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On the Consequences of Model
Misspecification in Logistic Regression

by Melissa Dowd Begg* and Stephen Lagakos’

Logistic regression models are commonly used to study the association between a binary response
variable and an exposure variable. Besides the exposure of interest, other covariates are frequently included
in the fitted model in order to control for their effects on outcome. Unfortunately, misspecification of the
main exposure variable and the other covariates is not uncommon, and this can adversely affect tests of
the association between the exposure and response. We allow the term “misspecification” to cover a broad
range of modeling errors including measurement errors, discretizing continuous explanatory variables,
and completely excluding covariates from the model. This paper reviews some recent results on the eon-
sequences of model misspecification on the large sample properties of likelihcod score tests of association

between exposure and response.

Introduction

Data analysts are often interested in assessing the
association between a response variable and an explan-
atory variable. In addition to collecting data on the re-
sponse variable and explanatory variable of interest,
they may also collect data on other covariates in order
to control for the covariates’ effects. Unfortunately,
misspecification of the main explanatory variable and
the other covariates is not uncommon, and this can af-
fect tests of the association between the explanatory
variable and the response. This paper reviews some
recent results on the consequences of model misspeci-
fication on the validity and power of tests of association
between an explanatory variable and a binary response
variable.

Suppose that x denotes the explanatory variable of
interest, and z denotes a vector of other explanatory
variables. For simplicity of presentation, we shall here-
after refer to x and z as the exposure variable and
covariates, respectively. When the outcome of interest
is binary, logistic regression models are commonly used
to study the association between exposure and re-
sponse. If ¥ denotes the binary response, then the re-
lationship between exposure and response is modeled
as:

logit P(Y = llz,z) = 0 + ax + B'z (1)
where 0, o, and B are unknown parameters. The null
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hypothesis of no association between exposure and out-
come can be expressed as:

Hya =0

Given % independent and identically distributed obser-
vations of the form (Y, #;, 2., 1 = 1,2, ... ,n, this hy-
pothesis can be assessed using the likelihood score test
of o = 0, say Q (x,z), which is asymptotically equivalent
to tests of @ = 0 based on the maximum likelihood
estimator of o and on the likelihood ratic statistic (7).

Suppose that &} denotes a misspecified version of x;,
and z} denotes a misspecified version of z;. We congider
the test statistic, say Q(z*,2z*), having the same func-
tional form as Q(x,z}, but with x; and z, replaced by «}
and 2z}, respectively, We want to know the properties
of this new statistic for different types of misspecifi-
cation. We allow the term “misspecification” to cover a
broad range of modeling errors for x and z. It can include
measurement error, mismodeling the functional form of
x or z (e.g., using * = weight instead of x = weight?),
discretizing a continuous x or z, or completely exeluding
covariates from the model. This misspecification can be
arbitrary, but we require throughout this discussion
that the distribution of ¥ conditional on x, x*, z, and
¥ be equal to the distribution of Y conditional on x and
z alone. In words, this means that once we have z and
%, £* and z* provide no additional information about Y.
This paper investigates the consequences of using Q
(x*,2*) rather than Q(x,z) as a test of o = 0. The issue
of estimation, albeit interesting, will only be discussed
briefly for the problem of omitted covariates.

There are various ways of assessing the ramifications
of using Q(x*,z*) instead of Q(x,z). We will focus on the
asymptotic distributions of Q(x,z) and Q(x*,z*¥) because
their exact distributions are, in general, intractable.
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Under a specific sequence of models, we show that as
the sample size goes to infinity,

Q,2) = N(p,1)

and

i Qu*,2%) = (1)

where — denotes convergence in distribution, and p =
0 when o = 0. We can assess the asymptotic validity
of Q(x*,z*) by studying p* when « = 0. By comparing
the magnitudes of p and p* when o # 0, we can assess
asymptotic relative efficiency. This general theoretical
result is then simplified analytically and evaluated nu-
merically to examine particular types of misspecifica-
tion.

In the first section of the paper we describe the gen-
eral formulation of the problem. In the following three
sections we look at a variety of situations in which mis-
modeling occurs. We first consider the situation in which
the exposure is mismodeled in the absence of covariates.
Next come cases in which the exposure is misspecified,
but the covariates are modeled properly. Finally, we
study cases in which both exposure and covariates are
misspecified. All of these scenarios are followed by ex-
ampies relating theoretical results to their conse-
guences in practice.

General Formulation

Let Y, denote the bhinary outeome, x; the exposure,
and z; the vector of covariates for the ith of » indepen-
dent observations. Then the likelihood score test of a
= ( based on model in Eq. (1) takes the form:

" 8+ Rz,
Q@,2) = D, wfY,-— ) Vi

=1 14 ¢H+h=
where 6 and {8 are the restricted maximum likelihood
estimators (MLESs) of parameters 0 and g when o = 0,
and w arises from the sample information matrix (1).
Although the exact distribution of Q(x,z) is quite com-
plex, it can be shown to be asymptotically N(0, 1) when
o = (. This is used in practice to compute significance
levels,

To obtain an approximation to the distribution of
Q(x,z) when o« # 0, one can use its asymptotic distri-
bution for a sequence of contiguous alternative models
to Eq. (1). This leads to the result (7,2) that

Qz,2) = Niu, 1),

where p depends on 9, «, B and the joint distribution
of # and z. The magnitude of p. reflects the asymptotic
power of Q(x,z); the larger |l is, the larger the asymp-
totic power.

Now consider the asymptotic distribution of Q(x*,z*).
To derive this limiting distribution, we again specify a
particular sequence of contiguous alternative models in
which the fitted model approaches the true model Eq.

(1) as n goes to infinity. In this way, it can be shown
(2) that Q(x*,z*) is also asymptotically normal:

QU*,2%) 55 N(u*, 1)

where p* depends on 0, a,, B, the joint distribution of
x, ¢*,z, and z* Thus, Q(x* z*) is asymptotically valid
if p* = O when o = 0. The asymptotic relative efficiency
(ARE) of Q(x*,z*} to Q(x,z), when the former is valid,
is given by (u*/p)°. The ARE can be interpreted loosely
as the ratio of sample sizes needed to achieve the same
power. For example, if the ARE is 0.9, then the correct
test attains the same power as the mismodeled test with
about 90% as many observations. In the following sec-
tions, we will evaluate this result when the model has
no covariates, when the model contains correctly spec-
ified covariates, and when the model contains misspe-
cified forms for both exposure and covariates. In each
setting, we consider econditions for Q(x*,2z*) to be valid
and then examine its efficiency relative to the correct
test.

Misspecified Exposure in the Absence
of Covariates

The special case in which there is a misspecified ex-
posure in the absence of other covariates has received
considerable attention, and the reader is directed to the
papers of Lagakos (3) and Tosteson and Tsiatis (4), as
well as the references contained therein. Let us denote
the correctly specified seore test by Q(z), and the mis-
specified version by Q(x*). The limiting distribution of
Q{x*) can be derived for a sequence of contiguous al-
ternative models to the true model. Such a sequence is
described by Eq. (2):

. (%)) .

logit Pr(Y = 1) = 0 + %x (2)
where 6 and o, are unknown parameters. It follows that
Q(x*) is asymplotically normal, with mean p* and var-
iance 1. It can be shown that Q(x*) is asymptotically
valid (2—4); hence, the misspecification of x does not
distort the asymptotic size of the score test of o = 0.
However, misspecification does affect the score test’s
power to detect an association between the exposure
and response variables. With the above results, it can
be shown (3,4) that the asymptotic relative efficiency
(ARE) of Q(x*) versus Q(x) is given by:

ARE[x*:x] = [correlation(x*,x)]* (3)

Thus, the consequences of misspecifying exposure are
reflected by the squared correlation between the fitted
and eorrect measures of exposure, Reecall that the ARE
can be thought of as the ratio of sample sizes required
by two tests in order to achieve the same power. This
result says that correlation squared provides a way to
make this comparison. Scale and location changes to x
or x* will not alter the ARE, since correlation enjoys
the property of location/scale invariance. Furthermore,
because correlation is a symmetrie quantity, the ARE
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of Q(x*) to Q(x) when x is the appropriate exposure
variable is equal to the ARE of Q(x) to Q(z*) when »*
is the appropriate exposure variable.

The equality of the ARE for model misspecification
to the square of the correlation arises not only in logistic
models, but in a broad range of other settings. These
include MLE tests based on linear models for measured
response, MLE tests from logistic models for binary
response, and likelihood ratio tests from logistic medels
for dichotomous response (3,4).

In order to get a sense for the effects of mismodeling,
let us consider the consequences of a particular kind of
misspecification, discretizing a continuous exposure var-
iable. Other examples, including mismodeling a contin-
uous exposure, misspecifying the dose metameter in a
test for trend, misclassifying a categorical exposure,
and errors in measurement, have been discussed else-
where (3).

Discretizing a Continnous Exposure. Data on a
measured exposure variable are often grouped into k
categories prior to statistical analysis. Examples in-
clude classifying systolic blood pressure measurements
as high or low, dividing age into 10-year categories, or
grouping measured exposure levels of a potential car-
cinogen into categories of low, middle, or high. Discre-
tization of a continuous exposure may occur because that
is the only available information on that variable, or
perhaps because the appropriate functional form relat-
ing the exposure to the outecome variable is unknown.
The general result assures us that discretization does
not distort the size of the test; however, it can cause a
loss in power. We want to know how large this loss is,
and whether there are rules for picking categories which
will minimize this loss.

If we want to group a continuous exposure into sev-
eral categories, a few choices must be made. First we
must decide on k, the number of categories. Once k is
selected, we must choose the (k — 1) cutpoints that form
the boundaries for k intervals, Finally we must decide
upon the value, say x,;*, of * when z falls into interval
j. For a given k and cutpoints, it is easily shown (5) that
the optimal choice for &,;* is »* = 8;, where §; is the
mean of & within interval j. The corresponding ARE,
obtained by simplifying Eq. (3), is given by:

k
AREfx*] = >, w(8; — 0 var() @)

i=1
where m; is the probability that x falls into the jth in-
terval, and 8 = E(x). Connor (5) derives this same result
as an optimization criterion for categorizing a continu-
ous exposure that is linearly related to a dichotomous
outcome variable. He provides an iterative algorithm
for finding the optimal cutpoints for k intervals. In gen-

eral, the optimal intervals are not equiprobable.

To illustrate the numerical results that arise from Eq.
(4), let us consider instances in which z is distributed
uniformly, normally, and exponentially. Results for
these examples are displayed in Table 1. Even when x
is split into as few as three categories, the optimization

solution with nonequiprobable intervals maintains rea-
sonably good relative efficiency. Serious loss in effi-
ciency can oceur, however, if equiprobable intervals are
used ($). For example, consider an exposure x that fol-
lows an exponential distribution, but has been divided
into four discrete categories. We see from Table 1 that
the ARE{x*:x] is about 89% when the optimal intervals
are used; however, this ARE reduces to 73% when equi-
probable intervals are used. More generally, the table
reveals the following interesting results. If  follows a
uniform or normal distribution, the cost of using equi-
probable intervals is not too great. But if x is exponen-
tial, the consequences of using equiprobable intervals
are much more severe. This result gives rise to some
simple guidelines for discretizing a measured exposure.
If one feels fairly sure that the distribution of x is nearly
symmetric, the choice of equiprobable intervals is rea-
sonably safe. If »’s distribution is highly skewed, one
should strictly adhere to the optimization ecriterion for
choosing intervals.

As another example, consider the situation in which
2 continuous exposure is dichotomized into categories
of none versus some, Under these special eircum-
stances, it can be shown (3) that the ARE reduces to a
simple function of the proportion unexposed (7) and the
coefficient of variation {(C) of the nonzero exposures:

ARE[z*:x] = m/(m + C?)

Lessening & causes the ARE to decrease slightly, but
this loss is small. Increasing C, on the other hand, can
lead to a great loss in power; the score test becomes
highly inefficient when the coefficient of variation is
large.

Misspecified Exposure and Correctly
Specified Covariates

Now let us consider a more complex situation; sup-
pose that « is misspecified in the presence of correctly
specified covariates. The goal, then, is to study the be-
havior of Q(x*,z), the misspecified version of the score
test. The asymptotic distribution of Q{x*,z) can be de-
rived for a sequence of contiguous alternative models
to Eq. (1); such a sequence is described by Eq. (1) with
o replaced by oo/ Vn:

Qo
Vn

Begg and Lagakos show (2} that the statistic Q(z*,z)
is asymptotically valid, sinece p* = 0 whenever oy = 0.
However, computation of the efficiency of Q(x*, z) rel-
ative to Q(x,z) can be quite complex for the general case
(2). But if we restriet attention to the special case in
which scalar z is independent of = and x*, we obtain a
much simpler result. Therefore, suppose that the co-
variate z is independent of both = and «*; that is, that
the covariate is balanced across exposures, as in a ran-

logit P{Y = 1|x,2) =0 + x + B'z
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Tahle 1. ARE[x*:x] when discreiizing a continuous exposure.®

k, number Distribution ARE[z*.x]
of intervals of o Optimal interval probabilities® Using optimal intervals® Using equiprobable intervals
Uniform 0.50,0.50 0.75 0.76
2 Normal 0.50,0.50 0.65 (.65
Exponential 0.80,0.20 0.65 0.48
Uniform 0.33,0.33,0.33 0.89 0.89
3 Normal 0.27,0.46,0.27 0.81 0.79
Expoenential 0.64,0.29,0.07 0.82 0.64
Uniform 0.25,0.25,0.25,0.25 0.94 0.94
4 Normal 0.16,0.34,0.34,0.18 0.88 0.86
Exponential 0.53,0.30,0.14,0.04 0.89 0.73
Uniform 0.20,0.20,0.20,0.20,0.20 0.96 0.96
5 Normal 0.11,0.24,0.31,0,24,0.11 0.92 0.90
Exponential 0.45,0.29,0,17,0.07,0.02 0.93 0.77
Uniform 0.17,0.17,0.17,0.17,0.17,0.17 0.97 0.97
6 Normal 0.07,0.18,0.25,0.25,0.18,0.07 0.94 0.93
Exponential 0.39,0.27,0.18,0.10,0.04,0.01 0.95 0.82

2From Lagakos (3).
b From Connor (5).

domized clinical trial. Then the ARE of Q(a*,2) to Q(x,2)
can be approximated in the following way (2):

ARE[(x*,2):(z,2)] = [correlation(z*z,xz)]

Hence the square of the correlation of ¥z and x*z ap-
proximates the ARE of Q(x*,z) to Q(z,z}). This result
resembles the result obtained when there were no co-
variates in the model, except that now we must take z
into acecount, By symmetry, the ARE of Q(x,z) when
Q(x*,z) is appropriate is also equal to correlation
squared.

As an example of this result, we will consider how
choice of metameter can affect the performance of the
trend test. We evaluate the ARE[(x*,z):(x,2)], allowing
covariate z to follow different distributions.

Testing for Trend. Suppose x is an ordered cate-
gorical variable with k levels. These categories may
represent dosage level in a rodent bioassay experiment
or dose of medication in a elinical trial. We want to know
whether or not response rates follow some trend in the
levels of exposure z. The likelihood score test in this
setting is equivalent to the wellknown Cochran-
Armitage test for trend. Use of this test requires se-
lection of a metameter that quantifies the levels of ex-
posure z. However, we usually do not know the correct
metameter in advance. Thus, it is important to consider
how using the wrong metameter for « affects the effi-
ciency of the test. This problem has already been stud-
ied when there are no covariates (3); we now direct
attention to the case in which a single, independent,
correctly specified covariate z is present.

As an example let us consider an exposure with three
levels. The chosen metameter can take on one of three
basic shapes: linear, convex, or concave. We allow co-
variate z to follow the Bernoulli, normal, or exponential
distribution. For a given distribution of z, we can com-
pute the ARE for a test based on one of the two non-

optimal shapes relative to a test based on the optimal
shape. (A subset of the values computed can be found
in Tables 2 and 3.) Calculations show that the ARE’s
differ somewhat depending on the distribution of z, but
remain qualitatively the same. Briefly, numerical re-
sults show that in general convex (concave) metameters
do quite well when the optimal weights are convex {con-
cave). But choosing convex (concave) weights when the
optimal weights are concave (convex) causes a great
loss in efficiency. Linear weights, however, seem to
enjoy fairly high relative efficiency, whether the optimal
metameter is concave or convex. This simple scheme of
results leads to rules of thumb for chooging a metameter
for x. For example, if the dose metameter is believed
almost certainly to be linear or convex, one should
choose a mildly convex metameter. But if there is great
uncertainty about the basic shape of the trend, linear
weights are the safest bet. More generally, the simi-
larity of these results with those in Lagakos (8} for the
case of no covariates suggest that the effects of mis-
specifying @ when covariates are correctly specified
might be similar to those when there are no covariates.

Misspecified Exposure and Covariates

Let us now consider the situation in which both ex-
posure and covariates are misspecified. Denote the test
statistic in this case by Q(x*,z*). Again, one can derive
the asymptotic distribution of the mismodeled test sta-
tistic by specifying a sequence of contiguous alternative
models to Eq. (1) such that the fitted model approaches
the true model under the nul! hypothesis as n goes to
infinity. The limiting distribution of Q(x*,z*) has al-
ready been derived under very general conditions. This
general approach specifies a sequence of alternative
models to Eq. (1) in which « is replaced by a,/v/n and
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Table 2. AREs for convex and concave metameters {(x*) when the true metameter (x) is linear (0,0.5,1) in tests for trend
with k = 3 levels.”
ARE[(x* 2):(x,z)] when fitted metameter (x*) is
Convex Concave
Distribution of covariate z Relative group sizes {0,0.2,1)  (0,0.1,1) (0,0,1) 0,0.8,1) (0.0.9,1) 0,1,1)
No covariate® {0.33,0.33,0.33) 0.89 0.82 0.75 0.89 0.82 0.76
{0.20,0.20,0.60) 0.93 (.89 0.84 0.91 0.84 0.77
(0.20,0.30.0.50) 0.91 0.36 0.80 0.88 0,79 0.69
(0.50,0.30,0.20) 0.87 0.79 0.69 0.91 0.86 0.80
(0.60,0.20,0.20) 0.91 (.84 0.77 0.93 0.89 0.84
Normal (0, ¢ (0.33,0.33,0.33) 0.93 0.87 0.80 0.96 0.93 0.90
(0.20,0.20,0.60) 0.97 0.95 0.92 0.98 0.96 0.94
(0.20,0.30,0.50) 0.95 0.92 0.87 0.97 0.94 0.92
(0.50,0.30,0.20) 0.91 0.83 0.73 0.95 0.92 0.89
(0.60,0.20,0.20) 0.93 0.87 0.80 0.96 0.93 0.90
Exponential (A} (0.33,0.33,0.33) 0.91 0.85 0.77 0.94 0.90 0.86
(0.20,0.20,0.6 0.96 0.93 0.89 0.96 0.94 0.91
(0,20,0.30,0.50) 0.94 0.89 (.84 0.95 0.91 0.87
(0.50,0.30,0.20) 0.89 0.81 0.71 0.94 0.90 0.86
(0.60,0.20,0.20) 0.92 0.86 0.78 0.95 0.91 0.88
Bernoulli (0.1) (0.33,0.33,0.33) 0.93 0.87 0.79 0.95 0.92 0.89
(0.,20,0.20,0.60) 0.97 0.95 (.92 0.98 0.96 0.94
(0.20,0.30,0.50) 0.95 0.91 0.86 0.96 0.94 0.91
(0.50,0.30,0.20) 0.90 0.82 0.72 0.95 0.92 0.89
(0.60,0.20,0.20) 0.93 0.87 0.80 0.95 0.93 0.99

*True exposure metameter (x) = linear (0.0.5,1).

*From Lagakos (3).

Table 3. AREs for alternative metameters (x*) when the true metameter (x) is convex (0,0,1) in tests for trend with k = 3 levels.®

ARE[(x* ,2):(x,2}] when fitted exposure metameter (x*) is

Linear Concave
Distribution of covariate z Relative group sizes (0,0.5,1) (0,021 (0,01]1) 0,0.8,1)  (0,0.9,1) 0,1,1)
No covariate® (0.33,0.33,0.33) 0.75 0.96 0.99 0.42 0.33 0.25
(0.20,0.20,0.60) 0.84 0.98 0.99 0.57 0.47 0.38
{0.26,0.30,0.50) 0.80) 0.98 0.99 0.47 0.35 0.25
(0.50,0.30,0.20) 0.69 0.95 0.99 0.40 0.32 0.25
(0.60,0.20,0.20) 077 0.96 0.99 0.52 0.44 0.38
Normal (0,¢%) (0.83,0.33,0.33) 0.80 0.96 0.99 (.61 0.55 0.50
(0.20,0.20,0.60) 0.92 0.99 0.99 0.82 0.79 0.75
(0.20,0.30,0.50) 0.87 0.98 0.99 0.72 0.67 0.63
0.50,0.30,0.20) 0.73 0.94 0.99 0.51 (.45 0.40
(0.60,0.20,0.20) 0.80 0.96 0.99 0.61 0.55 0.50
Exponential (1) 0.33,0.33,0.33) 0.77 0.96 0.99 0.53 0.46 0.40
(0.20,0.20,0.60) 0.8% 0.98 0.99 0.75 0.70 0.64
{0.20,0.30,0.50) 0.84 0.97 0.99 0.63 0.56 0.50
(0.50,0.30,0.20) 0.71 0.94 0.99 (.46 (.39 0.33
(0.60,0.20,0.20) 0.78 0.96 0.99 0.57 0.50 0.44
Bernoulli (0.1) (0.33,0.33,0.33) 0.79 0.96 0.99 0,60 0.54 0.48
(0.20,0.20,0.60) 0.92 0.98 0.99 0.81 0.77 0.73
(0.20,0.30,0.500 0.86 0.98 (.99 .71 (.66 0.61
0.50,0.30,0.20) 0,72 0,94 0.99 0.50 0.44 0.39
(0.60,0.20,0.20) 0.80 0.96 (.99 (.60 0.54 0.49

“True exposure metameter (x) = convex (0,0,1),

*From Lagakos ().

z* approaches z at rate 0 (1/\/%) as »n goes to infinity.
This latter assumption has no direct physical signifi-
cance; it is merely a technique which guarantees a tract-
able result. It follows that this statistic also converges
in distribution to a normally distributed random vari-
able with mean p* and variance 1. The formula for p*
is very complex and involves intricate expressions that

depend on 6, oy, B, and on the joint distribution of x,
@*, z, and z* (2).

In general, Q(x*,z*) is not asymptotically valid.
Clearly this result is reasonable, since we would expect
mismodeling a covariate z that is not balanced across
exposure groups to introduce bias. When Q(x*,z*) is
valid we can consider its asymptotic efficiency relative
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to Q(x,z*). As we would expect, misspecification of co-
variates causes a loss in asymptotic efficiency. How-
ever, formulas for the ARE[(x*,z*):(x,z*)] do not read-
ily simplify. In general, numerical techniques are
needed to evaluate these expressions and quantify the
extent, of power loss.

Results do simplify, to some extent, for the case of
omitted covariates (6). Since it iz well known that ex-
cluding covariates that are related to exposure alters
test size and efficiency, we restrict attention to the case
where the omitted covariates are independent of ex-
posure. It has been shown (§) that omitting an important
covariate will not distort test size; hence, the test sta-
tistic Q(x*,0) retains asymptotic validity. Covariate
omission does, however, reduce efficiency. We have the
following expression for the ARE of a misspecified test
which exeludes z versus a misspecified test which in-
cludes z:

— 2
ARE[@* 0)z*, 2)] = 1 — {E[(p(z> Elp(z))) ]}

Elp(@)1 — E[p))

where

eI]+ﬂ'z

P = g

Unless z is degenerate, the term in brackets is always
positive; hence the ARE is always less than one. There-
fore, omitting important covariates causes a loss in
asymptotic efficiency; this loss can be measured by eval-
uating the expression above for ARE. It can also be
shown that the ARE of a test that omits z versus a
complete test is the-same, whether or not & has been
correctly specified:

ARE[(x*,0):(x*,z)] = ARE[{x,0):(x,2)]

For further details, see Begg and Lagakos (6).

This result addresses the issue of covariate omission
in a general way. Earlier results, however, have dealt
with the consequences of omitting important covariates
in particular applications. We present two such special
cases as examples. The first result examines the con-
sequences of omitting a covariate on estimating treat-
ment effect. The second result, taken from the field of
animal carcinogenicity experiments, studies the loss in
efficiency incurred by omitting an important covariate
from the model. For other examples, see the references
in the papers by Gail et al. (7) and Ryan (8).

Estimation of Treatmeni Effect. Suppose that an
important scalar covariate has been excluded from the
fitted model, but that this covariate is balanced across
exposure groups; that is, « and x* are independent of
z and z*. Such is the situation in a randomized clinical
trial where covariates are balanced across treatment
groups. It is well known that the omission of a balanced
covariate will not bias the estimate of treatment effect
in the setting of linear models. However, Gail et al. (7)
have shown that this is not necessarily the case with
nonlinear regression. The authors show that when

treatment x is binary, the omission of a balanced covari-
ate z in logistic regression causes the estimate of treat-
ment effect to be biased towards the null hypothesis.
This result emphasizes the fact that for logistic models,
randomization cannot guarantee unbiased estimates of
treatment effect when important covariates are omit-
ted.

Animal Carcinogenicity Experiments. As an ex-
ample, let us consider a bioassay experiment in which
a control group of animals is compared with an exposed
group with respect to the development of a nonlethal
tumor. One approach for analysis is the lifetime inci-
dence test, which compares the proportions of tumor-
bearing animals. This test is valid, provided that the
compound in question does not alter longevity in the
exposed group. However, Ryan (8) notes that this
method is inefficient relative to other methods that ad-
just for age-at-death. One of these tests is the Hoel-
Walburg test (9).

Dinse and Lagakos have shown (10) that the Hoel-
Walburg test arises as a likelithood score test from a
logistic model. There is one covariate, z, in this model;
it is a step function representing the logit of tumor
prevalence in the control group. Similarly, the lifetime
ineidence test is just a special case of the Hoel-Walburg
test, where z is simply a constant representing the con-
stant logit of tumor prevalence in the control group.
Hence the lifetime incidence test ean be viewed as a
misspecified model from which an important covariate
(i.e., the logit of tumor prevalence) has been omitted.
Ryan (8) has studied this problem in detail and has
derived an expression for the ARE of the lifetime in-
cidence test versus the Hoel-Walburg test. [It can be
shown (6) that Ryan’s formula follows as a special case
of the general result for omitted covariates discussed
earlier.] Ryan has evaluated this expression for the
ARE when the prevalence function for the econtrol group
animals is assumed to be zero during the first year and
linear thereafter. She shows that the lifetime incidence
test can become very inefficient relative to the Hoel-
Walburg test. When the slope of the prevalence function
is close to zero, the lifetime incidence test almost
matches the Hoel-Walburg test in efficiency. But as the
slope increases, the ARE falls off precipitously.

Discussion

We have considered the consequences of misspecifi-
cation in logistic regression. Types of misspecification
can include mismodeling the functional form of a vari-
able, mismeasuring a continuous variable, discretizing
a continuous variable, misspecifying dose metameter in
trend tests, or omitting an important covariate from the
model. Qur treatment of this problem has allowed mis-
specification to be arbitrary, but it has always required
that the distribution of outeome Y conditional on x,x*,z,
and z* be equal to the distribution of ¥ conditional on
x and z alone. We have explored the likelihood score
test’s validity and efficiency subject to mismodeling. its
bias and power characteristics were investigated for
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cases with a misspecified exposure and no covariates,
cases with misspecified exposure and correctly specified
covariates, and cases with misspecified exposure and
misspecified covariates.

The case with a single exposure variable has already
been researched extensively. When there are no covari-
ates, the misspecified score test is always valid. Its
efficiency was evaluated by computing the ARE of a
test based on the misspecified exposure variable versus
a test based on the correctly specified exposure variable.
The simple result is that the ARE[x*:x] is equal to the
square of the correlation between the fitted exposure
variable and the correct exposure variable.

When there are other covariates besides the expo-
sure, the seore test retains its validity. However, when
an independent scalar covariate is present, the ARE
differs slightly from the ARE in the absence of covar-
iates. The formula for ARKE[(x* z):(x,2)] is approxi-
mately equal to the square of the correlation between
xz and x*z. This formula resembles the formula for the
ARE when there are no covariates, but takes into ac-
count the presence of z.

Finally, we considered cases in which there has been
misspecification of both exposure and covariates. As we
would expect, this case gives the most complex results.
We find that bias is indeed of concern here. The score
test is no longer valid in general. We also find that
expressions for the ARE{(x*z*).(x,z*)] become ex-
tremely complicated in this setting. Evaluation of the
ARE will usually require numerical techniques for the
general case. Of particular interest in this setting is the
question of the omitted covariate. It can be shown that
the omission of a needed covariate causes biased esti-
mates of treatment effect, and reduced efficiency in
tests of association hetween exposure and response,

The methods given here for evaluating bias and ef-
ficiency prove to be quite flexible. They allow for mis-
specification of the exposure, the covariates, or both
simultaneously. These results derive from the likelihood
score test from a logistic model, but alse apply to tests
based on the maximum likelihood estimator of o and

the likelihood ratio statistic, since all three tests are
asymptotically equivalent. It has been beyond the scope
of this paper to consider all possible types of misspe-
cification of the exposure, all types of misspecification
of the covariates, and all combinations thereof. Our pur-
pose has been to provide the machinery for doing so
and to give a few illustrative examples. The generality
of the results allows us to think more generally about
the effects of misspecification, but their ultimate value
depends on detailed numerical evaluations to develop
simple rules of thumb.
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Cancer Institute.
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