
Environmental chemicals with estrogenic
activities [xenoestrogens (XEs)] have been
implicated in harmful endocrine effects on
animals and humans such as the feminization
of male animal populations (Kloas et al. 1999;
Sumpter 1995), reproductive tract malforma-
tions and endometriosis (Gotz et al. 2001; Lee
1998; Steinmetz et al. 1998), disorganization
of the central nervous system (Laessig et al.
1999; Oka et al. 2003), and breast and ovar-
ian cancer (Brown and Lamartiniere 1995;
Mathur et al. 2002). By acting as estrogen
mimetics and binding to estrogen receptors
(ERs), XEs may disrupt normal endocrine
function, leading to reproductive failure and
the induction of tumors in estrogen-sensitive
tissues. XEs can also cause alteration of hor-
mone levels via changes in hormone produc-
tion, metabolism, or transport (Sonnenschein
and Soto 1998).

There are many potential endocrine-
disrupting chemicals that are prevalent in the
environment, or to which humans have been
otherwise exposed (Singleton and Khan 2003);
in this study we examined several representative
compounds. Erroneously used to prevent mis-
carriages in the 1950s and 1960s, diethylstilbe-
strol (DES) acts developmentally as a potent
estrogen agonist, causing adenocarcinomas,
squamous neoplasia of the vagina and cervix

(Hatch et al. 2001), oligospermia (vom Saal
et al. 1997), and infertility (Palmer et al. 2001).
The pesticide o´,p´-dichlorodiphenylethylene
(DDE) and its metabolites can disorder
prostate maturation (Gray et al. 1999).
Endocrine disruptors are known to have great
impact during fetal development when
endogenous hormones regulate cell differenti-
ation and growth, and thus slight alterations
in hormonal activity due to endocrine disrup-
tion can lead to irreversible changes (Derfoul
et al. 2003). However, the abilities of XEs to
disrupt adult endocrine function and perhaps
to exacerbate estrogen-dependent tumor
growth (Soto et al. 1995) are also of concern.
We also examined other XEs reported to have
estrogen-like activities: detergents such as
nonylphenol and bisphenol A (BPA), the
organochlorine pesticides dieldrin and endo-
sulfan, and the phytoestrogen coumestrol.

Estrogenic actions have been well studied
with respect to genomic responses mediated by
nuclear ERs. The nuclear ER-mediated gene
transcription responses to XEs are very weak
[effective only at 1,000- to 10,000-fold higher
concentrations than estradiol (E2; Massaad and
Barouki 1999; Stevens et al. 1994; Witorsch
2002)], leading some to suggest that their pres-
ence in our environment is relatively harmless.
However, in addition to classical genomic

actions, estrogens can act through non-
genomic or membrane-initiated signaling
pathways via a membrane form of ER (mER).
Examples of such actions are alterations in
G-protein–coupled receptor responses, pro-
tein phosphorylation, lysosomal membrane
destabilization, K+ and Ca2+ channel activa-
tion, and nitric oxide secretion (reviewed by
Watson and Gametchu 1999, 2003). XE
actions via nongenomic pathways remain
largely unstudied.

Ca2+ responses to extracellular stimuli can
lead to changes in cell motility, intra- and
extracellular signaling processes, and rapid
hormone secretion [including prolactin
(PRL)] through exocytosis (Campbell 1990;
Pappas et al. 1994; Watson et al. 1999a).
Changes in PRL secretion are associated with
hormonal regulation of lactation, cell
proliferation, the cellular immune response,
and parental/maternal behavior (Freeman
et al. 2000). We recently showed that pico-
molar to nanomolar concentrations of E2 and
XEs can initiate mitogen-activated protein
kinase activation and that several signaling
pathways, including Ca2+ elevation, may par-
ticipate in this kinase activation (Bulayeva
et al. 2004; Bulayeva and Watson 2004). We
also demonstrated the ability of a physiologi-
cal estrogen (E2) to elicit cellular Ca2+ influx
via a membrane version of ER-α (Bulayeva
et al. 2005). Here we investigate in more
detail the ability of several XEs (DES, coume-
strol, p-nonylphenol, BPA, DDE, dieldrin,
and endosulfan) to induce rapid intracellular
Ca2+ changes leading to PRL secretion in
mER-α–enriched or depleted sublines of
GH3/B6 cells (Pappas et al. 1994). Mis-
regulation of such cellular signaling events by
XEs could lead to damaging endocrine dis-
ruptions such as tissue malformation, cancer,
and reproductive system malfunctions.

Environmental Health Perspectives • VOLUME 113 | NUMBER 4 | April 2005 431

Address correspondence to C.S. Watson, Department
of Human Biological Chemistry and Genetics,
University of Texas Medical Branch, 301 University
Blvd., Galveston, TX 77555-0645 USA. Telephone
or fax: (409) 772-2382. E-mail: cswatson@utmb.edu

We thank D. Konkel for skilled editing and scientific
comments and T. Uchida for statistical consultations.

This work was supported by National Institute of
Environmental Health Sciences grant 010987. 

The authors declare they have no competing financial
interests.

Received 17 August 2004; accepted 13 January
2005.

Research | Article

Xenoestrogens at Picomolar to Nanomolar Concentrations Trigger
Membrane Estrogen Receptor-α–Mediated Ca2+ Fluxes and Prolactin Release
in GH3/B6 Pituitary Tumor Cells
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Xenoestrogens (XEs) are widespread in our environment and are known to have deleterious effects
in animal (and perhaps human) populations. Acting as inappropriate estrogens, XEs are thought
to interfere with endogenous estrogens such as estradiol (E2) to disrupt normal estrogenic signal-
ing. We investigated the effects of E2 versus several XEs representing organochlorine pesticides
(dieldrin, endosulfan, o´,p´-dichlorodiphenylethylene), plastics manufacturing by-products/deter-
gents (nonylphenol, bisphenol A), a phytoestrogen (coumestrol), and a synthetic estrogen (diethyl-
stilbestrol) on the pituitary tumor cell subline GH3/B6/F10, previously selected for expression of
high levels of membrane estrogen receptor-α. Picomolar to nanomolar concentrations of both E2
and XEs caused intracellular Ca2+ changes within 30 sec of administration. Each XE produced a
unique temporal pattern of Ca2+ elevation. Removing Ca2+ from the extracellular solution abol-
ished both spontaneous and XE-induced intracellular Ca2+ changes, as did 10 µM nifedipine. This
suggests that XEs mediate their actions via voltage-dependent L-type Ca2+ channels in the plasma
membrane. None of the Ca2+ fluxes came from intracellular Ca2+ stores. E2 and each XE also caused
unique time- and concentration-dependent patterns of prolactin (PRL) secretion that were largely
complete within 3 min of administration. PRL secretion was also blocked by nifedipine, demonstrat-
ing a correlation between Ca2+ influx and PRL secretion. These data indicate that at very low con-
centrations, XEs mediate membrane-initiated intracellular Ca2+ increases resulting in PRL secretion
via a mechanism similar to that for E2, but with distinct patterns and potencies that could explain
their abilities to disrupt endocrine functions. Key words: bisphenol A, coumestrol, DDE, DES,
diethylstilbestrol, dieldrin, endosulfan, estrogen receptor-α, exocytosis, L-type channels, membrane,
nonylphenol, phytoestrogen, prolactin, xenoestrogen. Environ Health Perspect 113:431–439 (2005).
doi:10.1289/ehp.7505 available via http://dx.doi.org/ [Online 14 January 2005]



Materials and Methods
We purchased phenol red-free Dulbecco modi-
fied Eagle medium (DMEM) from Mediatech
(Herndon, VA); horse serum from Gibco BRL
(Grand Island, NY); defined supplemented
calf sera and fetal bovine sera from Hyclone
(Logan, UT); endosulfan and DDE from
Ultra Scientific (North Kingstown, RI); and
all other XEs from Sigma (St. Louis, MO).
Paraformaldehyde and glutaraldehyde were
purchased from Fisher Scientific (Pittsburgh,
PA). We purchased nifedipine and thapsigargin
from Calbiochem (San Diego, CA) and Fura-
2/AM from Molecular Probes (Eugene, OR).
All other materials were purchased from Sigma.

Cell culture. Clonal rat prolactinoma cell
lines were selected for high (GH3/B6/F10)
and low (GH3/B6/D9) expression of mER-α
(Pappas et al. 1994). For the present experi-
ments, cells were subsequently reselected by
immunopanning for highly enriched and defi-
cient expression of mER-α  and then used
between passages 2 and 12. Cells were rou-
tinely cultured in DMEM containing 12.5%
horse serum, 2.5% defined supplemented calf
serum, and 1.5% fetal calf serum. For individ-
ual experiments, cells were deprived of steroids
for 48 hr after plating by replacing serum-con-
taining DMEM with DMEM containing
5 µg/mL insulin-transferrin and 5 ng/mL
sodium selenite, 0.1% bovine serum albumin
(BSA), 20 mM sodium pyruvate, and 25 mM
HEPES (DMEM/ITS). Immediately before
the experiments, cells were incubated in
DMEM alone for 1 hr.

Ca2+ measurements. GH3/B6 cell sublines
were plated on poly-D-lysine–coated coverslips
in wells of a six-well plate (105 cells/well). After
serum deprivation in DMEM/ITS and then
DMEM, the cells were washed in Ringer’s
solution (120 mM NaCl, 1.25 mM CaCl2,
4.7 mM KCl, 1.2 mM MgCl2, 20 mM
HEPES, 10 mM glucose, 0.1% BSA; pH 7.4),
loaded with 2 µM Fura-2/AM diluted in
Ringer’s, wrapped in aluminum foil, and incu-
bated at room temperature (RT) for 1 hr. The
cells were washed twice and left to equilibrate
in Ringer’s for 20 min at RT before imaging.
E2 and XEs were administered using a perfu-
sion pump system at a rate of 2 mL/min.
Although responses to E2 continue during a
5-min hormonal treatment, these effects are
reversible, taking about 5 min to wash out
(Bulayeva et al. 2005). Imaging was per-
formed using a TE200-IUC Quantitative
Fluorescence Live-Cell and Multidimensional
Imaging System equipped with a digital
monochrome cooled CCD Roper Coolsnap
HQ camera (Roper Scientific, Tucson, AZ).
Ca2+ measurements were collected using the
MetaFluor program (Universal Imaging,
Downingtown, PA), making sure that only
single cells were used as the region of interest.
Data were recorded every second. Signals
were obtained in dual excitation mode
(340/380 nm), and the intracellular Ca2+ was
calculated as a ratio (R340/380) of emission data
collected at 510 nm after background subtrac-
tion. Intracellular Ca2+ was quantified by cal-
culating the change in fluorescence ratio

(R – R0) during a 5-min treatment period,
normalized to the basal fluorescence value (R0)
for each individual cell. These calculations for
individual cells were then averaged to calculate
the means and SEs for the population. Test
and calibration solutions included Ca2+-free
solution (Ringer’s without CaCl2 and with
2 mM EGTA), Ringer’s–20 mM KCl
(Ringer’s with NaCl decreased to 105 mM
and KCl increased to 20 mM), and maximum
Ca2+ solution (Ringer’s with NaCl decreased
to 112 mM and CaCl2 increased to 10 mM).
KCl treatments were used at the end of each
experiment to establish cell viability. Cells that
did not respond transiently to KCl depolariza-
tion at the end of the experiment were elimi-
nated from the composite calculations.

PRL release and radioimmunoassay. Cells
(0.5–0.7 × 106) were plated in poly-D-
lysine–coated six-well plates. After serum
deprivation in DMEM/ITS, this medium was
removed and new DMEM/0.1% BSA with or
without the appropriate reagent or vehicle
control (ethanol) was added. The cells were
incubated for 1, 3, 6, 10, or 15 min and cen-
trifuged at 4°C, 350 × g, for 5 min. The
supernatant was then collected and stored at
–20°C until radioimmunoassay (RIA).
Concentrations of PRL were determined using
components of the rat PRL RIA kit from the
National Institute of Diabetes and Digestive
and Kidney Disease and the National
Hormone and Pituitary Program (Baltimore,
MD). Briefly, RIA buffer [80% phosphate-
buffered saline (PBS), 20% DMEM, 2% nor-
mal rabbit serum], 100 µL cold standard (rat
PRL-RP-3) or unknown sample, rPRL-s-9
antiserum (final dilution of 1:437,500 in RIA
buffer), and [125I]-rat-PRL (PerkinElmer,
Wellesley, MA, USA; using 15,000 counts per
tube diluted in RIA buffer) were combined
and incubated with shaking, overnight at 4°C.
Anti-rabbit IgG (R-0881; Sigma) was added to
a final dilution of 1:9, and the samples were
incubated with shaking at RT for 2 hr. One
milliliter of polyethylene glycol solution
[1.2 M polyethylene glycol (P-6667; Sigma),
50 mM Tris, pH 8.6] was then added, and the
samples were incubated with shaking at RT for
15 min. The samples were then centrifuged at
4,000 × g for 10 min at 4°C, the supernatant
was decanted, and the pellet was counted in a
Wizard 1470 Gamma Counter (PerkinElmer,
Boston, MA). The PRL concentration was
then calculated and normalized to the crystal
violet values representing cell number. 

Crystal violet assay. We used the crystal
violet assay to determine cell number to which
PRL concentrations were normalized. After
collecting the supernatant from the PRL assay,
cells were fixed by adding 1 mL fixative (2%
paraformaldehyde, 0.1% glutaraldehyde, dis-
solved in PBS) per well. Sample plates were
then rocked at RT for 30 min. The plates were
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Figure 1. Intracellular Ca2+ changes induced by (A) E2, (B) DES, (C) coumestrol, (D) p-nonylphenol, (E) BPA,
(F) DDE, (G) dieldrin, and (H) endosulfan. Each Ca2+ profile (340/380 nm trace) is a single representative
cell. See “Materials and Methods” for details of experiments.



then washed three times with deionized water
and allowed to dry overnight. Crystal violet
solution (1 mL of a 0.1% solution in water, fil-
tered) was added to each well, and the plates
were incubated with rocking at RT for 30 min.
The plates were then washed and dried, and
the dye was extracted with 1 mL per well of a
10% acetic acid solution (in water). After a
30 min incubation at RT, the absorbance at
590 nm was read in a model 1420 Wallac
microplate reader (PerkinElmer, Boston, MA).

Statistics. We calculated the statistical sig-
nificance of differences using Sigma Stat (ver-
sion 3.0; Jandel Scientific, San Rafael, CA)
and one-way analysis of variance.

Results

XEs increase intracellular Ca2+ levels. We pre-
viously showed that E2 can trigger a rapid and
reversible (within 5 min) intracellular Ca2+

change (increase from basal level) in our
mER-α–enriched (F10) rat prolactinoma cell
subline, whereas the mER-α–depleted (D9)
subline showed no Ca2+ response (Bulayeva
et al. 2005). In the present study, E2 and all
XEs studied initiated a change in intracellular
Ca2+ levels (increased frequency and/or ampli-
tude) within 30 sec of administration in
mER-α–enriched F10 cells (Figures 1 and 2).
Untreated cells during this testing period do
not show a response (Bulayeva et al. 2005).
Each compound produced a unique dose–
response pattern with respect to potency, peak
height, and/or frequency. All XEs elicited
concentration-dependent responses; at the
highest concentrations tested (10–9–10–8 M),
although all XEs caused a response, generally
they did so less robustly or potently when
compared with E2. E2 showed a significant
intracellular Ca2+ change at concentrations as
low as 10–12 M, and increased with concentra-
tion. DES gave a similar response, although
somewhat less robustly. Coumestrol was also
effective at all tested concentrations; however,
its maximal response (10–8 M) was half that
caused by E2. Nonylphenol elicited concentra-
tion-dependent increases in Ca2+ influxes with
similar characteristics to E2, but with the most
robust response at 10–8 M being slightly lower
than that for E2. BPA displayed a maximal
response at 10–9 M that declined at a higher
concentration. DDE produced the smallest
Ca2+ elevations. Dieldrin elicited a Ca2+

change at all concentrations. Endosulfan
caused no intracellular Ca2+ changes at the
lowest concentrations, yet 10–9 M and 10–8 M
produced quite robust influx. When we exam-
ined individual cells, we found that they were
heterogeneous in their responsiveness to XEs,
as we have observed previously in responses to
E2 (Watson et al. 1999a). Overall, 82% of the
cells tested responded to treatment with E2 or
XEs, but some cells did not respond at all. We
did not average nonresponders into the
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Figure 2. Intracellular Ca2+ changes induced by (A) E2 (n = 24 cells/3 experiments), (B) DES (n =
19 cells/3 experiments), (C) coumestrol (n = 12 cells /4 experiments), (D) p-nonylphenol (n = 12 cells/4 experi-
ments), (E) BPA (n = 15 cells /4 experiments), (F) DDE (n = 7 cells /3 experiments), (G) dieldrin (n =
20 cells/3 experiments), and (H) endosulfan(n = 19 cells /4 experiments). Bars display the change in fluores-
cence ratio divided by the basal fluorescence [(R – R0)/R0], averaged from multiple imaged GH3/B6/F10 cells
over several experiments (mean ± SE). 
*Statistically significant from basal level (p < 0.05).
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composite measurements (Figure 2), and the
error measurements shown represent cells with
differing response capabilities. No Ca2+

changes occurred upon the administration of
XEs of any concentration in the mER-α–defi-
cient D9 cells (Figure 3); for these studies we
tested only a single representative compound
from each category (E2, phytoestrogen, deter-
gent, and organochlorine pesticide).

Intracellular Ca2+ stores are not responsible
for E2-induced Ca2+ level changes. To deter-
mine which sources of Ca2+ (intracellular,
extracellular, or both) were involved in the XE-
induced response, we administered thapsigar-
gin, a cell-permeable inhibitor that releases
Ca2+ from intracellular stores by specifically
and irreversibly inhibiting endoplasmic reticu-
lar Ca2+ ATPase (Figure 4). We first com-
pletely emptied the intracellular stores of Ca2+

with the application of 1 µM thapsigargin; this
is evident from the rise in intracellular Ca2+

levels that occurred immediately after thapsi-
gargin application. Then, after thapsigargin
treatment, E2 and each XE could still trigger an
intracellular Ca2+ rise, suggesting that the
intracellular induced Ca2+ increase comes from
the extracellular pool.

Intracellular Ca2+ changes are due to an
influx of extracellular Ca2+. To confirm that
the Ca2+ increase was drawn from an extra-
cellular source, we tested the effect of the
presence or absence of Ca2+ in the solution
surrounding the cells. We first triggered an
intracellular Ca2+ change with the adminis-
tration of E2 or XEs at 10–8 M in normal
Ringer’s. We then eliminated Ca2+ from the
extracellular solution by administering Ca2+-
free Ringer’s into the perfusion system. The
cells were then treated with either 10–8 M E2
or XE diluted in Ca2+-free Ringer’s. The
effect on the response to E2 is shown in
Figure 5A, where intracellular Ca2+ level
increases were abolished, confirming that
extracellular Ca2+ was the source for the
intracellular Ca2+ elevations. These experi-
ments were repeated for DES, coumestrol,
nonylphenol, and endosulfan, with similar
results (Figure 5B, averaged responses). To
determine continued cell viability after treat-
ment with Ca2+-free Ringer’s and estrogenic
compounds, we washed out the Ca2+-free
Ringer’s with normal Ringer’s followed by
Ringer’s containing 20 mM KCl (shown
only for E2 in Figure 5A). The cells always
responded to both the normal Ringer’s (by
returning of the Ca2+ influx pattern to the
normal basal level) and the Ringer’s–20 mM
KCl (by displaying a large and transient Ca2+

influx due to cell depolarization), thus
demonstrating cell viability.

XE-induced Ca2+ influx is mediated by
L-type Ca2+ channels. We have recently shown
that E2 causes an intracellular Ca2+ change via
the L-type Ca2+ channel (Bulayeva et al.

2005). XEs mimic the response caused by E2,
implying that they may also act via the L-type
Ca2+ channel. To test this hypothesis, we
administered nifedipine, an L-type Ca2+ channel

blocker that inhibits Ca2+ influx into the cell
from extracellular sources. We monitored sin-
gle cells (Figure 6) and then averaged these
responses from multiple cells (Figure 7) to
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Figure 5. Effect of Ca2+-free extracellular solution on XE-induced Ca2+ fluxes. (A) Representative trace for E2
with the following sequential treatments: 1) 10 nM E2 in normal Ringer’s, 2) Ca2+-free Ringer’s added,
3) 10 nM E2 in the presence of Ca2+-free Ringer’s, 4) wash with normal Ringer’s, and 5) Ringer’s–20 mM KCl.
(B) Represents the same treatment sequence shown in (A) for DES (n = 7 cells/3 experiments); coumestrol
(Coum; n = 8 cells/3 experiments); p-nonylphenol (NP; n = 5 cells/3 experiments); and endosulfan (End; 
n = 6 cells/3 experiments). Values shown are mean ± SE for [(R – R0)/R0] for multiple imaged cells over
several experiments.
*Statistically different from the basal level (p < 0.05). **Statistically different from the E2- or XE-treated value (p < 0.05).
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quantitate the responses. We first triggered a
Ca2+ response by stimulating cells with
10–8 M E2 or XEs representative of different
classes (DES, coumestrol, BPA, DDE, and
endosulfan). After washout of the estrogens,
the addition of 10 µM nifedipine caused cessa-
tion of Ca2+ influx. Subsequent addition of
10–8 M E2 or XE, in the presence of nifedip-
ine, could not elicit a Ca2+ influx.

XEs stimulate the rapid secretion of PRL.
At 10–8 M E2 or XE, PRL was secreted rapidly
(by 1 min), a response largely complete by
1–3 min (Figure 8) for most of the com-
pounds (E2, DES, coumestrol, nonylphenol,
and BPA). However, the organochlorine pesti-
cides produced either delayed or no PRL
secretion; DDE did not cause PRL secretion
at any time point, and dieldrin and endosulfan

stimulated PRL secretion incrementally over
time with maximal secretion at 15 min, which
was significantly different from their secretion
level at 1 min.

XEs stimulate the rapid secretion of PRL in
a dose-dependent manner. The E2 or XE con-
centration dependence of PRL secretion at
3 min shows differences among compounds
(Figure 9). The dose–response pattern for DES
resembles that for E2, although DES is less
potent at the lower concentrations. The E2 and
DES dose–response curves were interrupted by
a single lower/inactive nanomolar dose that sits
between two active doses of 10–10 M and
10–8 M. Coumestrol triggered PRL release
only at the highest concentration (10–8 M).
Nonylphenol and BPA, both detergents, show
a bimodal response curve with a wide gap
(interruption) at the middle concentrations;
PRL secretion was only elicited at the highest
and lowest concentrations. The pesticides
DDE and endosulfan show similar response
curves, with maximal secretion at 10–10 M.
Dieldrin induced PRL secretion at all concen-
trations from 10–12 M to 10–8 M, but with no
apparent dose-dependent changes across these
concentrations.

PRL secretion is blocked by nifedipine. To
test whether PRL secretion occurs via the
L-type Ca2+ channel mechanism, we adminis-
tered nifedipine to block the influx of Ca2+

(Figure 10). E2 and a representative set of XEs
(DES, coumestrol, and endosulfan) were
tested at a 10–8 M concentration with and
without nifedipine. Nifedipine, which blocked
the entry of Ca2+ from the extracellular solu-
tion, also abolished the E2- and XE-induced
PRL secretion at 3 min.
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Figure 6. Effect of nifedipine (Nifed) on intracellular Ca2+ changes induced by (A) E2, (B) DES, (C) coumestrol
(Coum), (D) BPA, (E) endosulfan (End), or (F) DDE. GH3/B6/F10 cells were treated with E2 or the indicated XE
at 10–8 M, and 10 µM Nifed was then added, followed by a second addition of 10–8 M E2 or XE in the pres-
ence of 10 µM Nifed. Each trace is a single representative cell.
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Figure 7. Cell effects of nifedipine (Nifed) on XE-induced intracellular Ca2+ increases (mean ± SE) induced by (A) E2 (n = 8 cells/3 experiments), (B) DES (n = 8 cells/
3 experiments), (C) coumestrol (Coum; n = 9 cells/3 experiments), (D) BPA (n = 16 cells/4 experiments), (E) DDE (n = 9 cells/3 experiments), and (F) endosulfan (End;
n = 9 cells/3 experiments). GH3/B6/F10 cells were treated with E2 or the indicated XE at 10–8 M, and 10 µM Nifed was then added, followed by a second addition of
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*Statistically different from the basal level (p < 0.05). **Statistically different from the E2- or XE-stimulated value (p < 0.05).



Discussion
There has been much debate about the
mechanisms by which XEs act. The concen-
trations at which XEs are believed to be
mechanistically active have largely been
determined by assaying for the transcrip-
tional activity of these compounds via the
well-established nuclear pathway of action for
steroids. We hypothesized that XEs, like
steroid hormones, can elicit both delayed
(genomic) and rapid (nongenomic or mem-
brane-initiated) responses (Bulayeva et al.
2004; Bulayeva and Watson 2004; Watson
and Gametchu 2003). We established a cell
model with which to screen the rapid non-
genomic activities of estrogenic compounds
using cells naturally expressing high levels of a
membrane form of ER-α thought to mediate
these nongenomic actions. We previously
demonstrated that these cells can respond
rapidly to E2 by extracellular signal-regulated
kinase (ERK) phosphorylation (Bulayeva
et al. 2004; Bulayeva and Watson 2004) and
PRL release (Norfleet et al. 2000; Pappas
et al. 1994). We also recently determined that
E2 induces a rapid Ca2+ influx (within 30 sec)
via the L-type Ca2+ channel in these cells,
which is necessary for rapidly induced PRL

secretion (Bulayeva et al. 2005). However, the
ability of XEs to induce mechanistic pathways
related to secretion of hormones associated
with endocrine-disruptive mechanisms has
largely not been determined. In the present
studies, we demonstrated the ability of very
low (picomolar to nanomolar) concentrations
of several XEs to induce a rapid Ca2+ influx
resulting in PRL secretion.

Because we found that some XEs induced
rapid mitogen-activated protein kinase
(MAPK) activation via the same membrane-
initiated signaling pathway used by E2 in
pituitary tumor cells (Bulayeva and Watson
2004), we hypothesized that XEs could
mimic E2 in other rapid signal-generating
mechanisms, including effects on intracellular
Ca2+ levels. Our present studies thus show
that, like E2 (Bulayeva et al. 2005), XEs
potently induce intracellular Ca2+ increases in
our mER-α–enriched rat prolactinoma cell
line GH3/B6/F10, whereas mER-α–deficient
cells cannot respond. Both physiological estro-
gen (E2) and XEs stimulate a rapid Ca2+ influx
(within 30 sec) from the extracellular media
(because elimination of extracellular Ca2+

abolished intracellular Ca2+ changes) that is
independent of the release of endoplasmic

reticulum Ca2+ stores (i.e., is thapsigargin
insensitive). Blocking the L-type Ca2+ channels
with nifedipine also abrogated XE-induced
Ca2+ influx. Therefore, the XEs used in our
study were able to cause E2-like changes in
Ca2+ levels via similar mechanisms.

Increases in Ca2+ levels often lead to the
release of many different kinds of stored hor-
mones and other proteins from secretory vesi-
cles (Kits and Mansvelder 2000). GH3/B6
cells manufacture and spontaneously secrete
PRL (Zyzek et al. 1981); however, in addition
to constitutive PRL secretion, a variety of
external stimuli such as drugs or hormones can
enhance the release of stored PRL from vesicles
[e.g., E2-induced PRL release (Pappas et al.
1994)]. These data demonstrate that environ-
mental contaminants such as XEs of different
classes (plastics manufacturing and detergent
byproducts, pesticides, phytoestrogens, and
synthetic estrogens) can mimic endogenous
estrogens such as E2, causing rapid PRL secre-
tion by raising cellular Ca2+ levels.

PRL is conventionally viewed as a pituitary
hormone that stimulates and maintains the
secretion of milk. However, PRL is also syn-
thesized and secreted by a broad range of cells,
including those of the immune system
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(DiMattia et al. 1988; Pellegrini et al. 1992),
breast cancers (Clevenger et al. 1995), and the
lining of the pregnant uterus (Gellersen et al.
1991; Zetser et al. 2001). Physiological stimuli
such as increased levels of ovarian steroids (pri-
marily estrogens) can increase PRL secretion,
leading to delay in puberty (Barrio et al. 1979),
interference with ovulation (Bole-Feysot et al.
1998; McNeilly et al. 1982), decreases in
libido and fertility (Gurbuz et al. 2003; Heller
and Jacobs 1978; Sodersten et al. 1983), and
cell proliferation (Krown et al. 1992; Sauro
and Zorn 1991). Behavioral effects of PRL are
also known (Bridges et al. 1985; Lucas et al.
1998). Therefore, overstimulation, inappropri-
ate stimulation (for developmental stage or
reproductive cycle stage), or inhibition of PRL

secretion can lead to a variety of disruptions of
normal reproductive function, and our data
demonstrate that XEs at low concentrations
could cause such altered PRL secretion.

Each XE that we studied produced PRL
release during the first 15 min of application,
but most elicited a significant response by
1 min. Dose–response curves revealed interme-
diate inactive doses, as we (Bulayeva and
Watson 2004; Watson et al. 1999b) and others
(Picotto et al. 1996) have previously observed,
although we still do not have a substantiated
explanation for such response gaps. Receptors
that activate such responses via the membrane
may be sequestered on different cellular sur-
faces or in different membrane compartments
such as rafts and caveolae (Razandi et al. 2002;

Shaul 2002), which could produce different
receptor subpopulations with different dose–
response characteristics. It is interesting to note
that the Ca2+ response did not display such a
bimodal dose–response  pattern, so additional
signaling mechanisms besides Ca2+ must be
responsible for these differential dose patterns,
as we have suggested previously in studies that
noted differences between E2- and KCl-
induced Ca2+ levels and resulting PRL secre-
tion (Bulayeva et al. 2005).

Increased Ca2+ levels can trigger the release
of PRL and other hormones from secretory
vesicles, but it can also initiate signaling cas-
cades leading to a variety of kinase activations
(e.g., adenylyl cyclase production of cAMP
leading to activation of protein kinase A,
phospholipase C activation resulting in activa-
tion of protein kinase C, calmodulin activa-
tion of pathways leading to MAP kinase
phosphorylation, etc.), resulting in changes in
the phosphorylation status of a variety of cellu-
lar proteins leading to rapid functional conse-
quences. These signaling cascades are now
known to be rapidly stimulated by steroid hor-
mones (reviewed by Watson and Gametchu
1999, 2003). For example, E2 induces a rapid
increase in cAMP that parallels the changes in
Ca2+ uptake in duodenal cells (Picotto et al.
1996), and E2 has been shown to increase
cytosolic Ca2+ levels as well as induce MAPK
activation in hemocytes (Canesi et al. 2004).
Steroid-induced Ca2+ influxes have also been
reported in ovarian, prostate, cardiac and 
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vascular smooth muscle, and bone cells
(reviewed by Watson and Gametchu 1999).
The list of cell types and stages in which
steroids can induce Ca2+ changes is rapidly
growing and becoming a hallmark of non-
genomic steroid action; examples now exist for
most classes of steroids (reviewed by Watson
2003; Watson and Gametchu 1999, 2003).

Some researchers have speculated that the
ER that mediates XE effects is a unique recep-
tor (Ghosh et al. 1999; Nadal et al. 2000).
However, our studies demonstrate that sub-
clones of GH3/B6 cells that substantially lack
the membrane version of ER-α [D9 subline
(Pappas et al. 1994)] cannot respond to E2 or
XEs via Ca2+ fluxes, PRL release (these stud-
ies), or ERK activation (Bulayeva et al. 2004;
Bulayeva and Watson 2004). This is in keep-
ing with our previous investigations that indi-
cated the involvement of an ER-α protein in
these rapid responses in several ways. E2-
induced PRL release was blocked in cells inhib-
ited with the ER antagonist ICI 182,870
(Bulayeva et al. 2005) or treated with specific
ER-α antibodies (Norfleet et al. 2000). The
mER expression in these same cells was abol-
ished by ER-α by antisense strategies (Norfleet
et al. 1999). Of course, it is possible that other
components besides mER-α are necessary, but
the lack of ER-α in the membrane prevents
signaling responses to these compounds.

XEs pose a potential environmental threat
to human health because experimental animal
exposures have demonstrated endocrine devel-
opmental anomalies at levels similar to those
sometimes seen in environmental contamina-
tion. However, most previous studies have
emphasized the genomic mechanisms of XE
action, which require very high concentrations.
Our research has instead focused on the rapid,
nongenomic or membrane-initiated effects of
these environmental contaminants. Via these
alternate signaling pathways, estrogen mimetics
such as XEs could interfere with endogenous
estrogen actions via multiple mechanisms. By
eliciting, enhancing, or inhibiting estrogenic
signaling, they may interfere with physiological
estrogenic signals, affecting many downstream
functions. Each XE however, shows unique
temporal and dose-responsive patterns, possi-
bly due to the differential involvement of com-
panion signaling pathways. Although we have
linked XEs to rapid cellular events that trigger
intracellular Ca2+ influxes and PRL secretion,
further study is needed to fully understand all
of these differentially activated signaling
cascades and their relationships to the myriad
outcomes of XE exposure.
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