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Organic chemical mixtures are prevalent in
wastewater from industrial and municipal
sources as well as in contaminated groundwa-
ter. Common examples of chemical mixtures
that often become pollutants include gasoline
and other petroleum fuels, pesticides, and
wood-treating substances. Landfill leachates are
complex mixtures that contaminate groundwa-
ter supplies around the world. Pollutant mix-
tures may contain only organic chemicals or
may also include inorganics, heavy metals, or
radionuclides. The occurrence of contaminants
in mixtures is an important problem because
the removal or degradation of one component
can be inhibited by other compounds in the
mixture and because different conditions may
be required to treat different compounds
within the mixture. The work reported here
was motivated by the first of these issues as it
applies to pollutant biodegradation.

Researchers have noted that microbial
degradation (metabolism) of a compound in
a mixture can be strongly affected by other
substituents of the mixture (1–4). This has
been observed not only for mixtures of toxic
chemicals (bioremediation) but also for mix-
tures of pollutants and readily degraded com-
pounds (wastewater treatment) and mixtures
of sugars (fermentation). To understand mix-
ture effects, one must consider the metabolic
role each compound plays for the microor-
ganisms. The terms “homologous” and “het-
erologous” have been proposed by Harder
and Dijkhuizen (5) for compounds that serve
the same or different roles, respectively.

The effects of other compounds in a
mixture of homologous carbon and energy
substrates on the biodegradation of a chemi-
cal can be positive, as in the case of increased
growth at low substrate concentrations (6,7)
or induction of required degradative
enzymes (8). More commonly, negative
interactions are reported. Reasons for
decreased biodegradation rates include com-
petitive inhibition (9–11), toxicity (12), and
the formation of toxic intermediates by
nonspecific enzymes (13,14).

Although mathematical models of mixed
homologous substrate consumption and
microbial growth have been proposed [e.g.,
(2,11,15–19)], this body of literature is
much smaller than that for the modeling of
single-substrate growth kinetics. Most mod-
els have been tested with only two sub-
strates, and their applicability to larger
mixtures has been assumed without valida-
tion. More recently, models have been pro-
posed and tested for larger mixtures.
Examples include the growth of Escherichia
coli on six sugars (16), the growth of a mixed
culture on benzene, toluene, ethylbenzene,
and o- and p-xylene (BTEX compounds)
(11), and the biodegradation of three
polycyclic aromatic hydrocarbons (20).

In addition to the interactions among
chemical components of a mixture undergoing
biodegradation, the interactions among micro-
bial species in a mixed culture may be impor-
tant. For example, Lewandowski and
co-workers (21) studied the biodegradation of

phenol by several two-species mixed cultures.
Excellent agreement between pure-and-simple
competition theory and experimental data
occurred when the two species in an experi-
ment were both isolated from the same envi-
ronment. However, when a mixture was
composed of two organisms from different
environments, there was no agreement with
the pure-and-simple competition model.
Conversely, in research by Murakami and
Alexander (22), interspecies interactions
beyond pure-and-simple competition, includ-
ing interactions harmful to one species while
the other was unaffected, occurred between
members of a binary culture isolated from the
same sewage treatment plant.

At Colorado State University, our group
has been studying the biodegradation kinetics
of chemical mixtures for several years. The
long-term goal of this research is to under-
stand (and model mathematically) the
biodegradation of complex chemical mixtures
by microbial communities. Our strategy is to
first learn from simpler (but representative)
systems: pure cultures degrading mixtures
and mixed cultures degrading single chemi-
cals (Figure 1). In this report, we review our
results at this intermediate level and then
describe the results from a simple chemical
mixture–microbial mixture experiment.
Finally, we discuss some preliminary results
that may provide insights on the observations
made previously.

This work has focused on the biodegrada-
tion of benzene, phenol, and toluene. These
monoaromatic compounds are ideal represen-
tatives of chemicals found in pollutant mix-
tures. They are produced in very large
quantities for use as fuels, solvents, and starting
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materials for chemical syntheses (23). As an
outcome of this prevalent use, monoaromatics
are widespread environmental contaminants,
usually in mixtures. Thirty monoaromatics are
listed in the U.S. Environmental Protection
Agency’s Priority Pollutants (24), and 11 of
these compounds are in the top 100 chemicals
on the Agency for Toxic Substances and
Disease Registry’s Priority List of Hazardous
Substances (25). Two bacterial strains were
used in the work presented here: Pseudomonas
putida F1 and Burkholderia sp. JS150.
P. putida F1 uses toluene dioxygenase (TDO)
to initiate the metabolism of toluene, benzene,
phenol, and other aromatics (26). In contrast,
Burkholderia sp. JS150 can express at least
three initial dioxygenases (12). These strains
are thus interesting and distinct model systems
for the study of mixture biodegradation
kinetics.

Materials and Methods

Microorganisms. P. putida F1 is a well-
characterized aromatic hydrocarbon–degrad-
ing bacterium that can use toluene, benzene,
ethylbenzene, phenol, and other aromatics as
sole carbon and energy sources (26). The
biodegradation of toluene by P. putida F1
begins with the oxidation of the aromatic ring
by TDO to form cis-toluene dihydrodiol
(26–28), which is then dehydrogenated to
form 3-methylcatechol. This molecule is then
cleaved at the meta position and then con-
verted in three steps to acetaldehyde and pyru-
vate (29–31). TDO also catalyzes the
oxidation of benzene (28,32,33) and phenol
(34,35). In both cases, catechol is formed after
dehydrogenation and is then further degraded
by meta ring cleavage and other reactions to
tricarboxylic acid cycle intermediates. Thus,
P. putida F1 uses the same metabolic pathway
to metabolize toluene, benzene, and phenol.

Burkholderia sp. JS150 is a nonencapsu-
lated mutant of Burkholderia sp. JS1
obtained after ethyl methane sulfonate muta-
genesis of strain JS1 (12). In addition to
toluene, benzene, and phenol, this species is
able to degrade a wide range of substituted
aromatic compounds. Strain JS150 has a
much greater metabolic capability than
P. putida F1, with the ability to synthesize at

least four ring-fission pathways and use three
separate initial dioxygenases (including a
nonspecific TDO) when grown on various
substrates (12).

Media. For all experiments, a modified
Hutner’s mineral base was used as the carbon-
free medium (36), and toluene, benzene,
and/or phenol was added. Phenol was added
before autoclaving, but toluene and benzene
were added after autoclaving to minimize
losses from volatilization (37). For strain
maintenance, cultures of both bacteria were
grown on toluene vapors and stored at –70°C
in 10% glycerol.

Chemicals. Benzene (Sigma, St. Louis,
MO, USA; HPLC grade), toluene (Baker,
Phillipsburg, NJ, USA; HPLC grade), and
phenol (Sigma, >99.5% pure) were used as the
carbon sources. Chloroform and p-xylene
(both from Baker; GC grade) were used to
prepare samples for gas chromatography (GC).
All chemicals used for media preparation were
reagent grade.

Analytical methods. Cell concentrations
were measured as optical density at 600 nm
(OD600) with a Bausch & Lomb Spectronic
21 spectrophotometer (Bausch & Lomb,
Rochester, NY, USA) and correlated to bio-
mass concentration (37,38). To quantify the
two cell populations in the mixed culture
experiments, a fluorescence in situ hybridiza-
tion (FISH) method was developed (39). In
this procedure, 30 µL of a culture sample was
applied to slides, which were then dried,
fixed, and dehydrated. The samples were then
exposed to species-specific oligonucleotide
probes that were 5´-end labeled with fluores-
cein isothiocyanate (40), rinsed, and prepared
for counting under a Leitz epifluorescence
microscope (Leica Microsystems AG, Wetzlar,
Germany) equipped with a BioQuant image
analysis system (R&M Biometrics Inc.,
Nashville, TN, USA)(39). For species
Burkholderia sp. JS150, correlations were also
developed between cell concentration
(cells/mL or cfu/mL) and biomass concentra-
tion (mg/L): 3.5 × 106 cells/mL equivalent to
1.0 mg/L biomass for cells grown on toluene,
and 2.4 × 106 cells/mL equivalent to
1.0 mg/L biomass for cells grown on phenol.

Benzene, toluene, and phenol concentra-
tions were measured by GC. Aqueous samples
were extracted with chloroform, and p-xylene
was used as an internal standard (37). Samples
were stored at 4°C in 2-mL screw-cap vials
with Teflon-lined rubber septa, until analysis.
Benzene, toluene, and phenol standards were
prepared as aqueous solutions and extracted
with chloroform/p-xylene. The detection limit
of this method for each of the three
compounds was 5 µM.

Protocol for batch biodegradation
experiments. All data for biodegradation
kinetics modeling were obtained from batch

bioreactor cultivations inoculated from shake
flask cultures grown on the same carbon
source(s) used in the bioreactor. Two 3-L
Applikon batch bioreactors (Applikon,
Foster City, CA, USA) were used for the
biodegradation kinetic experiments. The
total initial substrate concentration was
approximately 0.5 mM in the liquid phase,
regardless of the number of substrates
involved. In mixture experiments, the sub-
strates were added in approximately equi-
molar amounts. Henry’s law was used to
calculate the amount of toluene or benzene
to be added. All experiments were run at the
operating and initial conditions found to
provide intrinsic biodegradation kinetics,
including a low inoculum size (expressed as
the ratio of substrate to cell mass; a value of
300 was used) (37). The bioreactor was run
as a closed system with no air sparging to
eliminate the substrate loss due to volatility.
The system operated aerobically (dissolved
oxygen levels remained above 5 mg/L),
30°C, and without pH control (although the
pH remained in the range of 6.7–6.9). Less
than 1% of toluene and phenol was lost in
sterile control experiments. Biodegradation
experiments were performed in duplicate,
and replicates were not performed simultane-
ously. Additional experimental details can be
found in Reardon et al. (37).

Determination of biodegradation kinetics
model parameters. Several mathematical
models were compared for their ability to fit
or predict the experimental biodegradation
kinetics data. The values of all required
model parameters were determined by per-
forming nonlinear curve fitting to the exper-
imental data using SimuSolv, a modeling
and simulation package (Dow Chemical
Company, Midland, MI, USA). Simusolv
employed a Gear method to solve the differ-
ential equations and maximized the log of the
likelihood function (LLF) to optimize the
unknown parameters and discriminate
between models (37). The model with the
maximum LLF value and most homogeneous
errors residual plots was chosen. For each
final model, the percent variation explained
(PVE; similar to r 2 value for linear regression)
was calculated using the LLF. The average
value for each of the parameters was found by
separately determining the values for each of
the duplicate experiments and then averaging
these two values.

The tested models were those for cell
growth kinetics (as a function of growth sub-
strate consumption). An equation was also
needed to model substrate depletion. For the
relatively nonvolatile substrate phenol, the
rate of consumption was described as

[1]dS
dt

X
Y X / S

= −
µ

,
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Figure 1. Levels of complexity in biodegradation
kinetics research.
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where S is the substrate concentration, t is
time, µ is specific growth rate, YX/S is the
biomass yield, and X is biomass concentration.
To determine the yield, YX/S, the concentration
of cells produced (cells/mL) was divided by the
concentration of substrate consumed (mM).

Because toluene and benzene are volatile,
Equation 1 required modification to account
for the presence of toluene in both the gas
and liquid phases in the bioreactor. Microbial
growth rates depend on the liquid-phase sub-
strate concentration only, whereas the bio-
mass yield is a function of the change in total
mass of substrate. Because the cultivation
conditions were chosen to ensure that mass
transfer rates (from gas to liquid phase) were
always faster than biodegradation rates (37),
the masses of toluene in the liquid and gas
phases could be related using Henry’s law,
yielding

[2]

Here, m refers to the mass of toluene in the
gas phase (subscript G), liquid phase (L), or
the entire system (TOT). H is the Henry’s
law constant, R is the gas constant, T is the
temperature, and VG and VL are the gas and
liquid phase volumes. Henry’s law constants
of 8.08 × 10–3 atm·m3/mol for toluene and
7.31 × 10–3 atm·m3/mol for benzene at 30°C
were used (41). The temperature and volume
of liquid remained essentially constant
during an experiment, and therefore the rate
of substrate consumption can be written as

[3]

In most experiments, a certain amount of
lag time was observed before any measurable
depletion of substrate or growth of organisms
occurred. Because the models do not account
for this lag time, time zero for modeling was
defined as the time when 2% of the substrate
had been consumed.

Results
Biodegradation of chemical mixtures by
pure cultures of P. putida F1. The first set
of experiments involved the use of P. putida
F1 to biodegrade benzene, toluene, phenol,
and their binary and tertiary mixtures. In
the single-substrate experiments, the growth
kinetics were well fit by the Monod model,

[4]

in which µmax is the maximum specific
growth rate and KS is the Monod half-satura-
tion constant. Equation (3) was used to
model the consumption (biodegradation) of
toluene and benzene. The Monod model
parameter values for each of the three sub-
strates are listed in Table 1. The Monod
model provided the best fit for the biodegra-
dation of toluene and benzene by P. putida
F1, although substrate inhibition has been
reported for growth on toluene by other
microorganisms (10). However, in the case of
growth on phenol, well known as an
inhibitory substrate, the fit to the experimen-
tal data was slightly improved by use of the
Andrews model (37):

[5]

where Ki is an inhibition parameter. In
addition, the growth pattern with phenol as a
substrate was different than that for toluene
in that biomass production continued for
approximately 10 hr after phenol was
depleted. This is indicative of the transient
production of an intermediate that was than
consumed for growth, and we therefore tested
various models that included such an inter-
mediate. However, none of these yielded an
improved fit to the data (37). We chose to
use the Monod model rather than the
Andrews model because the differences
between the model fits were small and
because use of the Andrews model with its
additional parameter did not improve the
prediction of mixture experiments.

The results of a biodegradation experi-
ment with toluene and phenol are shown in
Figure 2. Toluene was consumed before
phenol, and phenol biodegradation did not
begin until toluene was nearly depleted.
Although this sequential substrate consump-
tion is reminiscent of diauxic growth, the
classic definition of that phenomenon (induc-
tion or derepression of catabolic enzymes)
does not apply here because P. putida F1 uses
the same enzymes to metabolize both sub-
strates (35). Similarly, when this species was
grown on a 50:50 mixture of benzene and
phenol, benzene was degraded first, and phe-
nol consumption did not begin until benzene
concentrations were near zero (Figure 3). In
the case of the toluene–benzene mixture, P.
putida F1 consumed both of these substrates
simultaneously during most of the cultiva-
tion, but toluene biodegradation began before
that of benzene, and toluene was depleted
first (Figure 4).

A common model for cell growth on
homologous substrate mixtures is a no-inter-
action sum kinetics model, in which the spe-
cific growth rate is the sum of the specific
growth rates on each substrate i (µi). The rate
of consumption for substrate i can be
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Table 1. Parameters for Monod and SKIP models of biodegradation of mixtures.a

Growth µm KS YX/S I1,2 I2,1
Microorganism substrate (per hour) (mg/L) (g/g) (-) (-) PVE

P. putida F1 Toluene 0.86 ± 0.01 13.8 ± 0.9 1.28 ± 0.13 N/A N/A 98.4
Benzene 0.73 ± 0.03 0.12 ± 0.02 1.20 ± 0.05 N/A N/A 86.6
Phenol 0.11 ± 0.01 32.0 ± 2.4 0.80 ± 0.07 N/A N/A 93.9
Toluene–phenol * * * 55 ± 5 0.01 ± 0.002 98.1
Toluene–benzene * * * 5 ± 0.3 0.01 ± 0.003 95.7
Benzene–phenol * * * 18.5 ± 1.5 0.01 ± 0.002 94.2
Toluene–benzene–phenol * * * * * 96.7

Burkholderia sp. JS150 Toluene 0.39 ± 0.01 1.01 ± 0.28 1.03 ± 0.09 N/A N/A 96.3
Phenol 0.31 ± 0.03 0.51 ± 0.38 0.88 ± 0.005 N/A N/A 99.1
Toluene–phenol * * * 80.6 ± 6 0.6 ± 0.03 97.3

aFor the parameters I1,2 and I2,1, subscript 1 refers to the first chemical in the pair. The notation “N/A” is shown when a parameter was not used to model growth on the substrate indicated;
*indicates that previously determined values of that parameter (from single-substrate experiments) were used.
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Figure 2. Experimental data and model output for
batch biodegradation of a toluene–phenol mixture
by P. putida F1. Symbols indicate measurements of
liquid-phase toluene (●), phenol (▲), and biomass
concentrations (♦♦). Lines are predictions from the
sum kinetics, no-interaction model (dotted lines),
competitive inhibition model (dashed lines), and
SKIP model (solid lines). Adapted from Reardon
et al. (37).



modeled using Equation 1 or Equation 3, as
appropriate. Because the Monod model was
found to be suitable for biodegradation of
each of the three monoaromatics individually,
the no-interaction sum kinetics model is

[6]

where the subscripts 1 and 2 refer to each of
the two substrates. The predictions of this
model for the toluene–phenol mixture are
shown in Figure 2. Comparison of these pre-
dictions with the toluene–phenol data clearly
reveals mixture effects because phenol
biodegradation occurred later and at a lower
specific (per cell) rate than predicted by the
model. Thus, the presence of toluene inhib-
ited phenol biodegradation. However, phenol
had little effect on toluene consumption.
Benzene also inhibited phenol biodegrada-
tion, although phenol did not have a signifi-
cant impact on the rate of benzene
metabolism (37). Finally, when the model
was applied to toluene–benzene mixtures, the
biodegradation of benzene was predicted to
be earlier and faster than was actually mea-
sured, suggesting that the presence of toluene
inhibited the degradation of benzene. In con-
trast, the presence of benzene had little effect
on toluene consumption (37). Thus, mixture
effects (i.e., nonadditivity) were found with
all three pairwise combinations of these three
monoaromatics.

Because P. putida F1 uses TDO to
initiate catabolism of all three chemicals, one
might expect that these mixture effects are
due to competitive inhibition of this enzyme.
A sum kinetics model incorporating purely
competitive substrate kinetics (18) is

[7]

Predictions from this model are shown in
Figures 2–4 for each of the binary mixtures.
In the case of the toluene–phenol mixture,
the model prediction for phenol degradation
represented the data better than did the no-
interaction model, but the agreement with
the toluene data was worse. Thus, the one-
sidedness of the mixture effect was not well
predicted. Similar phenomena occurred
when Equation 7 was used to predict the
biodegradation of benzene–phenol and
toluene–benzene mixtures. Models incorpo-
rating noncompetitive and uncompetitive
interactions have also been tested, but none
gave satisfactory results (37).

To account for these mixture effects, an
alternative model was formulated by incorpo-
rating an interaction parameter Ii,j into the
sum kinetics framework (37):

[8]

Here, Ii,j indicates the degree to which
substrate i affects the biodegradation of sub-
strate j, with larger values corresponding to
stronger inhibition. Yoon et al. (18) were the
first to propose a model of this type, which

we call sum kinetics with interaction parame-
ters (SKIP). To obtain the values of the inter-
action parameters (Table 1), the SKIP model
was fitted to each set of binary mixture data
sets using values of µm, KS, and YX/S deter-
mined from the single-substrate experiments.
The fitted SKIP model accurately describes
the biodegradation data for all three binary
mixtures (Figures 2–4), demonstrating that
the SKIP model can be used to fit unspecified
types of inhibition between two substrates.

The ability of the SKIP model to predict
the outcome of the 3-substrate mixture was
also examined. As shown in Figure 5, the con-
sumption of toluene began first, followed by
benzene, and these two chemicals were then
degraded simultaneously. Significant phenol
consumption did not begin until the toluene
concentration was nearly zero and the benzene
concentration was low. A three-term version
of Equation 8 successfully predicted this pat-
tern using parameters determined indepen-
dently from the one- and two-substrate
mixture experiments (37).

Biodegradation of chemical mixtures by
pure cultures of Burkholderia sp. strain
JS150. A second study, using Burkholderia sp.
strain JS150, was performed to investigate
mixed-substrate biodegradation by a bac-
terium that employs different catabolic path-
ways to degrade the mixture components. The
Monod model was found to fit the biodegra-
dation data well for both toluene and phenol
(Table 1) (38). During growth of strain JS150
on phenol, the release of several metabolites
into the medium was noted, and one was
identified as 2-hydroxymuconic semialdehyde
(38). However, these metabolites did not
inhibit phenol consumption.

When strain JS150 was grown on an
equimolar solution of toluene and phenol,
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toluene consumption began first. However,
phenol was degraded while toluene was
present in the medium, in contrast to the
experiments with P. putida F1. The use of the
no-interaction mixtures model (Equation 6)
revealed that the presence of each substrate
had an inhibitory effect on the biodegrada-
tion of the other. Competitive (Equation 7),
noncompetitive, and uncompetitive inhibi-
tion models were also tested, although not
mechanistically supported because strain
JS150 uses multiple biodegradation pathways
(12). The predictions from all three models
were poor. Finally, the SKIP model was
applied, with IT,P and IP,T values obtained by
fitting Equation 8 to the data. The model fits
were very good (PVE = 97.3%), and the
values of the interaction parameters indicate
that toluene inhibited phenol degradation
much more than the reverse.

Biodegradation of single chemicals by
mixed cultures. Biodegradation models for
mixed cultures often treat the microorganisms
as a single lumped quantity (e.g., total bio-
mass). However, this was shown to be inade-
quate in the case of a 1:10 mixture of strain
JS150 and P. putida F1 growing on phenol
(39), suggesting that interactions between
these two species were important. Further evi-
dence for complex interactions was obtained
by cultivating 1:1 mixtures of these species on
phenol and measuring the sizes of the two
populations using the FISH protocol (Figure
6). The resulting kinetics did not follow a
model derived from the concept of pure-and-
simple competition, in which the only interac-
tion is competition for a growth-limiting
substrate. Instead, P. putida F1 grew much
more than the model predicted, and strain
JS150 grew less than predicted by this simple

competition model. Further investigation
demonstrated that strain JS150 released a
metabolite, probably 2-hydroxymuconic semi-
aldehyde, which strain F1 was able to use as a
growth substrate, and thus the interaction
between the two species included commensal-
ism in addition to competition (39). Further
complexity was added by including Bacillus
subtilis American Type Culture Collection
7003, a species unable to grow on phenol, in
the mixed culture. When medium containing
phenol was inoculated with a 1:1:1 ratio of the
three microorganisms, B. subtilis grew to a
greater extent than did species JS150,
presumably by competing for metabolic
intermediates (40).

Purely competitive interactions were also
insufficient to describe the dynamics between
strains JS150 and F1 when similar experiments
were conducted with toluene (Figure 7). In
this case, P. putida F1 grew more slowly and to
a lesser extent than predicted by the pure-and-
simple model. Using spent medium tests, this
was determined to be the result of inhibition
by an unidentified chemical released by species
JS150 (39). Thus, amensalism occurred along
with competition when these species grew
together on toluene.

Biodegradation of a chemical mixture by a
mixed culture. Finally, the biodegradation and
growth kinetics of the 1:1 mixed culture of
strains JS150 and F1 were examined for an
equimolar mixture of toluene and phenol. The
experimental results for the aromatic hydrocar-
bons and both microbial populations are
shown in Figure 8, along with the predictions
of a model based on the SKIP representation of
substrate consumption (Equation 8) and the
pure-and-simple kinetics representation of
microbial growth. As was the case when this
mixed culture was grown on either toluene or
phenol alone, the model predictions were poor.

P. putida F1 grew faster and to a greater extent
than predicted by the model, and the growth of
strain JS150 was less than predicted. Given the
conflicting impacts on strain F1 in the phenol-
only and toluene-only cultivations noted above,
it is interesting to note that the phenol pattern
dominated in this mixed substrate experiment.
In addition the concentrations of both sub-
strates reached nondetect levels sooner than
predicted by the model, indicating that the
mixed culture is able to degrade the mixture
faster than either pure culture alone.

Discussion

The results presented here clearly illustrate
that the biodegradation kinetics of chemical
mixtures can be complex and difficult to
describe mathematically, even when the
chemicals serve as homologous substrates for
pure cultures of microorganisms. Although
these kinetics can in some cases be described
by relatively simple no-interaction (16) or
competitive inhibition (9,18,20) models, we
have demonstrated that such models are
inadequate for P. putida F1 growing on mix-
tures of toluene, benzene, and phenol and for
Burkholderia sp. JS150 growing on mixtures
of toluene and phenol. Furthermore, the
biodegradation kinetics of a mixed culture
growing on 1-butanol, 2-butoxyethanol, and
N,N-dimethylethanolamine also were not
well predicted by competitive inhibition
(42). These findings led us to develop the
SKIP model, in which a fitting parameter, Ii,j
was introduced to describe the influence of
chemical i on the rate of biodegradation of
chemical j. Using Ii,j values obtained from
the two-chemical experiments, we demon-
strated the ability of the model to predict the
outcome of the three-chemical biodegrada-
tion experiments. The SKIP framework has
also been used as the basis of a model in
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which a 13-chemical mixture was divided
into four groups and Ii,j values determined
for interactions between groups. In cases
without substrate inhibition, this modified
SKIP model accurately predicted the
experimental outcomes (43).

Although the differences between the
predictions of the SKIP and other models are
highly significant in a statistical sense, their
impacts do not necessarily appear large in the
batch experiments presented here. The nov-
elty of the SKIP model is the inclusion of
inhibition terms that are different than those
in purely competitive, uncompetitive, or non-
competitive inhibition. In the case of the
toluene–phenol mixture, toluene inhibits
phenol consumption to a much greater extent
than predicted by the other models, and
phenol inhibition of toluene degradation is
much less. In a batch experiment, the main
outcomes of this inhibition are a prolonged
lag phase before phenol consumption begins
and a faster toluene degradation rate. Because
toluene is rapidly consumed in this batch cul-
tivation, the impacts on phenol degradation
are relatively small. However, in a continu-
ous-flow bioreactor, the differences among
these various models would be much more
noticeable. Because phenol is not consumed
until toluene concentrations fall below some
low level (only accurately represented by the
SKIP model), the hydraulic residence times
and sizes of continuous bioreactors treating
toluene–phenol mixtures would be substan-
tially underpredicted unless the SKIP model
were used. Because aquifers can also be repre-
sented as continuous-flow bioreactors, the
result of using the SKIP versus another model
would be similar but expressed in terms of the
size of the contaminant plume and the length
of time required for remediation.

Despite the success of the SKIP model in
the cases presented here, the need to include
the fitting parameter Ii,j with no clear mecha-
nistic basis is unsatisfying. This is particularly
true in the case of P. putida F1, where the
same set of enzymes appears to be involved in
the biodegradation of toluene, benzene, and
phenol. We have investigated this phenome-
non further using two-dimensional polyacry-
lamide electrophoresis of soluble proteins (44).
Although this proteomic study has not been
completed, our current evidence points to dif-
ferences in the cell membrane composition as
one of factors involved in these unexpected
kinetics. Based on the identification of acyl
carrier protein as one of the proteins with tran-
sient synthesis during biodegradation of
toluene–phenol mixtures, we performed analy-
ses of the phospholipid fatty acid content of
P. putida F1 cells. The predominant phospho-
lipid fatty acid of cells growing on toluene was
cis-7-hexadecenoic acid (16:1w7c), whereas
cells growing on phenol had high levels of

cyclopropylheptadecanoic acid (cy17:0) in
their membranes. The membranes of cells
growing on toluene–phenol mixtures shifted
from 16:1w7c to cy17:0 after degradation of
toluene in the medium was complete (45).
Based on these findings, we have developed the
hypothesis that the inhibition of phenol
biodegradation in the presence of toluene is
caused by very slow transport of phenol into
the cell when the membrane has adapted to
the more hydrophobic environment. Then,
when toluene is depleted from the medium,
the membrane composition shifts to a form
through which phenol can more readily dif-
fuse. A model based on this hypothesis has
been shown to predict toluene–phenol mixture
results very well using only data from single-
substrate experiments. We are continuing our
investigations into this hypothesis and will also
consider the implications of other proteins that
are differentially expressed by cells growing on
toluene versus phenol.

We have also shown here that the
interactions between microbial species in a
mixed culture are both significant for the
biodegradation kinetics and difficult to pre-
dict. In particular, we noted a large effect of
the carbon source on the nature of the micro-
bial interactions, with commensalism occur-
ring when the cells grew on phenol and
amensalism observed when toluene was the
growth substrate. We also noted that the
presence of a secondary degrader (B. subtilis)
had an additional impact on the biodegrada-
tions by introducing a new type of interac-
tion. Although the mechanism of these
interactions could be determined after they
were observed, it seems unlikely that they
could be predicted from pure culture experi-
ments without prior knowledge of all possible
metabolites produced by each species. Finally,
it is interesting to consider the question of
whether microbial species interactions
become less important as the mixed cultures
become more diverse. For example, although
the SKIP model alone did not describe the
kinetics of the binary P. putida F1/
Burkholderia sp. JS150 culture when “total
biomass” was used in the model, it was very
accurate in describing the biodegradation
kinetics of a larger (estimated 10–20 species)
mixed culture growing on a mixture of 13
organic chemicals (43).

Conclusions. Although the biodegradation
kinetics of mixed microbial cultures growing
on mixtures of organic contaminants are
often assumed to be simple extensions of
pure-culture/single-substrate kinetics, we have
demonstrated that they are not. In the case of
pure cultures growing on aromatic chemical
mixtures, neither a no-interaction nor a com-
petitive inhibition model accurately predicted
the mixture kinetics. To overcome this diffi-
culty, we developed the SKIP model, which

used model parameters from single- and dual-
substrate mixture experiments to accurately
predict the outcome of the 3-substrate mix-
ture experiment. When we conducted similar
experiments with a binary mixed culture
rather than pure cultures, we found that
interactions between the species had a signifi-
cant impact on the biodegradation kinetics,
and that the nature of these interactions
depended on the growth substrate(s).

These findings reveal the significant
challenges that face efforts to model real-
world biodegradation kinetics, in which
mixed substrates and mixed cultures are the
rule. Predictive modeling of these systems will
be difficult and time-consuming if one must
determine all pairwise chemical interactions
(e.g., as required by the SKIP model) and all
species interactions (with corresponding con-
centrations of inhibitors and metabolic inter-
mediates). Options to these traditional
approaches may be developed through a fun-
damental understanding of the effects
involved [e.g., as hinted at by the proteomic
results in (44,45)] and by alternative model-
ing approaches such as that presented by Liao
et al. in this volume (46).
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