
Systemic lupus erythematosus (SLE, or lupus)
is a chronic autoimmune rheumatic disease
that may involve serious renal, cardiovascular,
and neurologic complications. The pathogene-
sis of lupus, as well as other autoimmune dis-
eases such as systemic sclerosis and rheumatoid
arthritis, is thought to involve complex interac-
tions of multiple genes and environmental
agents. In this review we summarize recent
research pertaining to potential pathogenic
mechanisms of environmental exposures that
may be involved in the development of SLE in
humans and recommendations for new
research to better understand environmental
influences and gene–environment interactions
in lupus. 

Mechanisms Involved in the
Pathogenesis of Lupus
Recent research has advanced our understand-
ing of mechanisms involved in the loss of tol-
erance and development of a chronic state of
inflammation, with work involving the role of

apoptosis in the generation and clearance of
immunogenic intracellular self-antigens, adju-
vant or bystander effects, toll-like receptors
(TLRs) and innate immunity, and abnormal
DNA methylation. Environmental exposures
may act as an initiating event and influence at
other points in the pathogenesis of an auto-
immune disease (Figure 1).

Apoptosis as a source of self-antigens.
Immune responses against self-antigens are
fundamental to lupus pathogenesis, and dead
and dying cells are a major source of the self-
antigens targeted in lupus (Walport 2000).
Consistent with this idea, immunization of test
animals with preparations of dead cells, or
preparations expressing epitopes found on
dead cells, can induce lupuslike immunity and
clinical manifestations (Mevorach et al. 1998).
Moreover, mutations that lead to impaired
nonimmune clearance of dead cell debris have
been shown to be strong risk factors for the
development of lupus in animal models
(Cohen et al. 2002). Experimental evidence

shows that the clearance of dead cells can be
overwhelmed when encountering extremely
high rates of cell death, leading to the induc-
tion of lupuslike disease (Grader-Beck et al.
2007). Some environmental agents have been
shown to induce periods of increased cell death
(e.g., ultraviolet light, viral infections) (Kuhn
et al. 2006). Notably, ultraviolet-B exposure
and viral infections can also lead to the pro-
duction of novel forms of autoantigens [such
as ultraviolet radiation–induced, covalently
linked protein–RNA conjugates (Andrade
et al. 2005)] that may be particularly favorable
for the induction of autoimmunity. It is also
plausible that environmental exposures may
lead to periods of defective or depleted dead
cell clearance mechanisms (caused by, for
example, complement consumption or
reduced local macrophage levels).

Impaired elimination of autoreactive
cells via apoptosis. Although dead cell debris
promotes autoreactivity, the process of
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programmed cell death is also critical to pre-
venting and limiting an autoimmune response.
Specifically, apoptosis of immune cells partici-
pating in autoimmune responses (e.g., T cells,
B cells, dendritic cells) is a major mechanism
for the induction and maintenance of self-tol-
erance (Chen et al. 2006; Stranges et al. 2007).
Just as gene mutations leading to defects in
immune cell apoptosis have been linked to
increased risk for the development of lupus
(Drappa et al. 1993), environmental factors
influencing the set point at which autoreactive
cells undergo apoptosis also appear to influence
lupus susceptibility. An example in mice is the
ability of estrogen to protect autoreactive B
cells from programmed cell death (Venkatesh
et al. 2006). Conversely, impairments in the
ability of cytotoxic cells to eliminate autoreac-
tive immune cells appear to enhance the risk of
lupus (Graham et al. 2005). Environmental
exposures that selectively impair apoptosis of
immune system cells may predispose to lupus
in a manner that synergizes with exposures that
increase target tissue apoptosis. Once estab-
lished, the development of autoreactive
immune memory cells (with impaired apopto-
sis compared with naïve cells) and the induc-
tion of lupus target organ injury (with
increased local cell death due to the effects of
lupus) can lead to a self-sustaining and self-
amplifying cycle of lupuslike autoimmunity.

The adjuvant or bystander effect. What
mechanisms prevent the unlimited prolifera-
tion of T cells that are capable of recognizing
self-antigens? T-cell receptor engagement alone
is ineffective in activating the pathways needed
to produce the proinflammatory cytokines and
other growth factors required for the induction
of the pathogenic autoimmune response. A

second, non-antigen-specific signal determines
whether an encounter with a potential self-
antigen is aborted at an early stage, proceeds
only to a limited, harmless autoimmune
response, or progresses to a pathogenic out-
come. The secondary signals involved in mod-
ulating the immune response have collectively
been termed the “adjuvant effect”; another
term for these signals is the “bystander effect”
(Rose and Afanasyeva 2003). 

Information has accumulated rapidly in
recent years that allows us to better under-
stand the adjuvant effect at a molecular level.
A vivid illustration of the importance of the
adjuvant effect in the induction of auto-
immune disease was revealed by studies of
autoimmune myocarditis. This disease can be
induced in susceptible strains of mice by infec-
tion by Coxsackievirus B3 or, alternatively, by
immunization with purified cardiac myosin
(Hill et al. 2002). The cardiac myosin immu-
nization must, however, be accompanied by a
powerful adjuvant, complete Freund adjuvant,
which includes the mycobacterium compo-
nent. Incomplete Freund adjuvant results in
the production of myosin-specific antibodies
without the occurrence of inflammatory
lesions in the heart muscle. In resistant strains
of mice that do not develop disease after
Coxsackievirus B3 infection or cardiac myosin
immunization, cotreatment with bacterial
lipopolysaccaride results in a florid disease
(Lane et al. 1991). This disease is dependent
upon the prompt production of the key early
proinflammatory cytokines, interleukin-1 and
tumor necrosis factor-α (Lane et al. 1992).
Mast cells are critical players in the initiation
of the adjuvant effect that occurs early after
viral infection (Fairweather et al. 2004). 

Another series of experiments used a sur-
rogate marker of the adjuvant effect: a sudden
drop in the thyroid hormone thyroxine that
occurs after immunization using complete
Freund adjuvant (Rocchi et al. 2007). These
studies indicate that TLRs or similar receptors
of the innate immune response are critical for
mounting the adjuvant effect. Thus, active
infection or products of the infection can pro-
vide the adjuvant effect necessary for the
induction of many autoimmune disorders.
The adjuvant effect depends upon early non-
antigen-specific signals that initiate an innate
immune response. It shapes the later adaptive
response that is directly responsible for patho-
genic autoimmunity. The potential role of
other environmental agents in the induction
of an adjuvant effect of this type and the role
of an adjuvant effect specifically in lupus are
important areas of research.

In addition to providing antigenic stimuli
to B cells and T cells, nucleic acid components
associated with dead cell debris have been
shown to activate the adjuvant effect through
TLR activation (Hoffman et al. 2004). RNA
activation of TLR7 on B cells and plasmacytoid
dendritic cells has been particularly strongly
associated with lupus pathogenesis, based on its
role as the genetic risk gene for a murine model
of inherited lupus (Pisitkun et al. 2006) and its
ability to induce lupus-associated type I inter-
feron production (Vollmer et al. 2005). The
RNA-sensing TLR3 has also been implicated as
an inducer of inflammation in a variant form of
lupuslike disease (Greidinger et al. 2006), and
the DNA-sensing TLR9 has been associated
with lupus nephritis in some models (Pawar
et al. 2006). However, these innate immune
receptors have also been associated with down-
regulation of immune responses under some
circumstances (Christensen et al. 2006).
Adjuvant effect signals may influence the tissues
targeted by autoantigen-specific innate immune
responses by selectively increasing inflammatory
responses in some tissues and decreasing the
inflammatory responses in others (Greidinger
et al. 2007).

Environmental factors could influence
TLR responses and hence the adjuvant effect
in lupus in multiple ways. Radiation, chemical
toxins, or microbial products may selectively
activate or inhibit general innate immune
response pathways or selectively influence a
single TLR pathway to influence the induc-
tion of lupus. Moreover, recent identification
of lupus risk factor genes with functions in
interferon responses (Graham et al. 2007) and
as more general mediators of innate immune
signaling, as in the case of STAT4 (Remmers
et al. 2007), suggests that innate immune
pathways subject to environmental influences
in addition to TLRs may prove to be relevant
to lupus pathogenesis. Deficiencies in the
complement system may result in the aberrant

Cooper et al.

696 VOLUME 116 | NUMBER 6 | June 2008 • Environmental Health Perspectives

Figure 1. Mechanisms involved in the loss of self-tolerance and development of autoimmune pathology.
Activation of innate immune effectors as a danger signal, adjuvant effects, and a decreased clearance of
autoreactive cells produce a sustained pathogenic response to the self-antigens that may result from
apoptotic debris. Abnormal DNA methylation may also result in increased production and decreased
clearance of apoptotic cells through macrophage apoptosis, and overstimulation of B cells. 
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clearance of apoptotic cells, and specific
deficiencies have been implicated in the patho-
genesis of SLE (Trouw et al. 2008). 

Epigenetics: DNA demethylation and
pathogenic T and B cells. Environmental fac-
tors may also induce autoimmunity through
epigenetic mechanisms. Epigenetics is defined
as heritable changes in gene expression that
occur without a change in DNA sequence,
and the best-characterized mechanism is
DNA methylation. DNA methylation, the
postsynthetic methylation of cytosines in CG
pairs, silences genes by altering chromatin
structure into a transcriptionally repressive
configuration. The methylation of previously
unmethylated sequences is mediated by the
de novo DNA methyltransferases Dnmt3a and
Dnmt3b. A more detailed discussion of
methylation and epigenetics is provided in a
recent review (Richardson 2007). 

DNA methylation patterns are established
during development and suppress genes that
are inappropriate or detrimental to the func-
tion of any given cell type. Inhibiting lym-
phocyte DNA methylation during mitosis
alters gene expression, resulting in immuno-
genic changes that can alter the response to
self-antigens, including overexpression of the
adhesion molecule LFA-1 (CD11a/CD18),
the cytotoxic molecule perforin, and B-cell
costimulatory molecules CD70 and CD40L
(Ballestar et al. 2006). LFA-1 overexpressing
T cells are autoreactive, resembling the T cells
that cause lupuslike chronic graft-versus-host
disease. Perforin overexpression contributes to
autologous macrophage killing by the autore-
active cells, with subsequent release and
impaired clearance of antigenic nucleosomes,
whereas CD70 and CD40L overexpression
overstimulate B-cell immunoglobulin produc-
tion (Ballestar et al. 2006; Lu Q et al. 2007;
Richardson 2007). The CD40L overexpression
occurs only in women, as CD40L is encoded
on the X chromosome (Lu Q et al. 2007).
Injecting demethylated T cells into genetically
identical mice causes a lupuslike disease with
anti-DNA antibodies and an immune complex
glomerulonephritis (Richardson 2007; Yung
et al. 2001). These functional changes suggest
a model in which hypomethylated T cells kill
macrophages and perhaps other antigen-
presenting cells (APCs), causing an increase in
apoptotic material that promotes an anti-DNA
response, which is further augmented by
increased antibody production. 

Studies in lupus patients also suggest that
T-cell DNA demethylation may be fundamen-
tal to the disease process. CD4+ T cells from
patients with active lupus overexpress LFA-1,
perforin, CD70, and CD40L because of
demethylation of the same sequences demethy-
lated by a Dnmt inhibitor (Deng et al. 2001).
Further, CD4+ lupus T cells demonstrate func-
tional changes identical to T cells demethylated

in vitro, with perforin-dependent autoreactive
macrophage killing and CD70/CD40L-
dependent B-cell overstimulation (Ballestar et al.
2006; Lu Q et al. 2007; Richardson 2007). 

The evidence summarized above suggests
that aberrant T-cell DNA methylation con-
tributes to lupus pathogenesis. DNA methyla-
tion silences one X chromosome in women,
and suppresses parasitic viral DNA. Thus
DNA methylation may represent one pathway
that may influence the marked sex difference
in incidence of lupus in humans, as seen with
the example of sex-specific CD40L overexpres-
sion and B-cell stimulation. Further support
for the association between T-cell DNA
methylation and lupus can be found in reports
that hydralazine and procainamide, which
cause antinuclear antibodies in most people
and a lupuslike disease in a subset, are DNA
methylation inhibitors. Procainamide acts
through inhibition of the DNA methyl trans-
ferase enzyme Dnmt1 (Lee et al. 2005), and
hydralazine acts through the extracellular sig-
nal-regulated kinase (ERK) signaling pathway
(Deng et al. 2003). The signaling defect in
lupus and in hydralazine-treated T cells maps
to protein kinase C (PKC)-δ (Gorelik et al.
2007), supporting commonality of mecha-
nisms. Ultraviolet light also triggers lupus
flares, inhibits ERK pathway signaling, and is a
DNA methylation inhibitor (Richardson
2007). These examples suggest that other
xenobiotics could contribute to the develop-
ment or exacerbation of lupus in some patients
by similar mechanisms. Agents (e.g., dietary
deficiencies) that deplete the pool or biosynthe-
sis of the methyl donor or that inhibit key
enzymes or the signaling pathways (e.g.,
increased homocysteine levels) could lead to
increased inhibition of the reaction. Finally,
reports that methyl donor restriction during
fetal development can cause lifelong effects
(Waterland and Jirtle 2004) raises the possibil-
ity that nutritional deficiencies or exposure to
toxicants during pregnancy may affect lupus
susceptibility later in life.

Viral, Solvent, and Particulate
Exposures and the Pathogenesis
of Autoimmune Disease
In the previous section we described mecha-
nisms through which different environmental
exposures could affect the development of
lupus and other systemic autoimmune diseases.
Here we discuss three examples of exposures.
Although consensus does not exist regarding all
of the issues with respect to each exposure and
the development of lupus, these three diverse
exposures have generated interest from lupus
researchers, based on potential connections to
elements identified in the lupus disease path-
way. Of these, the environmental exposure
with the most developed literature suggesting a
link with SLE is Epstein-Barr virus (EBV).

EBV is a nearly ubiquitous pathogen that has
been associated with lupus in studies using
serologic and DNA measures. Its high world-
wide prevalence raises the key question of how
a common environmental exposure leads to
disease in only a very small subset of infected
individuals (Thompson and Kurzrock 2004)
and suggests that differences in EBV infection
or differences in the host immune response to
the infection may be key considerations.
Although the first study of occupational res-
pirable silica exposure and systemic auto-
immune disease was published almost 100
years ago [reviewed by Brown et al. (2004b);
Parks et al. (1999)], it is only in the past
decade that this relationship has become the
focus of mechanistic studies in animal models,
taking its historical label as an adjuvant to the
molecular level. These examples further illus-
trate how exposures can lead to a series of
events from the initial initiating impact to
multiple levels of the immune response.
Trichloroethylene is a commonly used solvent
and potential air and water contaminant; sol-
vents have been most consistently associated in
epidemiologic studies with systemic sclerosis
(Cooper et al. 2002). In experimental studies
of trichloroethylene using the MRL+/+ mouse
model, however, autoimmune hepatitis, skin
inflammation, and alopecia were seen. These
observations highlight the critical gaps in our
understanding of the expression of auto-
immune disease in animals and humans. 

EBV: a summary of three decades of
research. EBV was offered as a potential envi-
ronmental factor in SLE as early as 1972.
Pediatric lupus patients, used as controls in a
study of EBV and childhood lymphoma, were
found to have an enriched frequency of EBV
serology compared with other children
(Dalldorf et al. 1972). During the following
few decades, debate raged [for a historical
review, see McClain et al. (2001)]. Evidence
of induced models, molecular mimicry, adju-
vant or bystander effects, viral DNA associa-
tion, increased viral loads, differential EBV
gene expression, and abnormal EBV T-cell
and B-cell responses in lupus have recently all
provided additional support for potential
roles for EBV in lupus [reviewed by Poole
et al. (2006)] (Figure 2).

Early targets of key lupus autoantigens are
often restricted and then diversify over time in
a concept termed epitope spreading (Arbuckle
et al. 1999; James and Harley 1998; McClain
et al. 2005). These initial lupus autoantigen
humoral targets have proven quite interesting
in that immunization of select animal strains
with these sequences constructed on a polyly-
sine backbone develop not only antibodies to
the peptide of immunization, but also anti-
bodies that bind to the parent protein and
eventually develop other autoantibody speci-
ficities and clinical features of systemic

Lupus: environment and mechanisms of disease

Environmental Health Perspectives • VOLUME 116 | NUMBER 6 | June 2008 697



autoimmunity (McClain et al. 2005).
Interestingly, initial targets of Sm B´ and
60kD Ro are cross-reactive with sequential
regions of EBV nuclear antigen-1 (EBNA-1),
the key latent protein of EBV. This work
suggests potential pathways for molecular
mimicry to lead to subsets of lupus.

Using new sensitive ELISA assays, studies
of pediatric and adult lupus patients and
healthy controls drawn from relatives or a large
pedigree study have shown an association of
EBV seroconversion and SLE [reviewed by
James et al. (2006); McClain et al. (2001);
Poole et al. (2006)]. In addition, several studies
also evaluated the presence of EBV DNA in
peripheral blood mononuclear cells and
showed an association between EBV DNA
presence and lupus (James et al. 1997; Lu JJ
et al. 2007; Moon et al. 2004; Yu et al. 2005).
Lupus patients had a 15-fold (Moon et al.
2004) to 30-fold (Kang et al. 2004) increase in
EBV DNA in the peripheral blood compared
with controls; however, no difference in EBV
DNA levels was found in mouthwash samples
(Moon et al. 2004). The controls in these stud-
ies were described as healthy and were matched
by demographic factors, but the recruitment
process was not described in detail.

More recent studies using isolated B cells
from lupus patients and controls showed a
10-fold increase in infected cells as well as dif-
ferences in EBV gene expression (Gross et al.

2005). These increased levels of EBV infection
and gene expression in lupus patients could
lead to a) a stronger or altered immune
response to EBV proteins with resultant cross-
reactive self immune responses, b) an increased
activation state of the host immune response,
c) a proinflammatory cytokine environment,
which could result in easier breaks in tolerance,
or d) potential EBV-infected autoreactive cells,
which could lead to autoantibody formation
and/or pathogenic responses. 

The host immune response to EBV is also
different in lupus patients compared with
lupus-unaffected controls. Lupus patients have
higher numbers of CD4+ T cells but lower
numbers of CD8+ T cells, which produce
interferon-α in response to EBV (Kang et al.
2004). These abnormal responses could con-
tribute to the changes in EBV load seen in
lupus patients or provide additional help for
abnormal B-cell responses. Antibody responses
to EBV are also different. Lupus patients have
antibodies against a broad spectrum of early
diffuse EBV proteins (Ngou et al. 1992) as
well as a higher frequency of antibodies to a
larger number of latent nuclear antigens such
as EBNA-2 and EBNA-3 (Kitagawa et al.
1988; Lennette et al. 1993). At least two
groups to date have shown higher IgA
responses in lupus patient sera (Chen CJ et al.
2005; Parks et al. 2005). One of these studies
involved a comparison group recruited

through a population-based sampling proce-
dure (Parks et al. 2005). SLE reactivities are
most similar to patients with chronic viral
reactivation. Interestingly, pediatric lupus
patients have a broader humoral immune
response against EBNA-1 with a larger num-
ber of specific humoral epitopes. Areas of reac-
tivity outside of the commonly targeted
glycine-alanine repeat are cross-reactive with
common early epitopes of self-antigens and
are potential targets of molecular mimicry
(McClain et al. 2006). Other groups have also
found SLE unique humoral immune responses
to EBNA-1 (Rhodes et al. 1985).

A variety of bystander (or adjuvant)
effects as outlined above for different mecha-
nisms could also be quite important, serving
as key links between EBV, and potentially
other pathogens, and lupus (Poole and James
2007; Poole et al. 2006). EBV is known to
act through different TLRs, which could lead
to interferon production, abnormal self-anti-
gen presentation, T-cell activation, cytokine
production, and loss of tolerance. EBV has a
viral interleukin-10 homolog, which could
induce inappropriate APC activation, as well
as a bcl-2–like homolog, which can inhibit
apoptosis of infected cells. Potential roles for
these bystander effects are outlined in Figure
2. Additional evaluation of unique SLE-
specific bystander responses to pathogens are
warranted.

Silica: modeling overlapping pathologies
for mechanistic clues. Inhalation of silica is
associated with overlapping pathologies of
inflammation, fibrosis, and autoimmunity.
Critical genetic risk factors that confer either
susceptibility or, perhaps more intriguingly,
protection from silicate-induced autoimmune
changes, have not been identified, but clues to
early events in autoimmunity may come from
studies of the pulmonary effects of silica and
the immune dysfunction related to fibrosis
(Huaux 2007; Pernis 2005). Mouse strains
with different susceptibilities to fibrosis and
inflammation make them valuable for teasing
apart early processes related to macrophage
activation, cytokines, and gene regulation
related to silica (Barbarin et al. 2005;
Migliaccio et al. 2005; Misson et al. 2004). 

New Zealand mixed (NZM) mice show-
ing a mild lupus-prone phenotype (Rudofsky
and Lawrence 1999) exhibit exacerbation of
lupus pathology after intratracheal silica expo-
sure (Brown et al. 2003). Survival in silica-
exposed NZM mice was decreased, with
increased proteinurea levels and immunoglob-
ulin (Ig) G deposition suggesting exacerbated
kidney damage. The lungs in these mice also
had increased inflammatory infiltrates and
fibrotic lesions that were well established after
14 weeks, concurrent with significant eleva-
tion of autoantibody levels (Brown et al.
2003). Although there are limited data in mice
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Figure 2. Putative roles for EBV in the initiation and propagation of SLE. Supportive evidence is available
for direct effects (e.g., molecular mimicry with production cross-reactive antibodies) and indirect effects
(e.g., bystander effects, inappropriate cytokine production, or gene expression).
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regarding their chronological relationship,
there is some evidence that autoantibodies
precede and contribute to fibrotic changes in
humans [reviewed by Jindal and Agarwal
(2005)].

It has been hypothesized that these over-
lapping outcomes may be related at the level
of innate immune responses (adjuvant effect)
to silica, possibly via scavenger receptors such
as SR-A and MARCO on macrophages and
mast cells (Brown et al. 2007; Hamilton et al.
2006). Mice lacking either SR-A or MARCO
show different responses to silica versus tita-
nium dioxide, which causes inflammation but
not fibrosis or autoimmunity. In addition,
there are striking differences in expression of
these receptors and silica uptake by cells from
Balb/c and C57Bl/6 mice (Hamilton et al.
2006), offering strain and receptor explana-
tions for differential fibrotic susceptibility.
The role of scavenger receptors as proinflam-
matory pathways is complicated by their addi-
tional roles in apoptosis induction and the
clearance of apoptotic debris. A possible uni-
fying model implicates silica-induced apopto-
sis of the very cells needed for apoptotic
clearance, in an environment of silica-
enhanced antigen presentation by dendritic
cells or alternately activated macrophages
(Beamer and Holian 2007; Migliaccio et al.
2005) (Figure 3), similar to the autologous
macrophage killing caused by demethylated
T lymphocytes (Richardson 2007).

The silica-induced exacerbation of lupus
pathology in NZM mice was ameliorated in
mice coinstilled with rottlerin, a putative
PKC-δ inhibitor (Brown et al. 2005). Although
rottlerin can have PKC-δ–independent effects
(Kurosu et al. 2007), as a PKC-δ inhibitor, it
is antiapoptotic (Shukla et al. 2003). Further
supporting the role of apoptosis in the exacer-
bation of the NZM lupus model, autoanti-
bodies in silica-exposed mice were shown to
bind to macrophages undergoing apoptosis
(Pfau et al. 2004). In addition, the Fas/Fas
ligand system is up-regulated with silica expo-
sure in both humans and rodents, which
could affect its autoimmune effects by
increasing apoptosis (Delgado et al. 2006;
Otsuki et al. 2006). Because silica can cause
oxidative stress and apoptosis in macrophages
(Hamilton et al. 1996; Hu et al. 2006), it is
possible that these events lead to clustering or
proteolytic cleavage of autoantigens. Studies
have shown that silica can lead to altered pro-
teosomal processing of specific scleroderma
autoantigens (Chen and von Mikecz 2005;
Chen M et al. 2005) and activation of apop-
totic pathways involving various caspases
(Brown et al. 2004a). 

Much of the recent data regarding the
effects of silica on lymphocyte populations in
mouse models of lupus were recently reviewed
(Brown et al. 2004b). In silica-exposed NZM

mice, lymph nodes had local reduction in reg-
ulatory T cells despite a dramatic increase in
CD4+ T cells (Brown et al. 2004a). Wu et al.
(2006) have shown that the function of regu-
latory T cells is reduced in silicosis patients.
Recently, Carlsten et al. (2007) evaluated sev-
eral serologic measurements for their potential
as early markers of immunologic effects of
occupational silica exposure in 11 men and
found a reduction of CD25+ T cells and some
increases in T-helper cell (Th)1 and Th2
serum cytokines. However, the study design
did not distinguish the CD25+ cells as acti-
vated versus regulatory T cells. In NZM mice,
a relative reduction in serum IgG1, along
with elevated tumor necrosis factor-α in lung
lavage, suggested a possible Th1 skewing by
silica (Brown et al. 2004a), consistent with
studies in rats and non-lupus-prone mice
(Davis et al. 2001; Garn et al. 2000).
Although the roles of tumor necrosis factor-α
and Th1/Th2 cytokines in lupus remain
unclear (Gomez et al. 2004; Singh 2003),
reported increases of interferon-γ with silica
are consistent with development of lupus
(Carlsten et al. 2007; Garn et al. 2000). 

Clearly, silica affects the immune system
at several levels that could play roles in lupus
pathogenesis. Figure 3 summarizes these stud-
ies into a hypothetical model in which no sin-
gle pathway is causative in itself, but various
chronological or simultaneous combinations
ultimately result in overt disease.

Trichloroethylene effects in a lupus mouse
model. The female MRL+/+ mouse develops a
lupuslike disease late in life (50% mortality at
17 months) and has been used in a series of

studies of trichloroethylene. Short-term
intraperitoneal trichloroethylene exposure
(10 mmol/kg every 4 days for 6 weeks) resulted
in increased spleen weight, as well as some
serum markers of systemic autoimmunity
including total IgG and antinuclear antibodies
(Khan et al. 1995). A chronic oral exposure
study (21, 100, or 400 mg/kg/day trichloroeth-
ylene in drinking water for 32 weeks) also
resulted in an accelerated autoimmune
response, with increased antinuclear antibodies
after 4 weeks of exposure to concentrations as
low as 21 mg/kg/day (Griffin et al. 2000b).
Chronic treatment with trichloroethylene did
not accelerate the development of the lupus
nephritis, but after 32 weeks of exposure, tissue
pathology commensurate with autoimmune
hepatitis was seen. In both mice and humans
the majority of trichloroethylene absorbed into
the circulation is metabolized by an oxidative
pathway in the liver (Lipscomb et al. 1996),
converting trichloroethylene to trichloroac-
etaldehyde, which in solution is in equilibrium
with trichloroacetaldehyde hydrate. Female
MRL+/+ mice treated for 40 weeks with drink-
ing water containing concentrations of
trichloroacetaldehyde hydrate that encom-
passed the molar equivalents of previous low-
level trichloroethylene exposure did not
develop autoimmune hepatitis or lupus nephri-
tis but did develop a dose-dependent alopecia
and skin inflammation (Blossom et al. 2007). 

Trichloroethylene and trichloroacetalde-
hyde hydrate were also shown in these experi-
ments to increase percentages of activated
interferon-γ producing CD4+ T cells
(Blossom et al. 2004; Griffin et al., 2000b). A
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Figure 3. Possible immune-related effects of silica in relation to SLE pathogenesis. Apoptosis of macrophages
needed for efficient clearance of debris, along with proinflammatory cytokines, results in uptake of apoptotic
debris by activated APCs. The self-antigen may be altered structurally or spatially by oxidative stress.
Inflammation helps drive both fibrosis and autoimmunity, resulting in reciprocal exacerbation.

Inflammation

Lung fibrosis

Autoimmunity

AutoantibodiesBlockage of
regulatory T cells

B-cell activation

Exacerbation:
tissue damage

SLE

T-cell activation
Cytokine production

Loss of tolerance

Mast cell

Macrophage

Silica

Scavenger receptors

Loss of macrophages,
less anti-inflammatory

clearance

Oxidative stress
Fas/Fas ligand activation

Cell death
Self-antigen modification

and/ or release

Proinflammatory cytokines:
TNF-α, IFN-γ, etc.



recent study that reported higher levels
of interleukin-2 and interferon-γ levels in
35 trichloroethylene-exposed workers (mean
exposure levels 35 mg/m3) compared with
70 nonexposed workers (Iavicoli et al. 2005)
provides evidence of similar early immune
responses in humans and the MRL+/+ mouse
model. 

During its metabolism, some trichloro-
ethylene is converted to a trichloroethylene
oxide reactive intermediate, which may ulti-
mately lead to the formation of N6-formyl
lysine or N6-dichloroacetyllysine adducts.
These adducts have been detected as stable
neoantigens in the liver of trichloroethylene-
treated MRL+/+ mice (Griffin et al. 2000a),
and adduct-specific antibodies have been
detected in trichloroethylene-treated MRL+/+
mice (Halmes et al. 1996). Trichloroethylene
treatment also promoted the development of
antibodies specific for unmodified liver
microsomal proteins (Gilbert et al. 2006).
Thus, it appeared that trichloroethylene expo-
sure could trigger an immune response
against both unmodified and trichloroethyl-
ene modified liver proteins. Trichloroethylene
may also perturb the immune system through
the induction of oxidative stress, as seen by
the increased serum levels of inducible nitric
oxide synthase (iNOS) and nitrotyrosine in a
chronic duration (48 weeks) drinking-water
exposure study in female MRL+/+ mice
(Wang et al. 2007). Antibodies against lipid
peroxidation-derived aldehydes malondialde-
hyde and 4-hydroxynonenal were also seen.
At least some of the oxidative stress generated
by trichloroethylene occurred in the liver
(Gilbert et al. 2006). Although trichloroethyl-
ene-induced adducts and oxidative stress can
be immunogenic, the role of these altered self-
antigens and the resulting antibodies in dis-
ease pathology remains to be determined. 

T-cell resistance to activation-induced
apoptosis has been seen in patients with
lupus, alopecia, and scleroderma (Luzina et al.
2003; Xu et al. 2004; Zoller et al. 2004) and
was also seen in these studies of trichloroeth-
ylene-exposed mice. Almost 88% of the acti-
vated CD4+ T cells isolated from control
MRL+/+ mice at the 4-week time period were
induced to undergo activation-induced apop-
tosis in vitro. In contrast, only 57% of
CD4+ T cells from mice exposed for 4 weeks
to trichloroacetaldehyde hydrate underwent
apoptosis. This effect was subsequently linked
to a decrease in FasL expression on the
CD4+ T cells (Blossom and Gilbert 2006). A
trichloroacetaldehyde hydrate–induced down-
regulation of FasL could enable activated self-
reactive CD4+ T cells to escape Fas-mediated
deletion but retain effector function. 

Gilbert et al. developed a model to synthe-
size the results from these experiments [see
Figure 3 in Gilbert et al. (2006)]. Metabolism

of ingested trichloroethylene leads to the gener-
ation of adducts on liver proteins such as
CYP2E1. Trichloroethylene also induces
oxidative/nitrosative stress in the liver. The
damaged liver cells expressing chemically mod-
ified antigens may be taken up by phagocytic
cells such as Kupffer cells or hepatic stellate
cells. Chemokines secreted by the phagocytic
cells help recruit CD4+ T cells, which are then
presented with unmodified and/or modified
liver antigens. Normally, liver-specific CD4+ T
cells would be deleted by activation-induced
apoptosis before they mediated pathology.
However, trichloroethylene works via metabo-
lite trichloroacetaldehyde hydrate to downreg-
ulate expression of FasL on the CD4+ T cells,
thereby decreasing their susceptibility to Fas-
mediated apoptosis. This effect increases
longevity of liver-specific CD4+ T cells and
thus promotes liver damage commensurate
with autoimmune hepatitis. Mice treated with
trichloroacetaldehyde hydrate directly do not
undergo hepatic adduct formation and/or
oxidative stress. Consequently, trichloro-
acetaldehyde hydrate–mediated inhibition of
activation-induced T-cell apoptosis does not
manifest itself as hepatitis. The reason why the
inflammatory disease is instead directed to the
skin and the applicability of this model to spe-
cific autoimmune diseases in humans (includ-
ing lupus, scleroderma, and autoimmune liver
disease) remain to be determined. 

Research Gaps and
Recommendations
Federal agencies and private foundations have
organized several meetings in recent years con-
cerning many aspects of lupus, including the
sex and ethnic disparities and prospects for
development of new treatments. The goal of
one workshop, “Lupus & the Environment:
Disease Development, Progression and Flares”
(held 8–9 September 2005 in Washington,
DC), was to appraise the state of the science
and produce recommendations for new
research to better understand environmental
influences and gene–environment interactions
in lupus. The workshop produced a priori-
tized list of recommendations for research sup-
port. Similar issues are described in Future
Directions of Lupus Research, a recent publica-
tion from the National Institute of Arthritis
and Musculoskeletal Diseases (NIAMS 2007).
Progress has been made and some interesting
research has been published since this work-
shop, but the recommendations that came out
of the workshop continue to apply:
• Continued development and increased use

of improved lupus-prone and non-prone
animal models that are appropriate for
research on mechanisms linking environ-
mental exposures to lupus. Models with
varying degrees of penetrance and varying
manifestations of disease are needed.

• Identification of molecular or physiologic tar-
gets of exposures leading to either incidence
or progression of lupus, building on studies of
emerging concepts such as epigenetics, post-
translational steps, metabolic mechanisms,
understanding bystander/adjuvant effects of
exposure, investigation into “inappropriate”
autoimmune responses to common expo-
sures, and multiple exposure studies that test
synergy of various factors or agents.

• Development and dissemination of improved
technologies and instrumentation to assess
environmental exposures integrated over the
relevant etiologic time period, including
geocoding methods for use with geographic
information systems (Nuckols et al. 2004)
and biosensors (Schwartz and Collins 2007),
techniques involving specific biomarkers of
exposure, and questionnaire- or interview-
based derivation of specific exposure histories
(Parks and Cooper 2006). 

• Multisite collaborations with standardized
protocols for collection of environmental
exposure data focusing on the period before
development of clinically expressed disease.
These large-scale studies are needed to
address the considerable heterogeneity
among lupus patients in genotypic profile, in
serologic and phenotypic expression, and
potentially in etiologic pathways. 

• Further study of gene–environment inter-
actions in both human and animal settings.
Of particular interest is the identification of
lupus-specific versus more general auto-
immune disease genes and the exposures that
trigger flares for particular genomic profiles.

Our understanding of the mechanisms
involved in the pathogenesis of lupus contin-
ues to expand. This understanding provides
the opportunity to begin to assess whether
and how environmental exposures contribute
to this process. Clearly the specific environ-
mental exposures discussed in this review are
unlikely explanations for the extreme dispar-
ity in disease rates seen among women and
among ethnic minorities. It will take much
more work from a variety of disciplines to
address these issues. We believe that acting on
these recommendations will enhance our abil-
ity to design research studies that address
both how and why the pathology of lupus
arises, so the devastating impact of this disease
can be ameliorated.
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