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Gene expression microarrays (gene chips)
have revolutionized biology by generating
vast amounts of data roughly quantifying
the level of mRNA expression for thou-
sands of genes in a single sample. The
analysis of these data is extraordinarily
complex, resulting in a shift in biology
from predominantly qualitative evaluations
to quantitative approaches. With microar-
ray technologies, scientists are forming
global views of the structural and dynamic
changes in genome activity during different
phases in a cell’s development and follow-
ing exposure to external stimulants such as
environmental agents or growth factors.
These views describe the molecular work-
ing of a complex information processing
system: the living cell. Numerous methods
have already been proposed for the analysis
of gene expression data. The most com-
monly used methods rely on clustering
(Eisen et al. 1995; Tamayo et al. 1999),
significance testing (Kerr et al. 2000) and
sequence motif identification (Pilpel et al.
2001). These methods do not readily
reproduce gene expression networks but are
more focused on the fundamental linkage
between pairs of genes. Other investigators
have proposed methods to identify gene
regulatory networks using Boolean net-
works (Akutsu et al. 2000) where each gene
has one of only two states (on and off),
regression methods (Gardner et al. 2003),
Bayesian network models (Friedman et al.
2000; Hartemink et al. 2002) and other
methods (Johnson et al. 2004). 

The use of genomics data in the evalua-
tion of health hazards and risks has

received considerable attention focusing on
priority setting (Pesch et al. 2004), bio-
marker identification (Toraason et al.
2004), hazard identification (Suter et al.
2004), and dose–response analysis
(Schonwalder and Olden 2003; Simmons
and Portier 2002; Waters et al. 2003). If
genomics is to play a direct role in
dose–response assessment, there will be a
need for methods that provide a direct,
quantitative assessment of changes in gene
expression as a function of dose and
changes in toxicity as a function of changes
in gene expression. Developing and model-
ing gene interaction networks can be quan-
titative and provide direct dose–response
data for use in risk assessment. They also
are an excellent means of identifying agents
that provide identical changes in expression
across a broad spectrum of genes and help
link agents on the basis of similar mecha-
nistic changes. 

Bayesian networks are well suited for
inferring genetic interactions because of
their ability to model causal influence
between genes linked as a network and
because they are an effective method for
modeling the joint density of all variables
in a system. However, the approaches sug-
gested to date have generally focused on
conversion of gene expression data to dis-
crete states and have avoided the use of for-
mal statistical methods for quantifying the
joint density of the resulting parameters. 

In this article we describe a method for
inferring an “optimal” gene interaction
network from microarray-based gene
expression data. Unlike other network

identification methods, the analytical
approach presented here uses the actual
measured observations on gene expression
(rather than discretized data) and incorpo-
rates prior distributions for all parameters
in the gene interaction network model.
The method encompasses model selection
theory from Bayesian regression to find
gene network structures suitable for given
data sets. Computer simulations presented
in this article demonstrate that the pro-
posed method is capable of identifying net-
works, given the sample size is sufficiently
large. For small networks the limited num-
ber of replicates used for most microarray
studies available today are adequate; for
larger networks other options are discussed. 

Materials and Methods

Figure 1 illustrates the general structure of a
four gene regulatory system where the link-
age between expression of gene i and expres-
sion of its parents (indirect regulators to
gene i ) is described by weighting the func-
tion wi (ηi), where the subscript i denotes
that this weighting function pertains to the
control of gene i expression by all genes
linked to it and ηi denotes the vector of
parameters defining the functional relation-
ship. Let N be a directed acyclic graph
which consists of p vertices (genes). Each
edge is also assumed to include information
about the linkage between genes (i.e., activa-
tion, as in the case for the linkage between
expression of gene 1 and expression of
gene 4, or suppression, expression of genes 3
and 4). In essence, N is a discrete random
variable that takes on any of the different
acyclic network structures that are possible
for a set of p genes. Define Xi to be the ran-
dom variable corresponding to the measured
relative level of gene expression (the expres-
sion level of a target gene for an “exposed”
group to the expression level of the same
gene in a “control” group) for gene Gi,
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1 ≤ i ≤ p. For a given network, N = n, and
for each Xi, define the conditional density
function, fXi(Xi|pan(Xi),ηi) where pan(Xi)
denotes the set of vertices corresponding to
the parents of expression for gene i in the
network n with parameters ηi. All networks
in the support space for N are assumed to
satisfy the Markov property where expres-
sion of gene i is independent of all genes not
included in pan(Xi). Application of the
Markov property and imposition of the
acyclic restriction allow decomposition of
the joint density function into 

[1]

where η = (η1, η2, …ηp) is the set of all
parameters in the network.

Gene expression data, for the purposes
of this analysis, can be expressed as a p by m
matrix of the form x = [xik]i = 1,2,…p, k = 1,2…m
where m is the number of observations
(samples analyzed for gene expression) taken
for each gene and xi = [xik]k = 1,2 … m is the
vector of all observations of expression for
gene i. The observed gene expression levels
for the parent set for gene i in vector nota-
tion is pan(xi) = [xijk]j = 1,2,… pi, k=1,2 … m
where pi is the number of parents for gene i.
Similarly define the random vector X. Then,
conditional on the parameters and the
model, the likelihood of the data, x, is given
by 

[2]

The goal of our analysis is the identifica-
tion of the “best” network structure using
gene expression data. Our criterion for the
best network is defined as the network, n*,
from the set of all acyclic networks that
maximizes the posterior likelihood of the
network, 

[3]

The posterior probability Pr(N = n|x) is
given by 

[4]

where Pr(N = n) and fηi(ηi) are derived
from the prior distributions of N and ηi
respectively, and the η i are assumed
independent. 

Several methods are available for assign-
ing prior information to the distribution of
countable networks for a given set of genes.
One approach, which is used here, is to
assume no prior knowledge by choosing N
to be uniformly distributed (equal proba-
bility) over the space of all possible acyclic
networks. By this assumption the solution
to Equation 3 is identical to finding the
maximum of the log of the product term in
Equation 4 over the parameter space; that
is the solution to Equation 3 is identical to 

[5]

This equation is similar to the maximum
likelihood estimator in classical statistical
theory, but weighted over the prior densi-
ties for the parameters in the model. A
clear benefit of this approach is that one
does not need to estimate the model para-
meters while finding the best network
because the integration removes those para-
meters from the final solution. A possible
criticism of this approach is that the
assumption of a uniform prior for network
structure fails to completely exploit the
prior knowledge of which networks are of
greatest interest. This is most certainly true,
but in light of our limited understanding of
gene interaction networks, this appears to
be a reasonable choice for a first step in
network identification. When available,
prior knowledge can be incorporated into
this algorithm or modified algorithms to
limit the space of networks to be searched;
this is the solution to a different problem
and will be discussed in a subsequent
report. 

Many possible weighting functions
wi(ηi) can be used to relate the relative
level of expression of gene i to the relative
levels of expression of its parents. The
analysis presented here uses a log-linear
model 

where the notation ij refers to the j th parent
of gene i, –βi = [βiji ]1×pi and εi is a random
variable with mean 0. From a mechanistic
basis, using a model linear in the loga-
rithms of the expression levels is equivalent
to approximating the full nonlinear system
by equations in power-law form (Kikuchi
et al. 2003; Voit and Radivoyevitch 2000).

Given prior distributions for the ε’s
and the β’s for all genes, the Markov-Chain

Monte-Carlo (MCMC) method developed
by Hastings (Hastings 1970) makes it pos-
sible to estimate a solution to Equation 5
and identify the “best” network. It is possi-
ble, under further restrictions, to obtain a
closed form solution to the argument in
Equation 5. The advantage of this
approach in the framework of this article is
that the entire network space can be
searched exhaustively to find the best net-
work for small networks like the ones in
our simulation studies. 

As is common in Bayesian linear regres-
sion theory (Gelman et al. 1995), we assume
that ε i|σi

2 ∼ Normal(0,σi
2), βi|σi

2 ∼
Normal(bi,σi

2Ai
–1) and σi

2 ∼ Gamma(v0/2,
v1/2), v0, v1 ≈ 0. These priors do not assume
additional or specific information (in
Bayesian parlance these are uninformative
priors) and thus would be applicable for
many cases. Simple algebra then results in:

[6]

where Γ is the gamma function,
Ai = ln[pan(xi)]ln[pan(xi)]T and Bi =
ln[xi]ln[pan(xi)]TAi

–1. Given N = n, this
equation allows for the direct calculation of
Pr(N = n|x). This formula is specific to these
priors, but similar formulae might be derived
for other cases.

Any single gene in a p = 4 gene network
has 8 possible sets of parents (no parents,
3 single parents, 3 double parents, all other
genes), hence the total number of networks
including cyclic networks would be
84 = 4,096 networks of which 543 are
acyclic. As p increases, the total number of
networks increases as the squared power of
p(2p(p–1)) resulting in a very large network
space to evaluate for larger networks (e.g.,
∼ 4 × 10469 for a 40-gene network). Many
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Figure 1. A simple gene interaction network
consisting of four genes.



different types of searching algorithm could
be used to limit the number of networks to
be evaluated for Equation 6; through trial
and error, the following modified simu-
lated annealing algorithm (Press et al.
1989) appears to work. We will refer to
this method as the TAO-Gen (Theoretical
Algorithm for identifying Optimal GENe
interaction networks) algorithm.

The TAO-Gen algorithm has 7 basic
steps: 
1) Search conditions: Restrict to ξ < p, the

maximum number of parents for any
one gene and calculate the value of
Equation 6 for all Σξ

i=0 p–1Ci parent
combinations, where pCi is the bino-
mial coefficient (When p is relatively
small, ξ = p–1 can be chosen and the
entire network space is evaluated in this
step. When p is even moderately large
(> 10), assuming ξ = 4 or 5 will sub-
stantially reduce the computational
burden). Specify a number t (0 ≤ t ≤ 1)
governing the probability of local ver-
sus global switching in step 4 (t = 0
implies only global switching, t = 1
implies only local switching).

2) For the initial step k = 0, randomly
select an order in which genes enter the
network Gk = (Gk1 Gk2 Gk3…Gkp) and
build a starting network choosing the
parents for each gene that maximize
Equation 6 while keeping the network
acyclic (i.e., choose the parents for Gk1
that are optimal first, then parents for
Gk2 that are optimal, etc.)

3) Calculate the posterior likelihood
(Equation 4) for this network and
denote it Lk . 

4) Generate a uniform random number
u1 ∈ uniform (0,1) to determine the
type of permutation. if u1 < t, the per-
mutation occurs between two ran-
domly chosen genes, j and l, switching
the two genes for the next permuta-
tion Gk+1,j = Gk,l and Gk+1,l = Gk,j).
Otherwise, make the second half of
the set of genes,  starting from
randomly chosen gene j, appear first
in the order (Gk | 1 ,1 = Gk , j | 1 ,
Gk |1,2 = Gk,j|2,…, Gk+1,m–j+1 = Gk,1,…,
Gk +1,m = Gk,j ). Thus form a new gene
order, Gk+1. 

5) Calculate a new posterior likelihood of
the network Lk+1 associated with the
order Gk+1, as in steps 2 and 3. If
Lk+1 > Lk, then keep Gk+1. Otherwise
generate a uniform random number
u2 ∈ uniform (0,1)and if u2 ≤  Lk+1/Lk,
keep Gk+1 else set Gk+1 = Gk.

6) Return to step 4 and iterate.
7) Choose the network with the highest

posterior probability from the sequence
(G0, G1,…).

This algorithm combines aspects of the
Metropolis algorithm used for Markov-
Chain Monte-Carlo sampling (Hastings
1970), with the simulated annealing algo-
rithm used for optimization (Press et al.
1989). In essence it represents a new form
of genetic algorithm aimed at networks in
which mutations occur in each cycle as
either base-pair switches or large transloca-
tions. It may be possible under certain
fixed conditions to analytically determine
the degree to which the TAO-Gen algo-
rithm reduces the number of networks to
be evaluated and the efficiency with which
it finds the correct solution. This is left as a
separate exercise; instead, simulation stud-
ies were used to address these issues as dis-
cussed in “Results.”

Gene Expression Data Set
Gardner et al. (2003) developed a gene-
regulatory network for a nine-gene subnet-
work of the SOS pathway in Escherichia coli.
The nine genes (all gene names and locators,
in parentheses following gene name, are from
the EcoGene database (http://bmb.med.
miami.edu/EcoGene/EcoWeb) they focused
on were the principal mediators of the SOS
response, recA (recombinase gene A, locator
EC10823) and lexA (lambda excision gene
A, locator EC10533); genes with known
involvement in the SOS response, ssb (single
strand binding gene, locator EC10976),
recF (recombinase gene F, locator
EC10828), dinI (damage inducible gene I,
locator EC12670), umuDC (UV mutator
gene, locator EC11057); and three sigma
factor genes whose function in SOS
response is not clearly identified, rpoD
(RNA polymerase factor subunit D, locator
EC10896), rpoH (RNA polymerase factor
subunit H, locator EC10897), and rpoS
(RNA polymerase factor subunit S, locator
EC10510). To quantify the subnetwork,
they applied a set of nine transcriptional
perturbations to E. coli cells in which each
perturbation overexpressed a different one of
the nine genes in the SOS network. Using
an arabinose-controlled episomal expression
plasmid, they grew the cells in batch cultures
for 5.5 hr after the addition of arabinose,
then measured relative change in message
for their nine target genes using quantitative
real-time polymerase chain reaction. In
addition to the nine perturbed cultures, they
also produced two additional cultures, one
in which a double plasmid (lexA/recA) was
incorporated into the cells and another in
which 0.75 µg/mL of mitomycin C (MMC)
was added to the culture to stimulate gene
expression of recA. The resulting data set
with 11 samples of relative changes in gene
expression for the nine target genes is given
in Table S1 in Gardner et al. (2003). In

addition to the nine target genes, the nine
plasmid constructs were added to the mod-
eling as fixed stimulators of each of their
respective genes to mimic changes in gene
expression induced by insertion of the ten
plasmid constructs. A separate stimulation
by MMC was also included but with links
to all genes in the network to determine if
the predominant linkage to recA assumed by
Gardner et al. (2003) was evident in the
data. The exact model linking genes for
sample k (k = 1,2, …11) is given by 

where βiji is as described previously, Iik is
an indicator variable equal to 1 if gene i has
an inserted plasmid in sample k and is
equal to 0 otherwise, αi is the magnitude of
increase in gene expression induced in the
ith gene by the plasmid when it is present,
Mk is the relative change (relative to the
standard of 0.5 µg/mL) in MMC exposure
for sample k, and γi is the magnitude of
change in gene expression for gene i as a
function of the relative change in MMC.

Simulation Results
Data were simulated for a given network
by sampling from the assumed error distri-
butions and priors for a given model situa-
tion. To simulate a network, genes highest
on the parental list were simulated first and
the simulated values were used to simulate
daughters, etc. Different starting points
and different priors were used to estimate
parameters in both the simulated data and
the SOS data; these had no impact on the
final results provided the priors chosen
were uninformative.

Results

The TAO-Gen algorithm was applied to
real time PCR data on nine genes (recA,
lexA, ssb, recF, dinI, umuDC, rpoD, rpoH,
and rpoS) from the SOS pathway in E.
coli as described above. Data consisted of
11 separate relative changes in gene
expression: 9 samples for which a plasmid
was inserted for one of the nine genes, a
single construct for a combination of two
genes (lexA and recA), and a modification
of the culture (1.5× increase in mito-
mycin C) in wild-type cells. Figure 2 illus-
trates the optimal gene interaction
network identified by the TAO-Gen algo-
rithm for these data.  It  is  general ly
believed that the SOS regulon in E. coli is
predominantly under the control of the
products of the genes lexA and recA .
Figure 3 illustrates a literature-based link-
age map between genes in the SOS
response for the repair of DNA damage.
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When genotoxins, such as ultraviolet
radiation and MMC, damage DNA base
nucleotides, the replication process is
activated and a region of single-stranded
DNA (ssDNA) is formed. RecA (the prod-
uct of recA) coats ssDNA, signaling the
SOS response. RecA/ssDNA stimulates

degradation of LexA (the products of
lexA), which is a repressor of RecA in the
normal repair process. This inactivation of
LexA affects other genes involved directly
in SOS response, such as dinI, and down-
stream genes involved in DNA replica-
tion, cell division and mutagenesis, such

as rpoS (Beuning 2004; Janion 2001;
Lindner 2004; Lusetti 2002; McKenzie
2000; Rangarajan 2002). The results from
the TAO-Gen algorithm are given in
Figure 2 and support this role for LexA
with significant repressor activity on
umuDC, dinI and ssb. In contrast, RecA,
the gene product of recA, is expected to
serve as an activator of the SOS regulon.
Figure 2 indicates that recA serves as a
central node in the regulation of genes in
the SOS pathway, showing significant
activation of lexA, recF, umuDC, rpoH
and ssb and significant repression of rpoD.
There are four remaining significant link-
ages: ssb and rpoS repress and activate
rpoD, respectively, and recF activates
umuDC and rpoH activates ssb. Table 1
provides summary information on the
parameter estimates estimated by treating
the identif ied network (Figure 2) as
known and quantifying the l inkages
between genes by the method of
Toyoshiba et al. (2004). With the excep-
tion of the plasmid-induced change in
recF, all linkages in Figure 2 are statisti-
cally significant (p < 0.05).

An indicator variable was used to
separate data with and without plasmid
insertion for each gene. For all nine genes,
plasmid inserts increased mRNA levels
ranging from a nonsignificant (p = 0.31)
1.06-fold increase for recF to a significant
(p < 0.01) 28-fold increase for rpoH .
Changes in the level of MMC had signifi-
cant effects on eight of the nine genes, the
sole exception being lexA, which did not
appear to be directly affected by changes
in MMC. This finding is in contrast to
what was believed to be the presumed
transcriptional target of MMC, recA. It
was previously suggested that all other
MMC-induced changes in transcription
are mediated through recA. In this analysis
the largest impacts of MMC on transcrip-
tion were for rpoH and rpoS (an
~12.3-fold increase in activity for each
doubling of the MMC level) followed by
effects on recA, dinI and umuDC (approx-
imately a 1.9-fold increase in activity for
each doubling of MMC level). 

Our best network (Figure 2) and the
literature-based network (Figure 3) support
the notion that the activation of the SOS
system is through activation of recA.
Increases in recA result in activation of
umuDC and ssb, critical components in the
activation of repair of single-strand DNA
damage. An increase in recA also induces an
increase in lexA, which serves to suppress
the activity induced by recA in umuDC and
ssb. rpoH appears to serve as an indepen-
dent activator of ssb with signaling from
recA and possibly other genes not included
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circles are genes used for the analysis.



in the network. Finally, while rpoS and
rpoD seem to be linked to the network,
they appear to be under control of other
genes in the network rather than exerting
control over the SOS response. Recent arti-
cles hypothesized possible roles for roles for
RpoS, LexA and RecA in global stress gene
regulation, but clear conclusions are not yet
available (Gerard et al. 1999; Gill et al.
2000).

With such a small number of samples
(11) relative to the number of genes
involved (9), it is likely that the resulting
model is overly sensitive to any one data
set. To evaluate this, we applied the
TAO-Gen analysis to 11 data sets in which
one sample from the original data was
eliminated. Generally, removing a sample
resulted in deletion of a connection rather
than inclusion of new connections.
Removing the dinI plasmid insert had no
impact on the resulting network; removing
the double plasmid insert only added a sin-
gle additional connection between rpoH
and rpoS; and removing the MMC sample
(no plasmid insert) removed only one link-
age (rpoH-rpoS). All other sample removals
resulted in two to five changes in the
network with no more than one additional
linkage in any case. Three linkages (recA to
lexA, lexA to umuDC and recF to umuDC)
remained unchanged for all sample

deletions; all others were simply eliminated
once or twice for specific sample deletions
with the exceptions of recA to rpoH, which
was removed in four sample deletions, and
rpoS to rpoD which was removed in one
sample deletion and switched direction for
three sample deletions. All additional link-
ages (there were six sample deletions with
one additional linkage in each case)
included at least one of the stationary phase
regulators (rpoH, rpoS, rpod), suggesting
the linkage between this class of genes and
the SOS pathway may be too distant to
quantify. Generally, with the exception of
linkages to and between the stationary
phase regulators, the model was fairly sta-
ble across deletions of single samples from
the data set.

Discussion

The network presented in Figure 2 is
substantially smaller than that proposed by
Gardner et al. (2003) Using their NIR
(network identification by multiple regres-
sion) algorithm, they identified a network
with 45 linkages (excluding changes due to
MMC or the plasmids) compared with our
network with only 13 gene linkages. There
are significant differences between the NIR
and TAO-Gen algorithms that directly
impact affect these findings. In the
NIR algorithm, parents for each gene are

discovered independently of the other
genes by finding the five parents that maxi-
mize the usual likelihood of the data given
the model. The choice of five parents is
somewhat arbitrary, and the use of the data
multiple times for each gene overstates the
information available. In addition each
gene is allowed to be a parent of itself, cre-
ating a singularity in the model that results
in most other parents having no significant
impact on any given gene expression level.
Of the 36 linkages (six parents were chosen
for recF) identified by the NIR algorithm,
all nine genes have significant linkages with
themselves as parents. Of the remaining 27
linkages, only 9 are significant (p < 0.05 by
a Wald test) as follows: ssb activates recA
and recF, recA suppresses lexA and rpoH,
dinI activates recA, umuDC and rpoS, rpoH
suppresses rpoD, and rpoS suppresses recF.
The TAO-Gen algorithm, in contrast,
restricts the network to acyclic linkages and
uses the full likelihood (all of the data
simultaneously) to find the best network.
Of the 9 significant linkages identified by
the NIR algorithm, the TAO-Gen algo-
rithm identified only the suppression of
lexA and rpoH by recA. The significant
findings by the NIR algorithm do not
identify recA as a key controlling gene in
the network whereas the TAO-Gen
algorithm does. 

Mathematically the data obtained by
Gardner et al. (2003) does not have suffi-
cient statistical support to identify a cycli-
cal network. The data required to estimate
parameters in a cyclical network must con-
tain observations at different time points to
estimate the dynamic characteristics of a
cyclic network. To directly compare the
Gardner et al. network to the one shown in
Figure 2, the Gardner et al. network was
made acyclic by removing the linkages for
genes as their own parents and by remov-
ing the linkage between dinI and lexA.
When the Bayesian estimation algorithm
was applied (Toyoshiba et al. 2004), the
posterior log-likelihood for this model had
a mean value of 329.2 compared with
354.7 from the model identified by the
TAO-Gen algorithm, suggesting a consid-
erably better fit of the model in Figure 2 to
the data. Using the “known model” sug-
gested by Gardner et al. (2003), the result-
ing mean of the posterior log-likelihood
was 311.0, also suggesting a serious lack
of fit. 

So is the model presented in Figure 2 a
better representation of the gene interac-
tion network for the SOS pathway in
E. coli? The resulting network has identi-
fied the significant gene linkages seen in the
data. It correctly identifies recA as playing
the major role in control of this pathway

Toxicogenomics | Yamanaka et al.

1618 VOLUME 112 | NUMBER 16 | November 2004 • Environmental Health Perspectives

Table 1. Estimated means, standard deviations and percentage above 0 for all interactions in SOS
response genes for E. coli identified as linked by the TAO-Gen algorithm (see Figure 2).

From To Type Mean SD % < 0

recA lexA Activate 0.435 0.065 0.00
ssb Activate 0.137 0.056 0.99
recF Activate 0.393 0.161 0.93
umuDC Activate 0.365 0.129 0.42
rpoD Repress –0.356 0.091 99.97
rpoH Activate 0.193 0.093 2.06

lexA ssb Repress –0.158 0.065 98.86
dinI Repress –0.287 0.156 96.61
umuDC Repress –0.550 0.169 99.85

ssb rpoD Repress –0.077 0.029 99.46
recF umuDC Activate 0.512 0.204 0.81
rpoH ssb Activate 0.031 0.012 0.55
rpoS rpoD Activate 0.496 0.108 0.02
Plasmid insert recA Activate 0.458 0.080 0.00

lexA Activate 0.396 0.041 0.00
ssb Activate 2.443 0.039 0.00
recF Activate 0.062 0.130 30.95
dinI Activate 1.188 0.110 0.00
umuDC Activate 1.007 0.093 0.00
rpoD Activate 1.409 0.069 0.00
rpoH Activate 3.319 0.074 0.00
rpoS Activate 0.513 0.100 0.00

MMC recA Activate 0.979 0.282 0.06
ssb Activate 0.479 0.108 0.05
recF Activate 0.637 0.345 3.28
dinI Activate 0.896 0.282 0.07
umuDC Activate 0.969 0.252 0.05
rpoD Activate 0.460 0.221 2.12
rpoH Activate 1.233 0.204 0.00
rpoS Activate 1.255 0.248 0.00



and provides estimates of the steady-state
linkage between these genes. The interpre-
tation of the values estimated for the para-
meters linking genes in Figure 2 does not
preclude that the network could be
dynamic with substantial feedback; such a
possibility is likely. But given the data
available, this network identifies the key
linkages that exist as the network changes
from one steady-state to another. What this
means can be explained by example. The
activation of recF by recA has a mean value
of 0.393. This implies that, if the
steady-state expression of recA doubles,
then the steady-state expression of recF
would fold increase by the exponential of
0.393 × ln(2) or 1.32-fold. Singular
changes in any gene in the network can
easily be used to calculate new steady-state
conditions for the network.

Illustrating that one can achieve a
network from a given data set does not
assess the reliability of a new algorithm. A
better method is to evaluate the probability
of choosing the correct network using data
from a known network. Monte Carlo sim-
ulation was used to generate 100,000 artifi-
cial gene expression arrays from the
network in Figure 1 using four different
sets of model parameters as defined in
Table 2. When the algorithm is applied to
these data, the resulting optimal network is
identical to the network shown in Figure 1
in all four cases. This illustrates that the
algorithm is consistent for extremely large
data sets. To assess the behavior of the
algorithm for small samples, the four sets

of 100,000 artificial arrays were subdivided
into 1,000 data sets of 100 arrays, 2,000
data sets of 50 arrays, 4,000 data sets of
25 arrays, and 10,000 data sets of
10 arrays. For each data set, the algorithm
was applied and an optimal network cho-
sen; the results appear in Table 2.

There are 543 possible acyclic networks
that can arise from a combination of four
genes. Table 2 summarizes the frequency
(from 543 total networks) seen for various
network structures (column 3 is the correct
structure). For example, with 100 arrays in
the sample, the correct network is chosen
922/100 = 92% of the time for parameter
set A (row 1 of Table 2). Generally, with
100 replicate arrays, the search algorithm is
better than 92% effective in finding the
right network. The most common error in
finding an array for this sample size is to
add an additional linkage between gene 2
and gene 4 (column 8 in Table 2, 1–8%).
When the sample size is halved to
50 arrays, accuracy drops to between 86
and 93%, with the same additional linkage
being the most common mistake (2–9%).
With only 25 arrays, accuracy is still
between 70 and 80%, with most of the
errors occurring for the same additional
linkage (4–8%), single deletions of linkages
(3–4%), or reversals of individual linkages
(2–3%). Replicate samples consisting of
just 10 arrays surprisingly find the correct
network 32–38% of the time, with
30–40% of the errors being additional
linkages, single linkage removal, or single
linkage reversals. The simulations suggest

the algorithm generally detects networks
having very close topologies to the correct
one even if the sample number is severely
diminished.

As noted in “Materials and Methods,”
the algorithm being used to find the best
network is intended as an approximation
for using the posterior likelihood to iden-
tify the best network. In the last four
columns of Table 2, the correct network
has the best posterior likelihood in every
case for which it is the optimal network. In
addition the algorithm works well at plac-
ing the correct network into the top three
networks, ranging from about 99% for
samples involving 100 arrays to 58% for
samples consisting of 10 arrays. These sim-
ulations suggest that the best directed
acyclic network does not necessarily mean
that all the links are real or that they are
causal. Conversely, they do suggest that the
limitations inherent to small sample sizes
could be reduced by considering not only
the best network, but several of the best
networks and using other resources, such as
knowledge of the existing pathways, to
decide which makes the most sense.

These results were expanded to look at
an eight-gene network, effectively a combi-
nation of two four-gene networks similar
to that in Figure 1, where gene 2 activates
gene 5 and gene 3 activates gene 8
(Figure 4). In this case it is computation-
ally impossible to conduct the exhaustive
search as in the four-gene case because the
number of acyclic networks is approxi-
mately 78 × 1013. Instead, 1,000 data sets
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Table 2. Results from 100,000 Monte Carlo simulations of four hypothetical four-gene networks (A, B, C, D)a describing the ability of the TAO-Gen algorithm to
specify the correct network.

Frequency (%) of resulting optimal network structure Rank (%) of the posterior likelihood for the true
Sample True network over all possible 543 acyclic networks
size model 1 2 3 4–10

100 arrays A 922 (92) 0 (0) 0 (0) 0 (0) 0 (0) 68 (7) 0 (0) 922 (92) 52 (5) 10 (1) 16 (2)
1,000 sims B 977 (98) 0 (0) 0 (0) 0 (0) 0 (0) 6 (1) 0 (0) 977 (98) 17 (2) 4 (0.4) 2 (0.2)

C 929 (93) 0 (0) 0 (0) 0 (0) 0 (0) 71 (7) 0 (0) 929 (93) 50 (5) 8 (1) 13 (1)
D 980 (98) 0 (0) 0 (0) 0 (0) 0 (0) 6 (1) 0 (0) 980 (98) 13 (1) 5 (0.5) 2 (0.2)

50 arrays A 1,716 (86) 4 (0.2) 3 (0.2) 6 (0.3) 4 (0.2) 165 (8) 0 (0) 1,716 (87) 157 (8) 34 (2) 70 (4)
2,000 sims B 1,841 (92) 8 (0.4) 0 (0) 4 (0.2) 8 (0.4) 41 (2) 0 (0) 1,841 (92) 82 (4) 20 (1) 55 (3)

C 1,745 (87) 6 (0.3) 4 (0.2) 3 (0.2) 6 (0.3) 175 (9) 0 (0) 1,745 (88) 128 (6) 41 (2) 62 (3)
D 1,860 (93) 4 (0.2) 0 (0) 2 (0.1) 0 (0) 46 (2) 0 (0) 1,860 (93) 68 (3) 30 (2) 42 (2)

25 arrays A 2,920 (73) 76 (2) 72 (2) 56 (1) 77 (2) 328 (8) 3 (0.1) 2,920 (73) 423 (10) 112 (3) 387 (10)
4,000 sims B 3,179 (80) 92 (2) 55 (1) 48 (1) 47 (1) 192 (5) 8 (0.2) 3,179 (79) 348 (9) 133 (3) 249 (6)

C 2,891 (72) 60 (1) 100 (2) 56 (1) 76 (2) 296 (7) 4 (0.1) 2,891 (72) 404 (10) 114 (3) 444 (11)
D 3,086 (77) 76 (2) 96 (2) 48 (1) 48 (1) 164 (4) 8 (0.2) 3,086 (77) 328 (8) 149 (4) 365 (9)

10 arrays A 3,198 (32) 909 (9) 741 (7) 230 (2) 149 (2) 328 (3) 497 (5) 3,198 (32) 1,027 (10) 781 (8) 2,389 (24)
10,000 sims B 3,768 (38) 1,002 (10) 1,051 (10) 220 (2) 309 (3) 378 (4) 567 (6) 3,768 (38) 966 (10) 821 (8) 2,519 (25)

C 3,177 (32) 892 (9) 691 (7) 230 (2) 151 (2) 398 (4) 457 (5) 3,177 (32) 1,232 (12) 769 (8) 2,347 (23)
D 3,768 (38) 1,052 (10) 1,031 (10) 280 (3) 259 (3) 538 (5) 477 (5) 3,768 (38) 1,146 (11) 871 (9) 2,371 (24)

a(A) β14 = 2.0, β13 = 0.8, β23 = 0.8, β34 = –1.3, σ1 = σ2 = σ3 = σ4 = 1.0
(B) β14 = 2.0, β13 = 0.8, β23 = 0.8, β34 = –5.0, σ1 = σ2 = σ3 = σ4 = 1.0
(C) β14 = 2.0, β13 = 0.8, β23 = 0.8, β34 = –1.3, σ1 = σ2 = σ3 = σ4 = 1/3
(D) β14 = 2.0, β13 = 0.8, β23 = 0.8, β34 = –5.0, σ1 = σ2 = σ3 = σ4 = 1/3

β23

β34

β14

β13



were randomly generated for each sample
case (100, 50, 25, 10) and the TAO-Gen
algorithm was applied to identify a best
network for each data set. Table 3 shows

the numbers of connections detected by
the algorithm, where the rows and columns
correspond to parents and child genes,
respectively. For example, the algorithm
detected the incorrect path from gene 1 to
gene 2 only three times in 1,000 data sets
with 100 samples. The red elements show
the true connections. For 100 replicate
samples (microarrays), the TAO-Gen algo-
rithm identified the correct network in
95% of the cases. As before, the deviations
from the correct model were all cases of
adding an additional linkage or removing a
single linkage. As the sample size dropped
to 50, 25 and 10, the correct network was
identified 76, 30 and 1% of the time,
respectively. Even though the performance
in finding the fully correct network became
poor, the linkages in the correct network
were generally properly identified with
high frequency, again indicating that the
cases where the network was incorrect gen-
erally involved single or double alterations
in the pathways of the network. The simu-
lation using eight genes accentuates the
importance of study design and prior
knowledge about gene linkages in trying to
find the best network to explain the data.

Many issues remain to be studied. It is
unclear whether the TAO-Gen algorithm

works better or worse than other algorithms
in identifying gene interaction networks.
The main problem arises because other algo-
rithms have not used computer simulations
to examine model specifity to directly
address this issue. Also, the use of acyclic
models to develop gene interaction networks
is somewhat limited. A fully dynamic model
using time-dependent differential equations
could be used with the TAO-Gen algorithm
provided multitime point data were avail-
able; the method would simply need to link
models across time as suggested elsewhere
(Toyoshiba et al. 2004) or use dynamic
Bayesian networks. Here we assume samples
are independent; in time-course data, that
would not necessarily be the case and the
error structure between samples would need
to be altered (in Equation 4 and subsequent
derivations) to account for the longitudinal
nature of such data. In any case the analysis
would certainly require more data than are
generally available. Perhaps the biggest
advantage of using a Bayesian-linked analy-
sis algorithm would occur when prior
knowledge, based on known biologic link-
ages such as those derived from bioinfor-
matic evaluations of transcription sequences,
is used to limit the range of networks to be
explored. The TAO-Gen algorithm could
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Table 3. Number (percent) of linkages between two genes identified by the TAO-Gen algorithm in 1,000 Monte Carlo simulations of the hypothetical eight-gene
network shown in Figure 3.

From To cell number
gene number 1 2 3 4 5 6 7 8

100 Chips 1 —— 3 (0.3) 1,000 (100)a 1,000 (100)a 4 (0.4) 1 (0.1) 4 (0.4) 5 (0.5)
2 0 (0) —— 999 (99.9)a 9 (0.9) 1,000 (100)a 1 (0.1) 3 (0.3) 7 (0.7)
3 0 (0) 1 (0.1) —— 1,000 (100)a 0 (0) 0 (0) 0 (0) 1,000 (100)a
4 0 (0) 0 (0) 0 (0) —— 0 (0) 0 (0) 0 (0) 0 (0)
5 0 (0) 0 (0) 0 (0) 3 (0.3) —— 0 (0) 1,000 (100)a 999 (99.9)a
6 2 (0) 0 (0) 2 (0.2) 2 (0.2) 2 (0.2) —— 1,000 (100)a 8 (0.8)
7 0 (0) 0 (0) 0 (0) 1 (0.1) 0 (0) 0 (0) —— 1,000 (100)a
8 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) ——

50 Chips 1 —— 4 (0.4) 980 (98)a 1,000 (100)a 23 (2.3) 11 (1.1) 23 (2.3) 8 (0.8)
2 8 (0.8) —— 977 (97.7)a 19 (1.9) 989 (98.9)a 6 (0.6) 13 (1.3) 24 (2.4)
3 14 (1.4) 2 (0.2) —— 995 (99.5)a 3 (0.3) 3 (0.3) 9 (0.9) 1,000 (100)a
4 0 (0) 0 (0) 5 (0.5) —— 0 (0) 0 (0) 1 (0.1) 0 (0)
5 2 (0.2) 9 (0.9) 14 (1.4) 7 (0.7) —— 4 (0.4) 991 (99.1)a 973 (97.3)a
6 10 (1) 4 (0.4) 15 (1.5) 13 (1.3) 15 (1.5) —— 989 (98.9)a 11 (1.1)
7 1 (0.1) 0 (0) 0 (0) 7 (0.7) 7 (0.7) 2 (0.2) —— 998 (99.8)a
8 0 (0) 0 (0) 0 (0) 5 (0.5) 0 (0) 0 (0) 2 (0.2) ——

25 Chips 1 —— 33 (3.3) 832 (83.2)a 960 (96)a 26 (2.6) 18 (1.8) 26 (2.6) 50 (5)
2 20 (2) —— 751 (75.1)a 63 (6.3) 912 (91.2)a 14 (1.4) 57 (5.7) 94 (9.4)
3 37 (3.7) 46 (4.6) —— 933 (93.3)a 10 (1) 5 (0.5) 46 (4.6) 962 (96.2)
4 1 (0.1) 0 (0) 63 (6.3) —— 2 (0.2) 0 (0) 2 (0.2) 11 (1.1)
5 5 (0.5) 50 (5) 59 (5.9) 34 (3.4) —— 9 (0.9) 905 (90.5)a 811 (81.1)
6 9 (0.9) 10 (1) 19 (1.9) 38 (3.8) 64 (6.4) —— 857 (85.7)a 69 (6.9)
7 2 (0.2) 0 (0) 21 (2.1) 24 (2.4) 60 (6) 19 (1.9) —— 964 (96.4)
8 2 (0.2) 0 (0) 13 (1.3) 9 (0.9) 0 (0) 0 (0) 33 (3.3) ——

10 Chips 1 —— 51 (5.1) 516 (51.6)a 702 (70.2)a 63 (6.3) 30 (3) 73 (7.3) 141 (14.1)
2 49 (4.9) —— 335 (33.5)a 155 (15.5) 590 (59)a 35 (3.5) 171 (17.1) 166 (16.6)
3 73 (7.3) 84 (8.4) —— 596 (59.6)a 67 (6.7) 16 (1.6) 126 (12.6) 641 (64.1)a
4 23 (2.3) 15 (1.5) 227 (22.7) —— 11 (1.1) 8 (0.8) 22 (2.2) 71 (7.1)
5 16 (1.6) 106 (10.6) 79 (7.9) 87 (8.7) —— 33 (3.3) 519 (51.9)a 375 (37.5)a
6 35 (3.5) 30 (3) 73 (7.3) 93 (9.3) 95 (9.5) —— 408 (40.8)a 187 (18.7)
7 9 (0.9) 18 (1.8) 74 (7.4) 79 (7.9) 168 (16.8) 51 (5.1) —— 693 (69.3)a
8 3 (0.3) 2 (0.2) 68 (6.8) 51 (5.1) 24 (2.4) 8 (0.8) 135 (13.5) ——

aLinkage that exists in the original simulated model.

G7 G8

G5 G6

G3 G4

G1 G2

2.0

0.8

0.8

1.0

–1.3

–1.3

1.0

2.0

0.8

0.8

Figure 4. A hypothetical eight gene network used
for the Monte-Carlo simulations in Table 3. The
numbers attached to the arrows show linear
parameters, where positive numbers correspond
to up-regulations and negative numbers down-
regulations.
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work in these situations but would need to
be modified to use a prior different than the
uniform prior used in this case. 

Conclusion

In this article we have presented the
TAO-Gen algorithm for identifying gene
interaction networks. The algorithm was
applied to data on the SOS pathway in
E. coli to identify gene linkages. The result-
ing network is shown to be superior to a
network derived by the NIR algorithm in
(Gardner et al. 2003) both biologically and
statistically. Unlike the NIR algorithm, this
algorithm identified a statistically signifi-
cant role of recA in controlling the SOS
pathway; the linkages from recA in the
NIR-derived network were generally not
significant. To demonstrate the accuracy of
the algorithm for varying sample sizes, a
simulation study was performed. It was
found that for moderate-size networks the
algorithm performs accurately, with most
errors being minor additions or deletions of
a single linkage. However, the simulations
do suggest that sample sizes need to be
increased if large networks are to be identi-
fied and quantified using gene expression
data.
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