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The difficulty in developing truly fundamental
kinetic models of chemical and biological
processes in cells can be traced to the extreme
complexity of the underlying chemistry of liv-
ing organisms. Here we must deal with a mul-
titude of species and reaction paths and the
complexity of biological catalysts, the enzymes.
Recent advances in cellular and molecular biol-
ogy and genetics unveiled complex interactions
of signaling pathways, and gene and protein
expression profiling associated with many bio-
logical processes. This knowledge added even
greater complexity to already daunting biologi-
cal systems, yet provides an opportunity to
integrate engineering tools and analyses into
biomedical research. As Tyson et al. (1) indi-
cated, neither genes nor proteins are the answer
to adverse health effects. Downstream reactions
and reaction networks are really where the
actions are. Thus, Tyson et al. (1) stated

. . . Many prominent molecular biologists have
pointed out the pressing need for theoretical and
computational tools to show the spatial and tem-
poral organization implicit in the way the macro-
molecules are ‘wired together’ to create a living
cell. . . . 

As another testimony of the importance of
computer technology, Venter, as quoted by
Butler (2), indicated 

. . . If we hope to understand biology, instead of
looking at one little protein at a time, which is not
how biology works, we will need to understand
the integration of thousands of proteins in a
dynamically changing environment. A computer
will be the biologist’s number one tool. . . . 

To that end, we have been engaged in the
development of a modeling methodology,
which we have named BioMOL, that encom-
passes and formalizes a systematic detailed
kinetic modeling approach and a system of
chemical engineering software tools to delin-
eate and reduce the essential elements of
complexity in the modeling of complex reac-
tion systems. In this article, we first provide
the details of the historical development of
the predecessor of BioMOL and its applica-
tion in petroleum industry; we then explain
the fundamentals of the different modules of
BioMOL to introduce the inner workings of
this software. On the surface, this article
might appear to be simply an application of
software development. However, as suggested
earlier, if one draws a parallel between an oil
refinery and a human body, the individual
processing units in the oil refinery may be
considered equivalent to the vital organs of
the human body. In that sense, the complex
biochemical reaction networks in the organs

may be similarly modeled and linked in much
the same way as the modeling of the entire oil
refinery through the modeling and linking of
the individual processing units. We believe it
is possible to create a virtual cell or a virtual
human through the linkage of larger and
larger reaction networks in our body through
such a modeling approach. Present efforts are
directed at description of enzymatic metabo-
lism of families of substrates for cytochrome
P450 (CYP) enzymes, particularly CYP1A1
and CYP2E1.

Background and Historical
Development 
The engineering foundation on which this
approach was born provides some relevant
context. Most traditional and even current
engineering process models have imple-
mented lumped kinetic schemes, where the
underlying molecular information and the
molecules themselves are grouped by global
properties such as boiling point or solubility.
This is largely because of the limitations in
the associated analytical chemistry and infor-
mation technology (IT) requirements, i.e.,
computer hardware and software capability.
Pseudomolecules (lumps) of the order of 10 are
generally used to represent the reaction systems. 

The true molecular information is
obscured in this approach because of the mul-
ticomponent nature of each lump. This
unavoidably leads to the absence of specific
chemical properties, save the literal definition
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of each lump, because of the absence of
chemical structure. These lumped and nearly
chemistry-free kinetic models are specific in
nature and cannot be extended to new situa-
tions requiring true predictions.

In recent years, both increasing technical
and environmental concerns have focused
attention on the molecular composition of
hydrocarbon conversion processes. For exam-
ple, recent environmental legislation has
placed restrictions on the maximum allowable
benzene content in gasoline and sulfur con-
tent in diesel fuel. Thus, the new modeling
paradigm is to track every molecule through-
out the process stream. We are exploiting this
more explicit approach in the development
of BioMOL.

A molecular description of reaction
processes is compelling. Molecules are the
common foundation for feedstock composi-
tion, property calculation, process chemistry,
reaction kinetics, and thermodynamics.
Molecule-based models can incorporate multi-
level information from surface science experi-
ments and quantum chemical calculations to
process issues. They can thus serve as a com-
mon fundamental form for both process mod-
eling and scientific research and development. 

However, the molecular modeling
approach carries with it a considerable scien-
tific and IT burden for the understanding
and organization of molecular information,
respectively. Two technological advancements
have helped modeling at the molecular level
become achievable. First, recent develop-
ments in analytical chemistry now permit the
direct or at least indirect measurement of the
molecular structures in complex mixtures.
Second, the advancement in IT, especially the
explosion of computational power, supports
the necessary bookkeeping to track the fate of
all the molecules during both reaction and
separation processes. Collectively, both the
economic/environmental forces on rigorous
models and the enabling analytical and com-
putational advances motivate the develop-
ment of molecule-based detailed kinetic
models of complex mixtures.

The above discussion of the conceptual
development from lumping to delumping to
finally consider molecular interactions of
chemical species in computer modeling is not
unique in chemical or petroleum engineering.
An analogy in the biomedical field is the classic
pharmacokinetic models and the more modern
physiologically based pharmacokinetic (PBPK)
models. With classic pharmacokinetic models,
our body is often represented by two or three
compartments without any anatomical or
physiological significance. PBPK models are
based on mammalian physiology, and our
body is represented by organs of interest plus
lumped tissues or organs. Both of these phar-
macokinetic modeling approaches have served

the biomedical community well; however,
neither gets down to the fundamental bio-
chemical reaction network level. The recent
explosive growth of genomics, proteomics, and
related bioinformatics in biomedical field again
parallel the availability of analytical and IT
technologies to chemical engineering. A logical
question is whether biologically based model-
ing can be advanced to the biochemical reac-
tion network level by using proven chemical
engineering modeling technology.

The discipline of chemical engineering
provides a rigorous framework for the con-
struction, solution, and optimization of
detailed kinetic models for delivery to process
chemists and engineers. The goal of this
article is to describe the required technical
components for detailed kinetic modeling of
toxicology-related biochemical reaction path-
ways, namely, the modeling of reactant struc-
ture and composition, the building of the
reaction network, the organization of model
parameters, the solution of the kinetic model,
and the optimization of the model. This inte-
grated general chemical engineering software
package is the Kinetic Modeler’s Toolbox
(KMT; University of Delaware, Newark, DE

USA), and we have developed a similar sys-
tem, BioMOL, for application to biological
processes at the molecular level. An example
of application to benzo[a]pyrene (B[a]P)
reaction network modeling is given in Liao
et al. (3) in this monograph.

The Integrated Kinetic
Modeler’s Toolbox
As shown in Figure 1, KMT comprises five
modules that together automate the entire
kinetic modeling process: the molecule gener-
ator (MolGen), the reaction network genera-
tor (NetGen), the model equation generator
(EqnGen), the model solution generator
(SolGen), and the parameter optimization
framework (ParOpt). Conceptually, a model-
ing project might begin with the molecular
structure building software MolGen, which
uses Monte Carlo simulation techniques to
assemble a molecular representation of com-
plex mixtures from analytical information,
e.g., elemental hydrogen to carbon (H/C)
ratio, boiling point distribution (simulated
distillation fractions, SimDis), nuclear mag-
netic resonance (NMR) spectroscopy. Graph
theory techniques are then used to generate
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Figure 1. An integrated approach to detailed kinetic modeling at the molecular level.
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NetGen. Reaction family concepts and quan-
titative structure reactivity correlations
(QSRCs) are used to organize and estimate
rate constants. The computer-generated reac-
tion network, with associated rate expressions,
is then converted to a set of mathematical
equations by EqnGen, which can be solved
for different reactor systems by SolGen.
Solving these equations in once-through mode
provides a prediction, whereas solving in an
iterative mode allows optimization to data to
obtain best-fit values of rate parameters
(ParOpt) or operation in a goal-seeking mode
to obtain the required conditions to achieve a
desired outcome for a petroleum refinery. 

The above overview of the stepwise mod-
eling process of the KMT software that will be
the basis of BioMOL is, of course, for a
potential feedstock for an oil refinery.
However, this exact sequence may be fol-
lowed, for example, for the generation of air
pollutants from a variety of sources (internal
combustion engines, oil or coal burning in
power plants, etc.), and the possible chemical
reaction networks can be studied. From a dif-
ferent angle, the biological application of reac-
tion network modeling may be pursued with a
bottom-up approach such as that we have
used with B[a]P and some of its metabolites
in the overall B[a]P reaction network. We are
mining the literature or generating kinetic
data on some of the metabolic processes
experimentally for this modeling effort. Some
preliminary information may be seen in
Figures 2 and 3 in this article and in

Liao et al. (3) in this monograph. Expanding
on the bottom-up approach, once B[a]P reac-
tion network modeling is complete, we will
link it with other reaction networks of other
carcinogenic or noncarcinogenic polycyclic
aromatic hydrocarbons. The goal of such a
program is to model reaction pathways in our
body of air pollutants from internal combus-
tion engines, using BioMOL linked with
PBPK modeling.

In the following sections, each module of
KMT software is explained in detail. It is
important to realize that although the
description appears to be engineering or com-
puter software oriented, all the operations
within each module can also be easily applied
to biochemical reactions or processes.

The Molecule Generator

MolGen is a combination of stochastic
modeling techniques for molecular structure
and compositions of complex mixtures. From
a modeling point of view, there are two kinds
of inputs to MolGen—adjustable and fixed.
Analytical chemistry information, such as the
H/C ratio, average molecular weight, boiling
point distribution, compound class distribu-
tion, and NMR, are fixed characterizations
for a given mixture. Conceptually, this is con-
verted into the adjustable information, i.e.,
those parameters of the probability distribu-
tion functions (PDFs) used to stochastically
sample the molecular attributes of the mole-
cules in the mixture, such as the number of
aromatic rings, the number of naphthenic
rings, the length of a side chain, or the number
of side chains. 

MolGen can be run in once-through
mode with fixed PDFs, but it is normally used
within an optimization framework (ParOpt),
as depicted in Figure 1, to adjust candidate
PDF parameters in the search for the optimal
PDF parameters to match the analytical obser-
vations for the mixture. The mixture charac-
terizations can be readily calculated or
estimated from the explicit molecular struc-
tures and compositions via the quantitative
structure property relationships. The outputs
from MolGen include both the representative
molecular structures and their optimized com-
positions for the mixture. The reactant molec-
ular structures are then converted to the
corresponding bond-electron (BE) matrices in
the grammar of NetGen and serve as its input.
The composition or concentrations of these
reactant molecules will serve as the initial con-
ditions for the quantitative model later in the
SolGen stage. 

The Reaction Network
Generator
The first version of the NetGen, developed
by Broadbelt et al. (4,5), was targeted to small
model compounds and simple reaction

networks, such as ethane pyrolysis (6). The
current version of the NetGen module in
BioMOL is a significantly enhanced new
generation of software with many more fea-
tures and functionalities. There are two
major categories of enhanced capabilities. In
terms of molecules, it has been enhanced
from single-ring compounds only to handle
much more complex molecular structures,
such as multiring polynuclear aromatic,
hydroaromatic, sulfur, and nitrogen-contain-
ing compounds. It has also been enhanced to
handle more complex multifunctional hetero-
geneous chemistries, such as biological path-
ways, metal chemistry, and acid chemistry. As
this modeling approach advances, it is neces-
sary to consider the three-dimensional config-
urations of enzyme-active sites in relation to
molecular size, diameter, and orientation of
the substrates.

The fundamental mechanism for the gen-
eration of the model on the computer is based
on graph theory. Molecules and intermediates
(ions and radicals) are represented as BE matri-
ces. Reactions are carried out via simple matrix
addition operations between the reactant
matrix and the reaction matrix for each reac-
tion family to generate the product matrix.
This process is illustrated in Figures 2 and 3.

There are two categories of inputs to
NetGen. One category is the reaction mole-
cules in the format of BE matrices. The other
category of inputs to NetGen is the reaction
chemistry, including both the reaction families
in the chemistry and reaction rules to control
the model size based on the user’s experience
and understanding. NetGen takes in both
inputs and applies the reaction matrix for each
reaction family to each reactant molecule,
guided by the reaction rules for each reaction.
This process builds the complete reaction net-
work. The generated reaction network is writ-
ten into a file in the required format of
EqnGen and serves as its input.

The Model Equation Generator

EqnGen has its origins in the early work of
Broadbelt et al. (6), who developed ODEGen
to convert the list of reactions produced by
NetGen into the solvable code for the corre-
sponding ordinary differential equations
(ODE). EqnGen is a mathematical converter
that parses the reaction network and generates
the corresponding mass balance equations for
each species in the system. The system of gen-
erated mass balance equations forms the ker-
nel of the kinetic model in the context of a
reactor model. The code for the model equa-
tions can be generated either in C or FOR-
TRAN. EqnGen extended the ODEGen
capability to allow for the formulation of the
types of mathematical equations that corre-
spond to various chemical rate laws and
reactor types. For batch reactors, plug flow
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reactors, or fixed bed reactors, EqnGen pro-
duces either ordinary differential equations or
differential algebraic equations (DAEs),
depending on whether the kinetic steady-state
approximation is used. For continuous stirred
tank reactors (CSTR), EqnGen writes the cor-
responding algebraic equation systems.
EqnGen can also write rate law types such as
Lagmuir-Hinshelwood-Hougen-Watson or
Michaelis-Menten formalisms. 

The Model Solution Generator

SolGen is the coupling of the model equations
generated from EqnGen with an equation
solver system, such as LSODE (Livermore
solver for ordinary differential equations) and
its variants (7,8) for solving ODEs, or DASSL
(differential algebraic system solver) (9,10)
for solving DAEs. A driver file organizes all
the input/output (I/O) files and reactor con-
figurations and calls the model equations,
which can be compiled and run to produce
the final solution. The process driver file, the
model equations file, and a collection of files
for supporting functions combine with vari-
ous I/O files to form the model deliverable,
which can be compiled and solved to produce
the model results.

Parameter Optimization

As discussed earlier, the Monte Carlo simula-
tion in the MolGen module is normally run
within an optimization framework by adjust-
ing the PDF parameters to allow the stochas-
tically generated molecular structures to
match both the structures and compositions
of the original complex mixture. Similarly,
the developed kinetic models can also be
solved within an optimization framework to
determine the kinetic rate parameters by
matching the model results with the experi-
mental observations in the reactor. Both of
these ParOpt problems are designated with
dashed rectangles in Figure 1.

Optimization Algorithms

Several optimization algorithms have been
tested and used for the composition and para-
meter estimation problems noted above. The
three algorithms used most frequently in this
work are the simulated annealing (SA)
method (11–13), the GREG routine (14–16),
and the multilevel single-linkage (MLSL)
method (17,18). These routines were used in
an essentially off-the-shelf manner, and their
strategies and details will not be discussed
here, as further details are available (19).

MolGen uses SA to find the optimal
O(10) (i.e., order of 10) PDF parameters by
minimizing the objective function that
matches the representative molecular struc-
tures and compositions with the feedstock
characterizations. SA is very accurate; a typi-
cal MolGen optimization normally took

hours to days on an IBM 560 Workstation
(66 MHz CPU; IBM, Armonk, NY, USA) in
the past in our laboratory. This actually met
the purpose of MolGen, where an accurate
molecular representation was needed and
time was not an issue, as this optimization
was normally a one-time, offline effort in the
model development process. With present-
day computational power, the CPU time is
even less of an issue. The identification of the
molecular structures is needed only once;
after a library of analyzed feedstocks is built,
the optimization of the composition (only) of
a slightly changed feed would be much faster.

GREG was used with the SolGen module
to optimize the O(10) kinetic rate parameters
by matching the model results with experi-
mental observations. Because of its local opti-
mization nature, GREG is quite fast. The
model itself needs to be solved repetitively in
every iteration of the optimization process,
and the speed of the optimization is thus cru-
cial. Once again, in our laboratory in the
past, a typical round of SolGen optimization
normally took from 0.5 hr for a pathways-
level model to many hours for a mechanistic
model on a 400 MHz Pentium II computer
(IBM).

MLSL was used in KMT, both in
MolGen and SolGen, as developed by Stark
(20,21). In the development of the detailed
kinetic models, the MLSL global optimizer
was used in parallel with other optimization
routines to generate the initial guess values
and the parameter ranges for the GREG local
parameter optimizer, to speed up the overall
optimization process.

The Objective Function

The objective function used to optimize the
molecular representation with the actual feed-
stock characterizations was the chi-square sta-
tistics (χ2). This is a ratio of deviation to
measurement precision. More specifically, the
numerator is the square of the difference
between the model prediction and the experi-
mentally determined properties. The denomi-
nator is a weighting factor equal to the
standard deviation of the experimentally
determined value. 

To optimize the rate parameters for a
developed kinetic model, the objective func-
tion is normally defined as the square of the
difference between predicted and experimen-
tal yields weighted by the experimental stan-
dard deviation, as shown below: 

[1]

where i is the experiment number and j is the
species or lump number, and ω j is the
weighting factor (generally the experimental

measurement deviation). The assignment of
ωj is very important for the success of the
optimization. Generally, the ωj should be the
same magnitude as y or less to make sure
F/MN ≤ 1. The smaller the ωj, the more
important in the objective function that
associated term would be. 

Property Estimation 
of Mixtures
The solution of a kinetic model provides, as
the most fundamental output, the concentra-
tions of the model species as a function of
the process variable (e.g., time or space veloc-
ity). Generally, the end user will be inter-
ested in a higher-level output, such as a set of
properties of the model composition (e.g.,
boiling point distribution, air pollutant
species, composition) These mixture proper-
ties can be calculated based on the collective
properties of the product molecules and
appropriate mixing rules. 

The usual strategy is to develop or use any
quantitative structure–property relationships
(QSPRs) to correlate the molecular structures
and compositions with the mixture properties.
In any case, the fine-tuned kinetic model,
with the supporting structure–property corre-
lations, can be used to predict the product
properties directly.

Summary and Conclusions

The software package that the KMT comprises
provides the framework to automate the mod-
eling of molecular structures and kinetics of
complex reaction systems. KMT includes a
total of five modules: MolGen for molecular
structure and composition modeling; NetGen
for automated reaction network generation;
EqnGen for automated code/equation genera-
tion; SolGen for model solution; and ParOpt,
a parameter optimization framework. This
automated molecule-based paradigm delineates
and reduces the essential elements of complex-
ity in complex reaction systems to a manage-
able level. The molecular structures are
reduced to O(10) PDF parameters (5–10
PDFs × 2–3 parameters in each PDF); the
reaction network building is automated
through O(10) reaction matrices (one for each
reaction family); and molecular reactivities are
correlated with O(10) kinetic parameters
(5–10 LFERs [linear free energy relationships]
× 2–3 parameters each). The brute force
description of these complex systems could
have been of the order of ten billions [O(105 ×
105)] because of the O(105) species and O(105)
reactions in these complex reaction systems.

The integrated KMT in Figure 1 gives a
clear picture of the goal of this kinetic model-
ing approach: product properties are esti-
mated from only the input of feedstock
characterization. The set of the PDF parame-
ters is akin to the fingerprint of the complex
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feedstock and can be optimized to assemble
its molecular representation. A solid under-
standing of the reaction chemistry provides
the reaction families and reaction rules, and
the associated understanding of the reaction
kinetics provides the rate law. The set of
QSRC/LFER parameters fundamentally cor-
relates the molecular reactivities with the
molecular structures.

The KMT software has automated the
process of building these detailed kinetic mod-
els. By exploiting Monte Carlo and graph the-
ory techniques, reaction models containing
thousands of species can be built in 1,000
CPU sec or less. This model-building speed
has changed the serial model-building–model-
use paradigm to a new parallel approach,
where a model builder can produce an updated
optimal model in seconds. The thus-con-
structed models can then react the molecularly
explicit feedstock using QSRCs for kinetic
parameters to predict the product properties.

In an AAAS Plenary Lecture on 13
February 1998, Dr. Harold Varmus, then
director of the National Institutes of Health,
emphasized, among others, two specific
themes: “. . . Discoveries in biology and medi-
cine depend on progress in many fields of sci-
ence. . . .” and “. . . Methods that dramatically
expand biological data also demand new
modes of analysis and new ways to ask scien-
tific questions. . . .” He said: “. . . In short,
biology is not only for biologists . . . .”(22).
Here we present an engineering approach that
we believe can be used effectively for complex
biological processes. We plan to incorporate
the concept of reaction network modeling by
incorporating the essential biological pathways
involved into the present-day PBPK modeling.
For instance, if we are studying air pollution,
we will be adding scores of biochemical reac-
tions and pathways (reaction network) into the
lung and liver compartments of PBPK models
for the air pollutants being studied. We will

also identify mechanistic bases for toxicologic
actions or interactions by specific genomic and
proteomic changes in relation to the biochemi-
cal reactions or pathways. Thus, pharmacody-
namic (PD) interactions will be incorporated
into the PBPK modeling to transform the
model to a PBPK/PD model. In that sense, we
are interested in developing second-generation
PBPK/PD models. In our case, we may con-
sider that the transformation of classic com-
partmental pharmacokinetics into PBPK
modeling represents the first stage of delump-
ing, that is, going from 2 or 3 compartments to
5–10 or 15 compartments. The second-genera-
tion PBPK/PD models will mean that, in the
critical compartment, further delumping, via
reaction network modeling using BioMOL,
will carry PBPK/PD modeling down to the
molecular mechanism level. If we fully utilize
the power of computational technology, such
second-generation PBPK/PD modeling will
have the potential to handle very complex bio-
logical systems, thereby handling exposure to
complex chemical, biological, and physical
agents. Thus, we believe the approach dis-
cussed in this article and the development of
BioMOL form a basis that could be used for
the eventual development of a virtual human.
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