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BACKGROUND: Long-term exposure of arsenite leads to human skin cancer. However, the exact
mechanisms of arsenite-induced human skin carcinogenesis remain to be defined.

OBJECTIVES: In this study, we investigated the potential role of PI-3K/Akt/cyclin D1in the transfor-
mation of human keratinocytic cells upon arsenite exposure.

METHODS: We used the soft agar assay to evaluate the cell transformation activity of arsenite expo-
sure and the nude mice xenograft model to determine the tumorigenesis of arsenite-induced trans-
formed cells. We used the dominant negative mutant and gene knockdown approaches to elucidate
the signaling pathway involved in this process.

RESULTS: Our results showed that repeated long-term exposure of HaCat cells to arsenite caused cell
transformation, as indicated by anchorage-independent growth in soft agar. The tumorigenicity of
these transformed cells was confirmed in nude mice. Treatment of cells with arsenite also induced
significant activation of PI-3K and Akt, which was responsible for the anchorage-independent cell
growth induced by arsenite exposure. Furthermore, our data also indicated that cyclin D1 is an
important downstream molecule involved in PI-3K/Akt—mediated cell transformation upon arsenite
exposure based on the facts that inhibition of cyclin D1 expression by dominant negative mutants of
PI-3K, and Akt, or the knockdown of the cyclin D1 expression by its specific siRNA in the HaCat
cells resulted in impairing of anchorage-independent growth of HaCat cells induced by arsenite.

CONCLUSION: Our results demonstrate that PI-3K/Akt-mediated cyclin D1 expression is at least

one key event implicated in the arsenite human skin carcinogenic effect.
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Arsenite is a well-documented human
carcinogen. Long-term exposure to inorganic
arsenic from drinking water has been reported
to induce various cancers (Centeno et al.
2002; Huang et al. 2004; Tseng et al. 1968;
Yu et al. 2006). Chronic exposure to arsenite
can lead to its accumulation in the skin and
cause skin hyperpigmentation and hyper-
keratosis (Centeno et al. 2002; Yu et al.
2006). This could in turn develop into skin
cancers, including Bowen disease (carcinoma
in situ), basal cell carcinoma (BCC), and squa-
mous cell carcinoma (SCC) (Tseng et al.
1968; Yu et al. 2006).

Cancer development results from a syner-
gism between genotoxic and nongenotoxic
factors (Hecker 1987; Zoumpourlis et al.
2003). The former induces irreversible genetic
alterations (tumor initiation), whereas the lat-
ter promotes tumor development by favoring
the clone outgrowth of the genetically altered
cells (tumor promotion) through activating
cell survival and proliferation signal pathways
and altering the machineries controlling cell
proliferation and apoptosis. Previous studies
have demonstrated that arsenite has a weak
mutagen effect; therefore it is thought that its
ability to activate signaling pathways leading
to the alteration of gene expression responsible
for cell growth may play an important role in

its carcinogenic effect (Bernstam and Nriagu
2000). It has been demonstrated that signal
pathways, including mitogen-activated protein
kinases (MAPKs), activating factor 1 (AP-1)
and nuclear factor kappa B (NF-kB), can be
activated upon arsenite exposure and presum-
ably contribute to arsenite-induced skin car-
cinogenic effect (Cooper et al. 2004; Huang
et al. 2001, 2004). Phosphatidylinositol
3-kinase (PI-3K) comprises an 85-kDa regula-
tory subunit (p85) and a 110-kDa catalytic
subunit (p110) and could be activated by
multiple growth factors and cytokines
(Cantley 2002; Vivanco and Sawyers 2002).
Upon activation, PI-3K generates phos-
phatidylinositol-3,4,5-trisphosphate (PIP3), a
lipid second messenger essential for the activa-
tion of protein kinase B (Akt) (Alessi et al.
1997; Toker and Cantley 1997). Akt in turn
regulates various cellular functions such as
apoptosis and proliferation (Alessi et al. 1997;
Franke et al. 2003). PI-3K/Akt has been
demonstrated to be an important signaling
pathway for cell survival and growth, and it
also plays a pivotal role in cell transformation
and tumorigenesis (Huang et al. 1999; Li
et al. 2005; Nicholson and Anderson 2002;
Ouyang et al. 2005a; Samuels and Ericson
20006). The elevated expression or high phos-
phorylation of Akt could be observed in many
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tumor cells (Asanuma et al. 2005; Bae et al.
2006; Misra et al. 2006). Most recently, He
et al. (20006) reported that PI-3K/Ake is
related to the malignant transformation asso-
ciated with acquired apoptotic resistance in
human HaCaT keratinocytes induced by
chronic UVA irradiation. Souza et al. (2001)
have reported that PI-3K is required for the
induction of endothelial nitric oxide synthesis
(eNOS) by arsenite in human keratinocytes.
Our previous studies have also shown that
arsenite exposure is able to activate the
PI-3K/Akt pathway and induce cyclin D1
expression in mouse epidermal Cl41 cells
(Ouyang et al. 2006). In HaCat cells, the
PI-3K/Akt/cyclin D1 cascade activation con-
tributed to arsenite-induced proliferation
(Ouyang et al. 2007b). Although hyperprolif-
eration is correlated with cellular transforma-
tion in some cases (Chen et al. 2001), our
previous findings clearly demonstrated that in
Cl41 cells, epidermal growth factor (EGF)-
induced transformation was impaired by dis-
rupting PI3K/p85 expression; however, cell
proliferation was not affected (Huang et al.
1996), which indicates that the transforma-
tion ability is not always paralleled with the
accelerated proliferation rate. Therefore, we
performed the present studies to investigate
whether the PI-3K/Akt signal pathway is
indeed implicated in arsenite-induced cell
transformation through the induction of
cyclin D1.

Materials and Methods

Cell culture and reagents. Spontaneously
immortalized human keratinocytes, HaCat
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cell line, and their stable transfectants were
cultured in monolayers at 37°C, 5% CO,
using Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine
serum (FBS), 2 mM L-glutamine, and 25 pg
gentamicin/mL. Normal human epidermal
keratinocytes (NHEKSs) were cultured in
keratinocyte—SFM medium (Invitrogen
Corp., Carlsbad, CA, USA) containing sup-
plements (human epidermal growth factor,
bovine pituitary extract; Invitrogen) and gen-
tamycin (5 mg/mL; Sigma-Aldrich Corp.,
St. Louis, MO, USA). The cultures were
detached with trypsin and transferred to new
75-cm? culture flasks (Fisher Scientific Co.,
Pittsburgh, PA, USA) twice a week. FBS was
purchased from Life Technologies, Inc.;
DMEM was from Calbiochem (San Diego,
CA, USA); sodium arsenite was purchased
from Aldrich Chemical Co. Inc. (Milwaukee,
W1, USA). The dominant-negative mutants of
Akt (DN-Akt) and PI-3K (Ap85) were
described in our previous studies (Huang et al.
1996; Li et al. 2004; Ouyang et al. 2006).

Cyclin DI small interference RNA
construction. The specific small interference
RNA (siRNA)-targeted human cyclin D1
was described before (Ouyang et al. 2005b).
The target sequence was inserted into the
pSuppressor vector and verified by DNA
sequencing.

Stable transfection. We transfected HaCat
cells with DN-Akt and Ap85 or vector con-
trol plasmids using Lipofectamine 2000
reagent (Invitrogen Corp.) according to man-
ufacturer’s instructions. Briefly, HaCat cells
were cultured in a 6-well plate to 85-90%
confluence. Five micrograms plasmid DNA,
alone or in combination with pCMV-neo
vector, were for co-transfection. DNA was
mixed with 10 pL of Lipofectamine 2000
reagent and used to transfect each well in the
absence of serum. After 6-8 hr, the medium
was replaced with 10% FBS DMEM.
Approximately 30-36 hr after the beginning
of the transfection, the cells were detached
with 0.033% trypsin, and cell suspensions
were plated into 75-mL culture flasks and cul-
tured for 24-28 days with G418 selection
(800 pg/mL). Stable transfectants were estab-
lished and cultured in G418-free DMEM for
at least two passages before each experiment.
HaCat cells were stably transfected with
siCyclin D1 as established and identified in
our published studies (Ouyang et al. 2005b).

PI-3 kinase assay. We conducted the PI-3
kinase activity assay as described in our previ-
ous reports (Huang et al. 1996; Ouyang et al.
2006). Briefly, cells were cultured in mono-
layers in 100-mm dishes using normal culture
medium. The medium was replaced with
0.1% FBS DMEM containing 2 mM L-gluta-
mine and 25 pg gentamicin/mL after the cell
density reached 70-80%. Forty-five hours

later, we incubated the cells with fresh serum-
free DMEM for 3—4 hr at 37°C. Arsenite was
then added to the cell cultures for PI-3K
induction. The cells were washed once with
ice-cold PBS and lysed in 400 pL lysis
buffer/plate [20 mM Tris (pH 8.0), 137 mM
NaCl, 1 mM MgCl,, 10% glycerol, 1%
NP-40, I-mM DTT, 0.4 mM sodium ortho-
vanadate, and 1 mM phenylmethylsulfonyl
fluoride]. The lysates were centrifuged and the
supernatants were incubated at 4°C with 40 pL
agarose beads (conjugated with the anti-phos-
photyrosine antibody Py20) overnight. Beads
were washed twice with each of the following
buffers: 2) PBS with 1% NP-40, 1 mM DTT;
b) 0.1 M Tris (pH 7.6), 0.5 M LiCl, | mM
DTT; and ¢) 10 mM Tris (pH 7.6), 0.1 M
NaCl, 1 mM DTT. Beads were incubated for
5 min on ice in 20 pL buffer 3, then 20 pL of
0.5 mg/mL phosphatidylinositol [sonicated
previously in 50 mM HEPES (pH 7.6), 1 mM
EGTA, 1 mM NaH,POy] were added. After
5 min at room temperature, 10 pL of the reac-
tion buffer were added [50 mM MgCl,,
100 mM HEPES (pH 7.6), 250 pM ATP con-
taining 5 pCi y-2P- ATP], and the beads were
incubated for an additional 15 min. The reac-
tions were stopped by the addition of 15 pL of
4 N HCl and 130 pL chloroform/methanol
(1:1). After vortexing for 30 sec, the solutions,
30 pL from the phospholipid-containing chlo-
roform phase were spotted onto thin-layer
chromagraphy plates coated with silica gel H
containing 1.3% potassium oxalate and 2 mM
EDTA applied in H,O/methanol (3:2). The
plates were heated at 110°C for at least 3 hr
before use. The plates were then placed in
tanks containing chloroform/methanol/
ammonium hydroxide/H,O (600:470:20:113)
for 40—50 min until the solvent reached the
top of the plates. The plates were dried at room
temperature and autoradiographed.

Western blot analysis. We cultured HaCat
cells and their transfectants (2 x 10°) in each
well of 6-well plates to 70-80% confluence
with normal culture medium. The cell culture
medium was replaced with 0.1% FBS
DMEM with 2 mM L-glutamine and 25 pg
gentamicin and cultured for 43 hr. The cells
were incubated in serum-free DMEM for
3—4 hr at 37°C. After exposure to arsenite,
the cells were washed once with ice-cold PBS,
then extracted with sodium dodecyl sulfate
(SDS)-sample buffer. The cell extracts were
separated on polyacrylamide-SDS gels, trans-
ferred, and probed with each of the antibodies
against phosphor-specific Akt (Thr308),
phosphor-specific Akt (Ser473), Ak, cyclin
D1, and glyceraldehyde 3-phosphate dehy-
drogenase. The protein bands specifically
bound to the primary antibodies were
detected using an anti-rabbit IgG alkaline
phosphatase-linked secondary antibody and
an ECF (enhanced chemifluorescence)

Western blot analysis system (Amersham
Pharmacia Biotech, Piscataway, NJ, USA)
(Ouyang et al. 20006).

Cell proliferation assay. Confluent mono-
layers of HaCat cells were trypsinized, and
1 x 10% of viable cells suspended in 100 pL
DMEM supplemented with 10% FBS were
added to each well of 96-well plates. The
plates were incubated at 37°C in a humidified
atmosphere of 5% CO,. Twelve hours later,
we exposed the cells to arsenite for 5 days at
the concentrations indicated. The exposed
cells were lysed with 50 pL lysis buffer, and
the proliferation of the cells was measured
using CellTiter-Glo Luminescent Cell
Viability Assay kit (Promega, Madison, WI,
USA) with a luminometer (Wallac 1420
Victor2 multipliable counter system; Perkin-
Elmer Life and Analytical Sciences, Inc.,
Waltham, MA, USA). The results are
expressed as luciferase activity relative to con-
trol medium (proliferation index).

Anchorage-independent growth. We
cultured HaCat cells and their transfectants
(1 x 10°) in each well of 6-well plates to
50—-60% confluence with normal culture
medium. The cells were treated with 2.5 pM
arsenite for 3 days, then recovered in fresh
medium for 1 day. After the repeated treat-
ment with arsenite for 8 weeks, the cells were
used for anchorage-independent growth assay,
which was performed as described previously
(Huang et al. 1999; Yan et al. 2006). Briefly,
2.5 mL of 0.5% agar in basal modified Eagle’s
medium (BMEM) supplemented with 10%
FBS was laid onto each well of 6-well tissue
culture plates. We mixed 2 x 104 HaCat cells
with 2 mL of 0.5% agar BMEM and layered
the cells on top of the 0.5% agar layer. The
plates were incubated at 37°C in 5% CO, for
3 weeks. We then scored the colonies with
more than 16 cells.

Tumorigenicity assays. We randomly
divided six 5-week-old female nude mice into
two experimental groups—medium control
group and arsenite-treated group. Each nude
mouse was injected sc in two spots with 2 x 10°
of cells in 100 pL of growth medium for each
spot. The mice were sacrificed by CO,
asphyxiation 4 weeks after the inoculation,
tumor dimensions were measured using
calipers and tumor volume (cubic milli-
meters) was calculated using the following
formula: 0.5236 (L x W x H) as described in
previous studies (Brubaker et al. 2006;
Jungwirth et al. 1997), where L is tumor
length, W is width, and H is height (Ouyang
et al. 2007a). Tumors were removed from
mice, and fixed in 10% buffered formalin and
embedded in paraffin; 5-pm sections were
dehydrated and stained with hematoxylin and
eosin (H&E).

Statistical analysis. The significant differ-
ence between the treated and untreated

voLuME 116 | NumBER 1| January 2008 « Environmental Health Perspectives



Arsenite-induced human keratinocyte transformation through PI-3K/Akt pathway

groups was determined with the Student
#test. Results are expressed as mean + SD.

Results

Repeated arsenite exposure led to transforma-
tion of HaCat cells. Human skin is a major tar-
get of environmental carcinogen arsenite. To
elucidate the mechanism implicated in arsenite-
induced human skin carcinogenic effect
in vitro, we first evaluated the cytotoxicity of
arsenite to HaCat cells with CellTiter-Glo
Luminescent Cell Viability Assay kit. We found
that exposure of HaCat cell to 0.625 pM arsen-
ite caused a significant increase in cell prolifera-
tion (Figure 1A) and no inhibition of cell
proliferation at doses lower than 2.5 pM arsen-
ite (Figure 1A). Thus, we used 2.5 ptM arsenite
to treat human keratinocyte HaCat cells to
establish a cell transformation model. HaCat
cells were exposed repeatedly to 2.5 pM arsenite
twice a week for 8 weeks, and the anchorage-
independent growth capability of arsenite-
treated HaCat cells was evaluated. Compared
with the medium control, repeated arsenite
exposure resulted in increased the anchorage-
independent growth capacity of HaCat cells
(Figure 1B, C). Those results indicate that
arsenite-exposed HaCat cells obtain the ability
of anchorage-independent growth for colony
formation in soft agar. The tumor characteristic
of the transformed cells was further confirmed
in nude mice. As shown in Figure 1D, injection

15

of arsenite long-term exposed Hacat cells into
nude mouse caused observable tumor forma-
tion (tumor volumes 786 + 126, 7 = 6) com-
pared with that of long-term culture HaCat
cells (0 + 0, 7 = 6). H&E staining also revealed
a tumor formation in the arsenite long-term
exposed Hacat cells (Figure 1E). On the basis of
these results, we anticipate that repeated expo-
sure of HaCat cells to arsenite could cause
malignant transformation.

The PI-3K/Akt pathway is required for
arsenite-induced transformation of HaCat cells
. Our previous studies have shown that PI-3K
is essential for Cl41 cells obtaining anchorage-
independent growth capacity in TPA (12-O-
tetradecanoylphorbol-13-acetate) and EGF
treatments (Huang et al. 1999; Ouyang et al.
2005b). In addition, our published studies
have shown that arsenite exposure is able to
activate PI-3K in mouse epidermal Cl41 cells
(Ouyang et al. 2006). To determine the poten-
tial involvement of the PI-3K pathway in
arsenite-induced HaCat cell transformation,
we tested the PI-3K activity in arsenite-exposed
HaCat cells. The results showed that the arsen-
ite exposure did increase PI-3K activation in
HaCat cells compared with the medium con-
trol (Figure 2A, B). We also further confirmed
this finding in NHEKs (Figure 2C, D). The
aforementioned data demonstrate that PI-3K is
implicated in human keratinocyte response to
arsenite exposure.
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Figure 1. Induction of cell transformation by arsenite in human keratinocyte HaCat. (A) HaCat cells were
exposed to various doses of arsenite for 5 days. The proliferation of the cells was measured using
CellTiter-Glo Luminescent Cell Viability Assay kit with a luminometer. (B,C) HaCat cells were then repeat-
edly exposed to 2.5 pM arsenite twice a week for a total of 8 weeks as described in “Materials and
Methods.” (D) 2 x 108 of above cells were injected sc into each spot of 5-week-old female nude mice. Four
weeks after the inoculation, the tumor dimensions were measured using calipers and tumor volume (mm3)
was calculated. The data shown are from six tumors in three mice for each group. (E) Paraffin-embedded
tumor xenografts were sectioned (4 pm) and subjected to H&E staining.

*Significant increase compared with that of medium control (p < 0.05).
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Upon activation, PI-3K generates phos-
phatidylinositol-3,4,5-trisphosphate (PIP3), a
lipid second messenger essential for the
translocation of Akt to the plasma membrane
where it is phosphorylated and activated by
phosphoinositide-dependent  kinase-1
(PDK-1) (Alessi et al. 1997; Toker and
Cantley 1997). Subsequently, Akt phosphory-
lates and regulates the function of many
downstream cellular proteins involved in the
processes of apoptosis, proliferation, and
transformation (Alessi et al. 1997; Franke
etal. 2003). To test possible Akt activation by
arsenite in human keratinocytes, we deter-
mined Akt activation in both HaCat and
NHEKs by evaluating its phosphorylation at
Thr308 and Ser473. The results indicated

A 5

PI(S)P»
25

20

PI-3K activity (CPM x 10-3)

05

Original —|
0
Medium Arsenite
(2.5 mM)

EI
PI(3)P —} i

! ! 1
Original —{
0

Medium Arsenlte Medium  Arsenite
.5 mM) (2.5 uM)

Medium  Arsenite
(2.5 uM)

=)

PI-3K activity (CPM x 10-3)

Figure 2. PI-3K activation induced by arsenite in
both HaCat and NHEKs. (A,B) HaCat cells with
70-80% confluence were exposed to 2.5 pM arsen-
ite for 30 min, and the cells were harvested. The
P1-3K activity was determined as described in
“Materials and Methods.” The results were shown
as an autoradiograph (A) and schematic diagram of
the PI-3K product PI(3)P from the PI-3K assay spot
(CPM) (B). PI-3K activity by arsenite was deter-
mined in primary cultured normal human epidermal
keratinocytes (C) and schematic diagram of the
P1-3K product PI(3)P from the PI-3K assay spot
(CPM) (D). The data shown represent one of three
independent experiments.
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that arsenite exposure was able to activate Akt
in both cells (Figure 3A, B), which was con-
sistent with PI-3K activation. To elucidate
the PI-3K/Akt pathway and its role in human
keratinocyte response to arsenite response, we
established the stable HaCat Ap85 and
DN-Akt transfectants. Ectopic expression of
Ap85 and DN-Akt dramatically reduced
arsenite-induced Akt activation (Figure 3A),
and consequently blocked cell transformation
upon chronic arsenite exposure in HaCat cells
(Figure 3C, D). These results demonstrate the
critical role of the PI-3K/Akt pathway in
arsenite-induced HaCat transformation.
Cyclin D1 is a key PI-3K/Akt downstream
protein responsible for arsenite-induced trans-
Jormation of HaCat cells. It has been thought
that the contribution of the PI-3K/Akt path-
way to tumorigenesis could be associated with
either its regulation of cell apoptosis or cell
growth. Our previous studies have shown that
arsenite exposure is able to up-regulate cyclin
D1 protein expression in HaCat cells, which
further mediates cell cycle alternation in
HaCat cells (Ouyang et al. 2005b). Thus, it is
important to determine whether there is a link
between arsenite-induced PI-3K/Akt activa-
tion and cyclin D1 protein expression.
Arsenite treatment resulted in a marked
increase in cyclin D1 protein expression in
both HaCat cells (Figure 4A) and NHEKSs
(Figure 4B), and this cyclin D1 induction was
dramatically impaired in Ap85 or DN-Akt
stable transfectants (Figure 4C), indicating
that the PI-3K/Akt pathway is critical for
cyclin D1 protein induction by arsenite. It
might be noted that overexpression of
DN-Akt was able to block Akt activation,
whereas Ap85 only showed a partial inhibition
of Akt activation induced upon arsenite treat-
ment (Figure 3A). This differential inhibition
of Akt phosphorylation by DN-Akt and Ap85
could be due to the protein expression levels of
those two exogenous dominant negative
mutants, or alternate pathways may be
involved in the Akt activation. It might also be
noted that Ap85 is able to block arsenite-
induced cyclin D1 expression completely,
whereas it shows only partial inhibition on
Akt phosphorylation. The explanation for this
may be that Akt is only one of p85 down-
stream kinases, and the other p85 downstream
kinases such as protein kinase C, serum gluco-
corticoid-inducible kinase, and Rac/CDC42
may also play some role in cyclin D1 protein
expression in arsenite responses. In addition,
cyclin D1 induction might need PI-3K activa-
tion to a certain level, so when Akt activation
was relatively low, it was not able to cause
cyclin D1 induction. The basal level of Akt
phosphorylation in DN-Akt transfectants was
higher than that of the vector control (Mock)
transfectants. The explanation was that, due to
the importance of Akt in normal cell function,

y)

the phosphorylation of the endogenous Akt in
DN-Akt stable transfectant was elevated to
overcome the biological effects caused by over-
expression of exogenous DN-Akt. However,
the arsenite-induced phosphorylation will be
greatly inhibited, as shown in Figure 3A.

To evaluate the contribution of cyclin D1
protein expression to arsenite-induced HaCat
cell transformation, we used HaCat cells stably
transfected with cyclin D1 siRNA (Ouyang
et al. 2005b). As shown in Figure 4D, introduc-
tion of cyclin D1 siRNA dramatically reduced
the basal level of the cyclin D1 protein expres-
sion, whereas it did not affect the basal level of
the cyclin D2 protein expression, verifying the
specificity of cyclin D1 siRNA. Knockdown of
cyclin D1 expression by its siRNA abrogated the
HaCat cell transformation induced by arsenite
(Figure 4D, E). Collectively, these results indi-
cate that cyclin D1 is not only induced by
arsenite exposure through the PI-3K/Akt-
dependent pathway but it is also at least one of
the key events responsible for arsenite-induced
human keratinocyte transformation.

Discussion

Arsenite is a well-defined human carcinogen,
with skin as its primary target organ (Centeno
et al. 2002; Huang et al. 2004; Tseng et al.
1968; Yu et al. 2006). Because arsenite has
only a weak mutagenic effect, it is thought that
its ability to activate some signaling pathways
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and gene expression responsible for cell
growth may play an important role in mediat-
ing its carcinogenetic effect (Bernstam and
Nriagu 2000). In the present study, we
demonstrated that repeated exposure of
human keratinocytes to low doses of arsenite
resulted in cell transformation with the char-
acteristic of cell anchorage-independent
growth in soft agar. The dose we used to
repeatedly treat cells did not cause obvious cell
death. On the contrary, it promoted cell pro-
liferation as we reported in our recent publica-
tion (Ouyang et al. 2007b). The treatment of
cells with arsenite also caused the activation of
PI-3K/Akt, which thereby plays a critical role
in arsenite-induced cell transformation
through induction of cyclin D1 expression.

As an important signal pathway for cell
survival and growth, PI-3K/Akt has been
demonstrated to be associated with tumori-
genesis (Nicholson and Anderson 2002;
Samuels and Ericson 2006). More than 30%
of various solid tumor were found recently to
contain mutations in PIK3CA, the catalytic
subunit of PI-3K (Samuels and Ericson 2006).
The mutation in p85, a regulatory subunit of
PI-3K, has also been reported in previous
studies (Jimenez et al. 1998; Philp et al.
2001). Recent studies also indicate that Akt is
frequently constitutively activated in many
types of human cancer (Nicholson and
Anderson 2002). Although the mechanisms
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Figure 3. Requirement of the PI-3K/Akt pathway activation for HaCat cell transformation upon arsenite
exposure. (A) HaCat cells stable transfected with dominant negative mutants of Akt (DN-Akt) or p85 (Ap85)
or vector control (Mock) were treated with arsenite in different doses as indicated for 180 min. The num-
ber was the relative blots density of phosphorylated Akt compared with total Akt. (B) NHEKs were treated
with 2.5 pM arsenite at different time points and the phosphorylation of Akt was detected with specific
antibodies. (C,D) The anchorage-independent growth was evaluated among the HaCat cells stable trans-
fected with vector control, DN-Akt, and Ap85 after repeated exposure to arsenite for 8 weeks. Each bar
indicates the mean and SE of triplicate assay wells.

*Significant decrease compared with that from HaCat cells transfected with vector (Mock) (p < 0.05).
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have not yet been fully characterized, constitu-
tive PI-3K/Akt signaling is believed to pro-
mote proliferation and increase cell survival,
which is an indispensable event during the
process of cancer development (Samuels and
Ericson 2006). Current studies demonstrated
that arsenite exposure was able to activate
PI-3K and Akt, and inhibition of either PI-3K
or Akt by their dominant mutants impaired
arsenite-induced cell transformation in human
skin keratinocytes HaCat, suggesting that the
PI-3K/Akt pathway may contribute to arsenite
human skin carcinogenic effects.

Reactive oxygen species (ROS) at low con-
centration may function as a signaling interme-
diator of cellular responses (Sullivan et al.
1994). The production of ROS in response to
arsenite treatment has been observed in various
cell lines (Duyndam et al. 2001; Ozaki et al.
2000), suggesting that arsenite may act early in
the growth factor signaling pathway. Jung et al.
(2003) have clearly demonstrated that the pre-
dominant product by arsenite appeared to be
hydrogen peroxide (H,O,) because the arsen-
ite-induced increase in dichlorofluorescein
(DCF) fluorescence was completely abolished
by pretreatment with catalase but not with
heat-inactivated catalase. By eliminating H,O,
with catalase or N-acetylcysteine, they further
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found that H,O, might act as an upstream
molecule of PI-3K as well as ERK1/2 (Jung
et al. 2003). So we propose that the generation
of ROS by arsenite may be associated with
various cellular processes, such as PI-3K/Ake
pathway activation.

Cyclin D1 could be induced by growth
factors and stress, then regulate cell cycle and
proliferation (Cook et al. 20005 Perry et al.
1998; Winston and Pledger 1993). Aberrant
cyclin D1 expression has been observed early
in carcinogenesis (Barnes and Gillett 1998;
Fusenig and Boukamp 1998; Weinstein
2000), and overexpression of cyclin D1 was
reported in several human cancers, including
uterine cervix (Nichols et al. 1996), ovary
(Worsley et al. 1997), breast (Michalides et al.
1996), urinary bladder (Proctor et al. 1991),
endometrium (Semczuk and Jakowicki
2004), and skin (Rodriguez-Puebla et al.
1999). Antisense to cyclin D1 was reported to
inhibit the growth and the tumorigenicity of
human colon cancer cells and induce apopto-
sis in human squamous carcinomas (Arber
et al. 1997; Sauter et al. 1999). It has been
demonstrated that carcinogenic compounds
can induce cyclin D1 expression, which in
turn promote tumor cell proliferation
(Rodriguez-Puebla et al. 1999; Shen et al.
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Figure 4. A key role of cyclin D1 in arsenite-induced HaCat cell transformation. HaCat cells (A) and NHEKs

(B) were treated with 5 pM arsenite for the indicated

time period (A) or for 24 hr (B), and the cells were

extracted with sample lysis buffer for Western blot analysis to determine cyclin D1 expression. (C) HaCat

cells stable transfected with vector, DN-Akt, or Ap85,

were treated with arsenite at concentrations indi-

cated, and cyclin D1 protein expression levels were evaluated with Western blot analysis. (D) Specific
knockdown of cylin D1 in HaCat cells was identified with Western blot analysis compared with normal
expression of cyclin D2 expression. (E,FA The capability of anchorage-independent growth activities was
compared between cyclin D1 siRNA transfectant and nonspecific control siRNA transfectant after repeat-
edly treated with arsenite for 8 weeks. Each bar indicates the mean and SE of triplicate assay wells.
*Significant decrease compared with that from HaCat cells transfected with control siRNA (Scramble).
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2006). Our previous studies showed that
arsenite could activate the PI-3K/Akt pathway
and induce cyclin D1 expression in mouse
epidermal cells. In this study, we provided the
first direct evidence that cyclin D1 is a down-
stream target of the PI-3K/Ake signal cascade
and involved in the cell transformation caused
by arsenite exposure in human keratinocytes.

Although knockdown of cyclin D1 expres-
sion by its siRNA markedly inhibited cell
transformation of human keratinocytes
exposed to arsenite, its effect was less than
expression of the dominant negative mutants
of PI-3K or Akt (Figure 3D, F). It was likely
that some other downstream molecules might
also be the PI-3K/Akt downstream targets par-
tially responsible for arsenite-induced cell
transformation. For example, in addition to
cyclin D1 induction, the PI-3K/Akt pathway
has also been reported to mediate the up-regu-
lation of hypoxia-inducible factor 1o and its
downstream target gene vascular endothelial
growth factor expression (Gao et al. 2004),
which has been reported to promote cell trans-
formation, induce the anti-apoptosis genes
expression, and subsequently render the cell
apoptosis resistance, and promote cell immi-
gration and invasion (Larcher et al. 1998).

In summary, our studies demonstrate that
the PI-3K/Akt pathway plays a role in the
arsenite-induced transformation of human
keratinocytes through the induction of cyclin
D1. These results provide novel information
for understanding the molecular mechanisms
underlying the carcinogenic effect of arsenite
on its major target tissue of human skin,
which also suggests that the PI-3K/Akt/cyclin
D1 pathway might be a target for chemo-
prevention of arsenite-induced skin cancer.
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