied reaction networks between the lumps.

More recently, Quann and Jaffe (23)
developed a more fine-grained lumping
approach they named structure-oriented
lumping (SOL). SOL was developed in
response to the need for incorporating mole-
cular detail in petroleum chemistry to predict
product compositions and properties. It is a
group contribution method describing the
structure of molecules, facilitating both mol-
ecular property estimation and a description
of process chemistry. It was also designed to
be consistent with current limitations of ana-
lytic capability to determine molecular detail.
The concept central to the SOL approach is
that any molecule can be described and rep-
resented by a set of certain structural features
or groups. The SOL method organizes this

set as a vector, with the elements of the vec-
tor representing the number of specific struc-
tural features sufficient to construct any
molecule. Different molecules with the same
set of structural groups, i.e., certain isomers,
are lumped and represented by the same vec-
tor. The structure vector provides a frame-
work to enable rule-based generation of
reaction networks and rate equations involv-
ing thousands of components and many
thousands of reactions.

An even finer-grain methodology was
developed by Broadbelt and co-workers
(16,25,26), who used concepts of graph the-
ory to represent species connectivity. They
also made use of computational quantum
chemistry (CQC) and linear free-energy rela-
tionships (LFERs) (27) to automate the
process of determining reaction rate constants.
CQC was applied to determine the optimal
conformation and molecular properties, such
as the electron affinity, electron density, bond
order, and heat of formation, associated with
each of reactant and product structures
(17,28). LFERs were then used to give a cor-
relation of the rate or equilibrium constants
with a property of a molecule or intermediate
for a family of reactions. Thus, the CQC cal-
culations ultimately provided an estimate of
rate or equilibrium coefficients for reactants
that had not been studied experimentally.

This general framework, which Klein (29)
refers to as the kinetic modeler’s toolbox
(KMT), allows for the convenient construc-
tion and solution of even highly complex
chemical reaction networks. Using this
approach, various investigators have been able
to encode complex hydrocarbon mixtures and
create rule sets for a wide variety of reactions
within the mixture. Results from model sim-
ulations (2,30) have shown good agreement
with experimental observations in tracking
the evolution of thousands of molecular com-
ponents, then predicting mixture properties
such as normal boiling points, specific grav-
ity, and narrow boiling-cut yields. Joshi and
co-workers (22) made use of the KMT for the
analysis of gas oil catalytic cracking and were
able to derive optimized parameter values
(activation energies and frequency factors)
and lumped fractions that were in good
agreement with experimental results reported
in the literature. Along similar lines, Mizan
and Klein (31) found good agreement in
terms of product yields and yield profiles
between simulation results and experimental
data in the reaction network modeling of 
n-hexadecane hydroisomerization.

Reaction network modeling is a tool for
predicting the amounts of reactants, interme-
diates, and products as a function of time for a
series of coupled chemical reactions (poten-
tially numbering in the tens of thousands of
reactions for some systems). It is usually a

mathematic and symbolic formulation suit-
able for solution on the computer. A reaction
network model builder is a tool for the com-
puter generation of a reaction network model.
The model builder thus can be used not only
to solve the kinetic equations of interest but
also to generate the reaction mechanisms, rate
constants, and reaction equations themselves.

Essentially, the model builder works as
follows:
• The concentrations of the species to be

reacted or metabolized are input to the
model builder.

• For each species in turn, the model builder
performs a test against each of a set of reac-
tion rules to determine whether the species is
susceptible to a particular chemical reaction.

• If it is not susceptible to any reactions, no
further action is taken on this species.

• If it is susceptible, a transformation of the
species into one or more product species is
performed based on the particular chemical
reaction.

• Each of these product species then under-
goes the same susceptibility tests and a simi-
lar transformation sequence. This leads to a
linking of all reactants with intermediate
and ultimately with final products. This
linking forms the structure of the chemical
reaction network.

• After the reaction network is established, the
rate constants for the reactions are retrieved
or computed.

• The coupled differential equations govern-
ing the reaction kinetics for the network are
then formulated by the model builder.

Finally, the kinetic equations, i.e., the
model equations, are solved numerically,
leading to the concentrations of all species as
a function of time. For those interested in a
more specific, detailed description of reaction
network modeling, the article by Klein et al.
in this monograph (32) should be consulted.

Reaction network modeling and its appli-
cation to biomedical research. It is important
to note that metabolism and toxic mecha-
nisms of chemicals and chemical mixtures
often involve complex reactions in which
the species associated with one reaction are
constituents of  many other reactions.
Interactions among chemicals are common,
and this interplay among reaction pathways
is the primary reason for toxicologic inter-
action. This interdependent, coupled set of
biochemical reactions can be regarded as a
reaction network and can occur for even
relatively simple systems.

In the collaborative research effort
between our laboratory (the Quantitative and
Computational Toxicology Group) and
Klein’s group at Rutgers University, we
intend to apply reaction network modeling to
the metabolic pathways of complex mixtures
in biologic systems. The approach and the
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modeling software being developed is
“BioMOL,” where “bio” represents biologic
and “MOL” is the acronym for molecule-ori-
ented lumping. The framework of KMT has
served as the starting point to build BioMOL.

Our first application is reaction network
modeling of benzo[a]pyrene (B[a]P). The
metabolic pathway of B[a]P in a biologic sys-
tem is used to build the first model by
BioMOL. We use B[a]P because a) B[a]P is a
human carcinogen; b) its metabolic pathway is
extremely complex but extensively studied; and
c) the reactions B[a]P undergoes, e.g., epoxida-
tion and hydrolysis, are also common for other
xenobiotics, especially polycyclic aromatic
hydrocarbons. B[a]P is metabolically activated
to its ultimate carcinogen, B[a]P-7,8-dihydro-
diol-9,10-epoxide, via a series of reactions cat-
alyzed by cytochrome P450 and epoxide
hydrolase (Figure 1) (33–35). In addition to
the formation of B[a]P-7,8-dihydrodiol-9,10-
epoxide, B[a]P metabolism constitutes a com-
plex reaction network in biologic systems.
Briefly, B[a]P is first oxidized at several aro-
matic bonds to form arene oxides via reactions
catalyzed by cytochrome P450. Once arene
oxides are formed, they can undergo the fol-
lowing three reactions: a) rearrangement to
phenols spontaneously through an NIH shift
(36); b) hydrolysis catalyzed by epoxide hydro-
lase to form trans-dihydrodiols; and c) conju-
gation with glutathione, followed by excretion.
Dihydrodiols might again form the corre-
sponding epoxides in a reaction catalyzed by
cytochrome P450 or undergo sulfation and
glucuronidation. Bay-region dihydrodiol epox-
ides, e.g., B[a]P-7,8-dihydrodiol-9,10-epoxide,
are unusually reactive to biologic macromole-
cules. The reactivity of these compounds is
related to their resistance to enzymatic detoxifi-
cation (37). The non–bay-region dihydrodiol
epoxides may hydrolyze spontaneously to
tetraols or conjugate with glutathione (33).
The phenols may, in turn, be oxidized to
quinones or undergo conjugation (34). On the
other hand, a one-electron oxidation pathway
may be responsible for the formation of 6-
hydroxy-B[a]P and subsequent metabolites
1,6-, 3,6-, and 6,12-quinones (38).

Generation of B[a]P reaction networks.
To generate the reaction network at molecule
level, we use graph theory to convert chemical
structures and reaction rules into computer
code. The atomic connectivity of the molecule
is represented by the bond–electron matrix. In
bond–electron matrices, the off-diagonal ele-
ments denote the bond order between two
atoms, and the diagonal elements represent
the unpaired electron (e.g., free radicals). The
structure changes of molecules caused by
chemical reactions can also be described by
graph theory, i.e., the reaction matrix. Most
reactions involve the change of connectivity
between only few atoms. Therefore, reaction

matrices can be used as a compact representa-
tion of bond formation and breakage caused
by chemical reactions. The addition of the
reaction matrix to the reduced reactant
bond–electron matrix, which consists of only
the atoms involved in the reaction, forms a
new matrix representing the product of the
reaction (i.e., product matrix). The epoxida-
tion of an aromatic bond is used as an exam-
ple to describe the matrix operation of a
chemical reaction (Figure 2). The product is
then checked for its uniqueness to ensure the
molecule was not previously created by other
reactions. If the product is unique, it is added
to the unreacted species list and could become
the candidate reactant for other reactions.

The reaction rule, determined by modeler’s
understanding the fundamental chemistry and
biochemistry of the reaction, plays a central

role in the model. Following the reaction rules,
BioMOL can search the eligible site of reaction
throughout the structure of possible reactants
and create the corresponding product by
means of the matrix operator. The reaction
sites and matrices for major metabolic path-
ways of B[a]P are summarized in Table 2. Any
double bond in B[a]P is eligible for the epoxi-
dation reaction. However, certain restrictions
should be applied in the reaction rule to elimi-
nate unrealistic products. For instance, arene
oxides are unstable and not likely to stay long
enough to undergo the second consecutive
epoxidation reaction. Instead, arene oxides are
more likely to be a substrate for hydrolysis,
NIH shift, and glutathione conjugation (Table
2). To form the ultimate carcinogenic metabo-
lite B[a]P-7,8-dihydrodiol-9,10-epoxide,
B[a]P should encounter two distinct epoxida-
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Figure 1. Major metabolic activation pathways for B[a]P in biologic systems. BPDE, 10-N+2-dG, 
10-(deoxyguanosin-N+2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene.
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tion reactions. In the BioMOL model, these
two steps use the same reaction rule and reac-
tion matrix operator. The only difference is
that the rule and matrix are applied to dis-
tinct reactants, namely, B[a]P and B[a]P-
dihydrodiol. Therefore, a complex reaction
network may start from few reactions with
few reaction rules.

Estimation of B[a]P metabolic reaction
rate constants. By applying the given reaction
rule, the BioMOL model generates all the
possible reactions and corresponding prod-
ucts. Some of the products may never be
observed because the reaction rates are either
too low for their formation or too fast for
their subsequent metabolism. BioMOL will
use quantitative structure/reactivity correla-
tions (QSRCs) to estimate the reaction rate
constants (ki). QSRCs are semiempiric meth-
ods in which sterically similar reactions are
lumped into reaction families. The idea of
this correlation is expressed by the following
equation:

[3]

where i is a component in the reaction family
j. RI represents the reactivity index. The para-
meters a and b are calibrated by experimental
data (39). The candidates for the reactivity
index of B[a]P biotransformation are heat of
reaction, π-electron density, and bond order.
Semiempiric quantum chemistry software like
MOPAC 2000 (Schrodinger, Portland, OR,
USA), which is integrated into the BioMOL
model, can calculate these reactivity indices.

To calculate the reaction rate based on
QSRCs, the rate constants for B[a]P meta-
bolic activation have been divided into four
groups, enzymatic, nonenzymatic, association,
and dissociation (Figure 3). The QSRCs for
enzymatic rate constants rely on the under-
standing of the chemical mechanism. For
instance, the enzymatic epoxidation of double
bonds catalyzed by cytochrome P450 is likely
to start with the formation of a charge–trans-
fer complex between the ferryl oxygen on
P450 and π bond on the substrate (40).

Therefore, the rate constants of the enzymatic
epoxidation at distinct positions of BaP are
expected to correlate with bond order of the
reaction site. Loew et al. (41) have shown a
qualitative correlation between the observed
B[a]P metabolites and π-bond reactivity cal-
culated by quantum chemistry. The relative
abundance of the two possible phenol prod-
ucts resulting from an NIH shift also corre-
lated with the electron densities of the carbon
atoms attached to oxygen (41). On the other
hand, the nonenzymatic reaction rate constant
may correlate with the heat of reaction. The
real challenge for QSRCs is the search of reac-
tivity indices for association and dissociation
constants. The binding of substrates to
enzymes is related to the three-dimensional
structure of both the substrate and the
enzyme, which is not fully understood. Our
laboratory is currently developing the QSRCs
from both analytic experiments and literature
data. After reaction families are defined, the
kinetics of the reaction network become acces-
sible by using QSRC-derived parameters and

  log ,k a b RIi j j i= + ∗
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Table 2. Reaction site and matrix for major metabolic pathways of B[a]P.
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reactivity indices to represent thousands of
rate constants.

In summary, BioMOL is a computer-
assisted modeling tool and a promising
approach to handling extremely complex
biologic systems and their related biochemi-
cal reactions and reaction networks. The
BioMOL model has the potential for predict-
ing a variety of reaction networks in biologic
systems, as it is molecule based. The determi-
nation of reaction rules and reaction families
should be supported by a solid understanding
of reaction chemistry. Fundamentals of enzy-
matic kinetics will help QSRC estimation of
reaction rate constants.

Future Perspective Second-Generation
PBPK/PD Models

One of the areas of interest in our laboratory
is combination chemotherapies. We are inter-
ested in any type of combination chemo
therapy including cancer-, AIDS-, antibiotic-
combination chemotherapies, and others.
Thus, we will use cancer-combination
chemotherapy as an example to illustrate our
thinking in future directions. As reported in
the literature (42), the potential target sites for
cancer-combination chemotherapies are in
basic biologic processes including purine/
pyrimidine metabolic pathways leading to

DNA synthesis, RNA production, and pro-
tein/enzyme and microtubule production
(42). These biochemical pathways are already
an immensely complex system without
the addition of chemotherapeutic agents.
Experimentally, it is almost impossible to
study such a complex system simultaneously.
Therefore, it is essential to build a simulation
platform that can be used to globally examine
these biologic pathways in normal and malig-
nant cells with or without chemotherapeutic
agents. A variety of terms such as “virtual
cells,” “virtual laboratories,” and “in silico
experimentation” have appeared in the recent
literature. Our intent, as an interdisciplinary
team of scientists and engineers, is to conduct
experiments on computers, once a validated
PBPK/PD model is available for these biologic
pathways. With advances in computational
technology, the complexity of these biologic
pathways and interactions will not be a limit-
ing factor in our understanding of the biologic
foundation of combination chemotherapies.

From a modeling perspective, we believe
cancer cells represent parameter changes in
certain specific biologic processes inherent in
normal cells. Similarly, the introduction of
chemotherapeutic drugs into the cells also
represents perturbations in biologic processes
in normal cells. Thus, theoretically, we are
proposing one PBPK/PD simulation model
for the basal biologic pathways in normal
cells; those same pathways in cancer cells
or under combination chemotherapies
are merely quantitative variations (i.e., para-
meter changes of certain processes) of the
same model.

962 VOLUME 110 | SUPPLEMENT 6 | DECEMBER 2002 • Environmental Health Perspectives

Chemical Mixtures • Liao et al.

Figure 3. Classification of rate constants for B[a]P metabolic activation pathways. EH, epoxide hydrolase.
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Figure 4. Enzymatic kinetics of the inhibition of FdUMP on dTMP synthesis by 5-FU. Abbreviations: DHF, dihydrofolate; dTMP, deoxythymidine monophosphate;
dUMP, deoxyuridine monophosphate; FdUMP, 5-fluorodeoxyuridylate; MTHF, N5,N10-methylenetetrahydrofolate; PPi, pyrophosphate; PRPP, 5-phosphoribosyl-α-
pyrophosphate. Equations were derived based on the mechanisms proposed by Hardy et al. (43) and Voet and Voet (44).
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Our thinking goes beyond the traditional
PBPK modeling. We plan to incorporate the
concept of reaction network modeling by
incorporating the essential biologic pathways
involved. For instance, if we are studying
breast cancer–combination chemotherapy,
we will be adding scores of biochemical reac-
tions into the breast tissue compartment. We
will also identify specific genomic and pro-
teomic changes in relation to the biochemical
reactions to elucidate mechanistic bases for
combination chemotherapies. Thus, pharma-
codynamic interaction(s) will be incorpo-
rated into the PBPK modeling to transform
the model to a PBPK/PD model. In that
sense, we are interested in developing sec-
ond-generation PBPK/PD models.

Figure 4 provides an example of such 
second-generation PBPK/PD modeling. The
enzymatic pathway in Figure 4 is merely a
small portion of the reaction network of
purine/pyrimidine metabolic pathways
involved in the cancer-combination chemo-
therapies. Here, we summarize the mecha-
nism of action of 5-fluorouracil (5-FU) on
thymidylate synthase (TS), an important
enzyme in DNA synthetic pathway, and pro-
vide the enzyme kinetics involved in TS inhi-
bition. The kinetic equations will be
incorporated into the breast tissue compart-
ment in the PBPK model for 5-FU. The reac-
tion rate constants for the enzymatic
processes may be obtained in three different
ways: a) by mining the literature for quantita-
tive data (i.e., from step 1); b) by calculation
via semiempiric quantum chemical methods
based on known enzyme–substrate molecular
interactions or from QSRCs (32); and c) by
acquisition through laboratory experimenta-
tion with relevant systems. Through such
integration of individual reactions into the
PBPK/PD modeling process, we will be going
through a “de-lumping” process analogous to
that which occurred in the field of chemical
engineering in the last 30 years or so. In our
case we may consider that the transformation
of classic compartmental pharmacokinetics
into PBPK modeling represents the first stage
of de-lumping—that is, going from 2 or 3
compartments to 5–10 or 15 compartments.
The second-generation PBPK/PD models
will mean that, in the critical compartment,
further de-lumping will carry PBPK/PD
modeling down to the molecular mechanism
level. If we fully utilize the power of compu-
tational technology, such second-generation
PBPK/PD modeling will have the potential
to handle very complex biologic systems,

thereby handling exposure to complex
chemical, biologic, and physical agents.
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