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Recent technologic advances in the fields of
“omics,” including toxicogenomics, hold
great promise for the understanding of the
molecular basis of health and disease, and
toxicity. Prospective further advances could
significantly enhance our capability to
study toxicology and improve clinical pro-
tocols for early detection of various types of
cancer, disease states, and treatment out-
comes. Classification methods, because of
their power to unravel patterns in biologi-
cally complex data, have become one of the
most important bioinformatics approaches
investigated for use with omics data.
Classification uses supervised learning
techniques (Tong et al. 2003b) to fit the
samples into the predefined categories
based on patterns of omics profiles or
predictor variables (e.g., gene expressions in
DNA microarray). The fitted model is then
validated using either a cross-validation
method or an external test set. Once
validated, the model could be used for
prediction of unknown samples.

A number of classification methods have
been applied to microarray gene expression
data (Ben-Dor et al. 2000; Simon et al.
2003; Slonim 2002), including artificial
neural networks (Khan et al. 2001),

K-nearest neighbor (Olshen and Jain 2002),
Decision Tree (DT; Zhang et al. 2001), and
support vector machines (SVMs; Brown
et al. 2000). Some of the same methods
have been applied similarly to proteomic
data generated from surface-enhanced laser
deposition/ionization time-of-flight mass
spectrometry (SELDI-TOF MS) for molec-
ular diagnostics (Adam et al. 2002; Ball
et al. 2002). For example, Petricoin et al.
(2002a, 2002b) developed classification
models for early detection of ovarian and
prostate cancers (PCAs) on the basis of
SELDI-TOF MS data using a genetic
algorithm–based SVM.

Omics data present challenges for
most classif ication methods because
a) the number of predictor variables nor-
mally far exceeds the sample size and
b) most data are unfortunately very noisy.
Consequently, optimizing a classification
model inherently risks overfitting the
noise, a result that is difficult to overcome
for most classification methods (Slonim
2002). Furthermore, many existing classi-
fication methods require predetermination
of a set of predictor variables, thereby
introducing additional complexity and
bias that could adversely affect both

model fitting and validation (Ambroise
and McLachlan 2002).

In this article a novel classification
method, Decision Forest (DF), is pro-
posed for developing classification models
using omics data. A DF model is devel-
oped by combining multiple distinct but
comparable DT models to achieve a more
robust and better prediction (Tong et al.
2003a). DF does not require predetermi-
nation of predictor variables before model
development and is less prone to overfit-
ting of noise. Developing a statistically
sound model that fits the data is straight-
forward with most classification methods,
but assuring that the model can accurately
classify unknown samples with a known
degree of certainty poses a significant
challenge. In DF, an extensive cross-vali-
dation and randomization testing proce-
dure was implemented, which provides
two critical measures to assess a fitted
model’s ability to predict unknown sam-
ples, the confidence level of predictions
and the degree of chance correlation. DF
is demonstrated in an application to dis-
tinguish PCA samples from normal sam-
ples on the basis of a SELDI-TOF MS
data set. The results indicate that the
reported DF model could be useful for
early detection of PCA.

Materials and Methods

Proteomics Data Set

A proteomic data set reported by Adam
et al. (2002) is used in this study. The data
set consists of SELDI-TOF MS spectra for
326 samples, which is generated using the
IMAC-3 chip (Ciphergen Biosystems, Inc.,
Fremont, CA). Of 326 serum samples
used, 167 samples were from the PCA
patients, 77 from the patients with benign
prostatic hyperplasia (BPH), and 82 from
healthy individuals. The samples were sub-
sequently divided into two classes for this
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study, cancer samples (167 PCA samples)
versus noncancer samples (159 samples
including both BPH and healthy individu-
als) (Qu et al. 2002). Each sample was
characterized by 779 peaks of a spectrum.
These peaks were determined in the mass
range of 2,000–40,000 Da and provided
by the original authors (Adam et al. 2002)
for this study. All these peaks were used as
predictor variables without preselection to
develop the DF model.

Decision Tree
A DT model was developed using a variant
of the classification and regression tree
(CART) method (Breiman et al. 1995),
which consists of two steps—tree construc-
tion and tree pruning (Clark and Pregibon
1997). In the tree construction process the
algorithm identifies the best predictor vari-
ables that divide the sample in the parent
node into two child nodes. The split maxi-
mizes the homogeneity of the sample pop-
ulation in each child node (e.g., one node
is dominated by the cancer samples, and
the other is populated with the noncancer
samples). Then, the child nodes become
parent nodes for further splits, and splitting
continues until samples in each node are
either in one classification category or can-
not be split further to improve the quality
of the DT model. To avoid overfitting the
training data, the tree is then cut down to a
desired size using tree cost-complexity
pruning (Clark and Pregibon 1997). In the
end of the process, each terminal node con-
tains a certain percentage of cancer sam-
ples. This percentage specifies the
probability of a sample to be the cancer
sample. In this study the cutoff 0.5 was
used to distinguish cancer samples from
noncancer samples. If a terminal node con-
tains the proportion of cancer sample
(p) > 50% (i.e., p > 0.5), all the samples in
this terminal are designated as cancer sam-
ples and p is the probability value assigned
to the entire sample in this terminal node.
Similarly, samples are noncancer if the
probability is < 0.5.

Decision Forest
DF is a consensus modeling technique,
where the results of multiple DT models
are combined to produce a more accurate
prediction than any of the individual inde-
pendent DT models. Because combining
several identical DT models produces no
gain, the rationale behind DF is to develop
multiple DT models that are heterogeneous
with comparable quality. “Heterogeneity”
emphasizes each DT model’s unique contri-
bution to the combined prediction, which
is accomplished by developing each DT
model based on a distinct set of predictor

variables. “Comparable quality” ensures
each DT model’s equal weight in combin-
ing prediction, which requires each DT
model having similar accuracy of predic-
tion. Thus, the development of a DF model
consists of three steps (Tong et al. 2003a):
a) develop a DT model, b) develop the next
DT model based on only the predictor vari-
ables that are not used in the previous DT
model(s), and c) repeat the first two steps
until no additional DT models can be
developed. In this process the misclassifica-
tion rate for each DT model is controlled at
a fixed level (3–5%) to ensure the compara-
ble quality of individual DT models. The
same classification call in DT is used for
determining a sample’s classification based
on the mean probability value of all DT
models used in DF.

Randomization Test for 
Chance Correlation
Because proteomic data usually contain a
large number of predictor variables with a
relatively small number of samples, it is
possible that the patterns identified by a
classification model could be simply due to
chance. Thus, we used a randomization
testing to assess the degree of chance corre-
lation. In this method the predefined classi-
fication of the samples was randomly
scrambled to generate 2,000 pseudo-data
sets (Good 1994). The DF models were
developed for each pseudo-data set, and the
results were then compared with the DF
model from the real data set to determine
the degree of chance correlation.

Model Validation
A common approach for assessing the
predictivity of a classification model is to
randomly split the available samples into a
training set and a test set. The predictivity
of a fitted model using all the samples is

estimated based on the prediction accuracy
for the test set. Arguably, the cross-valida-
tion method could be considered as an
extension of this external validation proce-
dure and might offer an unbiased way to
assess the predictivity of a model from a
statistical point of view (Hawkins et al.
2003). In this procedure a fraction of sam-
ples in the data set are excluded and then
predicted by the model produced using the
remaining samples. When each sample is
left out one at a time, and the process
repeated for each sample, this is known as
leave-one-out cross-validation (LOO). If
the data set is randomly divided into n
groups with approximately equal numbers
of samples, and the process is carried out
for each group, the procedure is called
leave-n-out cross-validation (LNO).
Because LOO gives a minimal perturbation
to the data set and therefore might not
detect overfitting of a model, the
leave-10-out cross-validation (L10O) is
commonly used for classification models.

It is important to point out that the
LNO results vary for each run because the
partition of the data set is changing in a
random manner (except for the LOO pro-
cedure). The variation increases as the
number of left-out samples increases (i.e.,
n decreases with n > 1). Care must be
taken when interpreting the results derived
from only one pass through an LNO
process, which could lead to a conclusion
that might not represent the true predic-
tivity of the fitted model due to chance.
Rather, the mean of many passes through
the LNO process should well approximate
the predictivity of the fitted model. In this
study an extensive L10O procedure was
implemented in DF, where the L10O
process was repeated 2,000 times using
randomly divided data sets in each run.
The choice of 2,000 runs is based on our
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Table 1. Summary of the four DT models combined for developing the DF model (n = number of
misclassifications).

DT model 1 DT model 2 DT model 3 DT model 4
(n = 12) (n = 13) (n = 14) (n = 14)

Variables (m/z peaks) 9,656 8,067 6,542 7,692
used in each DT model 8,446 8,356 7,934 6,756

5,074 5,457 7,195 9,593
6,797 2,144 4,497 9,456
8,291 7,885 4,080 5,978
9,720 7,024 6,199 3,780
3,486 7,771 7,481 2,794
4,191 3,897 5,586 7,844
4,653 4,757 6,099 5,113

6,890 7,070 28,143
2,014 24,400 2,982
9,149 2,887 6,443

7,054 7,820
4,475 4,580
4,537
7,409
7,054



previous experience of where reliable
statistics can be reached (Tong et al.
2003a). In this validation process a total of
20,000 pairs of training and test sets were
generated, and each sample was predicted
by 2,000 different models. The results
derived from this process provide an
unbiased statistic for evaluating the
predictivity of a fitted model.

Results

DF was applied to the proteomic data set
for distinguishing cancer from noncancer.
The fitted DF model for the data set con-
tains four DT models, each of them having
the comparable misclassifications ranging
from 12 to 14 (i.e., 3.7–4.3% error rate;
Table 1). The misclassification is signifi-
cantly reduced as the number of DT
models to be combined increases to form a
DF model (Figure 1). The four-tree DF
model gave 100% classification accuracy.
However, it is important to note that a sta-
tistically sound fitted model provides lim-
ited indication of whether the identified
pattern is biologically relevant or is solely
due to chance. Neither does such a fitting
result provide validation of the model’s
capability for predicting unknown samples
that were not included in the training set
used for model development. It is impor-
tant to carry out a rigorous validation pro-
cedure to determine the fitted model with
respect to the degree of chance correlation
and the level of confidence for predicting
unknown samples.

Assessment of Chance Correlation
We compared the predictive accuracy for
the left-out samples in the 2,000 L10O
runs of the real data set (total of 20,000
pairs of training and test sets) with those
derived from the L10O run for each of the
2,000 pseudo-data sets (total of 20,000
pairs of training and test sets). The distrib-
utions of the prediction accuracy of every
pair for both real and pseudo-data sets are
plotted in Figure 2. The distribution of
prediction accuracy of the real data set
centers around 95%, whereas the pseudo-
data sets are near 50%. The real data set
has a much narrower distribution com-
pared with the pseudo-data sets, indicating
that the training models generated from
the L10O procedure for the real data set
give consistent and high prediction accu-
racy with their corresponding test sets. In
contrast the prediction results of each pair
of training and test sets in the L10O
process for the pseudo-data sets varied
widely, implying a large variability of sig-
nal:noise ratio among these training mod-
els. Importantly, there is no overlap
between two distributions, indicating that

a statistically and biologically relevant DF
model could be developed using the real
data set.

Assessment of Prediction Confidence
DF assigned a probability value for each
prediction, where samples with the proba-
bility value ≥ 0.5 were designated as cancer
samples, whereas others were designated as
normal samples. Figure 3 provides two sets
of information derived from the 2,000
L10O runs over 10 equal probability inter-
vals between 0 and 1: a) the number of
left-out samples predicted in each bin and
b) the misclassification rate in each bin.
Analysis shows that the 0.7–1.0 interval has
a concordance of 99.2% for the cancer
samples (0.8% false positives), whereas the
0.0–0.3 interval has a concordance of
98.2% for the noncancer sample (1.8%
false negatives). These two probability
ranges accounted for 79.7% of all left-out
samples. The vast majority of misclassifica-
tions occur in the 0.3–0.7 probability
range, where the average prediction accu-
racy was only 78.9% but which,

fortunately, accounted for only 20.3% of
total of left-out samples. Therefore, we
defined both the predicted probability
ranges of 0.0–0.3 and 0.7–1.0 as the high-
confidence (HC) region, whereas the pre-
dicted probability range of 0.3–0.7 was
considered the low-confidence (LC) region.

Comparison of DF with DT
Table 2 summarizes the statistical results of
the 2,000 L10O runs for both DF and
DT. Overall, the DF model increases pre-
diction accuracy by about 5% compared
with the DT model, from 89.4 to 94.7%.
In the HC region, the DF model increases
prediction accuracy compared with the DT
model by 8% from 90.7 to 98.7%, com-
pared with 15% from 63.8 to 78.9% in the
LC region.

Biomarker Identification
In addition to development a predictive
model for proteomic diagnostics, identifi-
cation of potential biomarkers is another
important use of the SELDI-TOF MS
technology (Diamandis 2003). Each DT
model in DF determines a sample’s classi-
fication through a series of rules based on
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Figure 1. Plot of misclassifications versus the
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selection of predictor variables. Thus, it is
expected that the DF-selected variables
could be useful as a starting point for bio-
marker identification.

There were two lists of model-selected
variables derived from DF, one used in fit-
ting (the fitting-variable list; Table 1) and

the other used by at least one of the models
in the 2,000-L10O process (the L10O-
variable list). The L10O-variable list con-
tained 323 unique variables, which actually
included all variables in the fitting-variable
list. Given that the sample population is
different among the models in the
2,000 L10O runs, the number of models
selecting a particular variable should tend
to increase in direct proportion to the
biologic relevance of the variable. There
were 46 variables that were selected
> 10,000 times in the 2,000-L10O process
(Table 3), including all 12 m/z peaks iden-
tified by Qu et al. (2002) using boosted
decision stump feature selection based on a
slightly larger data set. The two-group
t-test results indicated that 32 of 46 high-
frequency variables have p-values < 0.001
(Table 3). Selection of 23 variables from
Table 3 that were used in both fitting and
L10O with p < 0.001 appears a reasonable
approach to choosing a set of proteins for
biomarker identification.

Discussion

We developed a classification model
for early detection of PCA on the basis of
SELDI-TOF MS data using DF. DF is an
ensemble method, where each prediction is
a mean value of all the DT models com-
bined to construct the DF model. The idea
of combining multiple DT models implic-
itly assumes that a single DT model could
not completely represent important func-
tional relationships between predictor vari-
ables (m/z peaks in this study) and the
associated outcome variables (PCA in this
study), and thus different DT models are
able to capture different aspects of the rela-
tionship for prediction. Given a certain
degree of noise always present in omics
data, optimizing a DT model inherently
risks overfitting the noise. DF minimizes
overfitting by maximizing the difference
among individual DT models. The differ-
ence is achieved by constructing each indi-
vidual DT model using a distinct set of
predictor variables. Noise cancellation and
corresponding signal enhancement are
apparent when comparing the results
from DF and DT. DF outperforms DT in
all statistical measures in the 2,000
L10O runs. Whether DT performs better
than other similar classification techniques
depends on the application domain and the
effectiveness of the particular implementa-
tion. However, Lim and Loh (1999) com-
pared 22 DT methods with nine statistical
algorithms and two artificial neural net-
work approaches across 32 data sets and
found no statistical difference among the
methods evaluated. Thus, the better perfor-
mance of DF than DT implies that the

unique ensemble technique embedded in
DF could also be superior to some other
classification techniques for class prediction
using omics data.

Combining multiple DT models to
produce a single model has been investi-
gated for many years (Bunn 1987, 1988;
Clemen 1989; Zhang et al.  2003).
Evaluating different ways for developing
individual DT models to be combined has
been a major focus, which have all been
reported to improve ensemble predictive
accuracy. One approach is to grow
individual DT models based on different
portions of samples randomly selected
from the training set using resampling
techniques. However, resampling using a
substantial portion of samples (e.g., 90%)
tends to result in individual DT models
that are highly correlated, whereas using
a less substantial portion of samples
(e.g., 70%) tends to result in individual
DT models of lower quality. Either high-
correlated or lower-quality individual DT
models can reduce the combining benefit
that might otherwise be realized. The indi-
vidual DT models can also be generated
using more robust statistical resampling
approaches such as bagging (Breiman
1996) and boosting (Freund and Schapire
1996). However, it is understood that
boosting that uses a function of perfor-
mance to weight incorrect predictions is
inherently at risk of overfitting the noise
associated with the data, which could
result in a worse prediction from an
ensemble model (Freund and Schapire
1996). Another approach to choosing an
ensemble of DT models centers on ran-
dom selection of predictor variables (Amit
and Geman 1997). One popular algo-
rithm, random forests, has been demon-
strated to be more robust than a boosting
method (Breiman 1999). However, in an
example of classification of naive in vitro
drug treatment sample based on gene
expression data, Gunther et al. (2003)
showed reduced prediction accuracy of
random forests (83.3%) compared with
DT (88.9%).

It is important to note that the afore-
mentioned techniques rely on random
selection of either samples or predictor
variables to generate individual DT mod-
els. In each repeat the individual DT
models of the ensemble are different; thus,
the biologic interpretation of the ensem-
ble is not straightforward. Furthermore,
these methods need to grow a large num-
ber of individual DT models (> 400) and
could be computationally expensive. In
contrast the difference in individual DT
models is maximized in DF such that a
best ensemble is  usually realized by
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Table 2. Comparison of statistics between DF and
DT models in prediction of the left-out samples in
the 2,000 L10O runs.

Prediction accuracy DF (%) DT (%)

Overall accuracy 94.7 89.4
Accuracy in HC region 98.7 90.7
Accuracy in LC region 78.9 63.8

Table 3. List of m/z peaks used more than 10,000
times in the 2,000-L10O process, where 23 peaks
are used in fitting with p < 0.001.

m/z Peaks (Da) Frequency p-Value

7,934a 30,203 < 0.001
9,149a 26,482 < 0.001
7,984b 25,171 < 0.001
8,296a 24,793 < 0.001
3,897a 23,754 < 0.001
9,720a,c 22,630 < 0.001
7,776a 21,723 0.003
7,024a,c 21,718 < 0.001
5,074a 20,800 < 0.001
8,446a 20,620 < 0.001
9,656a,c 20,479 < 0.001
6,542a,c 20,219 < 0.001
8,067a,c 20,058 < 0.001
7,692a 19,982 0.004
6,797a,c 19,587 < 0.001
8,356a,c 19,429 < 0.001
7,054a 19,333 0.010
6,099a 19,265 0.004
5,586a 18,103 < 0.001
7,820a,c 17,918 0.359
6,756a 17,668 < 0.001
9,593a 17,615 < 0.001
7,844a 17,611 0.089
4,191a 17,387 < 0.001
3,486a 17,290 < 0.001
4,451b 17,041 0.459
4,079a,c 16,790 0.020
9,456a 16,767 < 0.001
4,653a 16,674 0.002
7,195a 15,832 < 0.001
7,885a,c 15,388 < 0.001
8,277b 15,388 < 0.001
6,072b 15,093 < 0.001
3,963b,c 14,434 < 0.001
3,780a 14,139 0.014
4,291b 13,540 < 0.001
4,102b 13,294 0.001
4,858b 13,076 0.003
6,949b,c 12,555 < 0.001
3,280b 11,808 < 0.001
6,991b,c 11,281 0.122
2,144a 11,110 < 0.001
9,100b 10,578 < 0.001
7,652b 10,159 0.005
5,457a 10,139 < 0.001
6,914b 10,073 < 0.001
aUsed in fitting. bNot used in fitting. cReported by
Qu et al. (2002).



combining only a few DT models (i.e.,
four or five). Importantly, because DF is
reproducible, the variable relationships are
constant in their interpretabil ity for
biologic relevance.

Omics data such as we stress in this
article normally have a limited number of
samples and a large number of predictor
variables. Furthermore, the noise associat-
ing with both categorical dependent vari-
ables and predictor variables is usually
unknown. It is consequently imperative to
verify that the fitted model is not a chance
correlation. To assess the degree of chance
correlation of the PCA model, we com-
puted a null distribution of prediction
with 2,000 L10O runs based on 2,000
pseudo-data sets derived from a random-
ization test. The null hypothesis was
tested by comparing the null distribution
with the DF predictions in 2,000 L10O
runs using the actual training data set.
The degree of chance correlation in the
predictive model can be estimated from
the overlap of the two distributions
(Figure 2). Generally speaking, a data set
with an unbalanced sample population,
small sample size, and/or low signal:noise
ratio would tend to produce a model with
distribution overlapping the null distribu-
tion. For the PCA model, the distribu-
tions are spaced far apart with no overlap,
indicating that the model is biologically
relevant.

A model fitted to omics data has
minimal utility unless it can be generalized
to predict unknown samples. The ability
to generalize the model is an essential
requirement for diagnostics and prognos-
tics in medical settings and/or risk assess-
ment in regulation. Commonly, test
samples are used to verify the performance
of a fitted model. Such external validation,
while providing a sense of real-world
application, must incorporate assurance
that samples set aside for validation are
representative. Setting aside only a small
number of samples might not provide the
ability to fully assess the predictivity of a
fitted model, which in turn could result in
the loss of valuable additional data that
might improve the model. Besides, one
rarely enjoys the luxury of setting aside a
sufficient number of samples for use in
external validation in omics research
because in most cases data sets contain
barely enough samples to create a statisti-
cally robust model in the first place.
Therefore, an extensive L10O procedure is
embedded in DF that can provide an
unbiased and rigorous way to assess the fit-
ted model’s predictivity within the avail-
able samples’ domain without the loss of
samples set aside for a test set.

A model’s ability to predict unknown
sample’s is directly dependent on the
nature of the training set. In other words,
predictive accuracy for different unknown
samples varies according to how well the
training set represents the given samples.
Therefore, it is critical to be able to esti-
mate the degree of confidence for each
prediction, which could be difficult to
derive from the external validation. In DF
the information derived from the extensive
L10O process permits assessment of the
confidence level for each prediction. For
the PCA model the confidence level for
predicting unknown samples was assessed
based on the distribution of accuracy over
the prediction probability range for the
left-out samples in the 2,000 L10O runs.
We found that the sensitivity and speci-
ficity of the model were 99.2 and 98.2%
in the HC region, respectively, with an
overall concordance of 98.7%. In contrast,
a much lower prediction confidence of
78.9% was obtained in the LC region,
indicating that these predictions need to
be further verified by additional methods.
Generally, the number of samples within
the HC region compared with the LC
region depends on the signal:noise ratio in
the data set. For noisy data, more
unknown samples will be predicted in the
LC region and could be as high as
40–50% (results not shown). For the PCA
data set some 80% of the left-out samples
predicted in the 2,000 L10O runs were in
the HC region, indicating that the data set
has a high signal:noise ratio.

A number of classification methods
reported in the literature require selection
of the relevant or informative predictor
variables before modeling is actually per-
formed. This is necessary because the
method could be susceptible to noise with-
out this procedure, and the computational
cost is prohibitive for iterative variable
selection during cross-validation. Although
these are otherwise effective methods, they
could produce what is called “selection
bias” (Simon et al. 2003). Selection bias
occurs when the model’s predictive perfor-
mance is assessed using cross-validation
where only the preselected variables are
included. Because of selection bias, cross-
validation could significantly overstate pre-
diction accuracy (Ambroise and
McLachlan 2002), and external validation
becomes mandatory to assess a model’s
predictivity. In contrast, model develop-
ment and variable selection are integral in
DF. DF avoids the selection bias during
cross-validation because the model is
developed at each repeat by selecting the
variables from the entire set of predictor
variables. The cross-validation thereby

provides a realistic assessment of the
predictivity of a fitted model. Given the
trend of ever decreasing computation
expense, carrying out exhaustive cross-vali-
dation is increasingly attractive, particu-
larly when scarce sample data can be used
for training as opposed to external testing.
Of course, external validation is stil l
strongly recommended when the amount
of data suffices, in which case the cross-val-
idation process will still enhance the rigor
of the validation.
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