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We have been investigating microbial communities in sediments from New Bedford Harbor
(NBH), Massachusetts, USA, for a number of years. NBH is a U.S. Environmental Protection
Agency—designated Superfund site heavily contaminated with polychlorinated biphenyls, poly-
cyclic aromatic hydrocarbons, and heavy metals. Microorganisms are thought to contribute to the
fate and distribution of contaminants in NBH through a variety of mechanisms, including direct
transformations and formation of soluble and insoluble species. Our more recent research has

focused on changes in microbial community structure and function in response to exposure to
toxic contaminants, with the ultimate goal of using microbes as ecotoxicological tools. Microbial
diversity, as measured by restriction fragment-length polymorphism analysis, changes along pollu-
tion gradients, with an apparent increase in diversity at the most contaminated sites, concomitant

with an increase in genetic relatedness. Current work on microbial communities examines the
presence of arsenic-resistance genes in NBH isolates. In collaboration with the Plymouth
Environmental Research Center, Plymouth University, United Kingdom, we have also used more
conventional ecotoxicological approaches to examine the health of the NBH biota. Key words:
metal-resistance genes, microbial diversity, RAMP, RFLP. Environ Health Perspect 113:186-191
(2005). doi:10.1289/ehp.6934 available via hrzp://dx.doi.org/ [Online 8 December 2004]

Participants of the “Roundtable Discussion
on Biological Activity of Remediation
Products” held at the Asilomar Conference
on Bioremediation and Biodegradation,
9-12 June 2002, presented a framework for
discussion that highlights the limitations of
monitoring techniques for site remediation
(Figure 1) (Ford et al. 2002). Research at the
New Bedford Harbor (NBH), Massachusetts,
USA, a U.S. Environmental Protection
Agency (U.S. EPA)—designated Superfund
site, has focused partly on developing
ecological biomarkers of contaminant expo-
sure for use in monitoring remediation of
contaminated sites.

The New Bedford Harbor
Superfund Site

New Bedford Harbor is located approximately
40 miles south of Boston (Figure 2). The har-
bor is a poorly flushed estuary with a long his-
tory of metal contamination. Our early
research focused on characterizing metal distri-
bution throughout the harbor sediments (Ford
et al. 1998; Shine et al. 1995). Sediment from
the upper harbor has much higher concentra-
tions of copper, zinc, chromium, lead, and
cadmium compared with the lower and outer
harbor (Figure 3) (Ford et al. 1998).

The harbor has also been heavily conta-
minated with polychlorinated biphenyls
(PCBs) from capacitor manufacturers in the
1930s and 1940s. PCB usage peaked at
about 2 million pounds/year between 1973
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and 1975. Sediment concentrations of PCBs
were measured as high as 100,000 ppm in
the upper harbor. In 1964 a hurricane bar-
rier was constructed that restricted the flush-
ing rates of the estuary and altered flow
patterns. Eighteen thousand acres of the har-
bor and outer bay are currently closed to
commercial and recreational fishing (Nelson
et al. 1996).

In 1987 a pilot study was conducted to
examine dredging and disposal options to
remove the most contaminated sediments
from the harbor. In 1990 a Record of
Decision was signed to remove approximately
10,000 cubic yards of sediment with PCB
concentrations > 4,000 ppm. Dredging of
this hot spot was completed in the fall of
1995. However, the dredged sediments cur-
rently remain in a confined disposal facility at
the side of the harbor, prior to eventual
removal for land-filling out of state.

Opver the years, a number of ecological
studies have examined the effects of contami-
nant exposure on NBH biota. For example,
total PCBs in mummichogs have been
measured by the U.S. EPA Narragansett
Laboratories at 300 pg/g dry weight in the
upper harbor, with decreasing concentrations
toward Buzzards Bay (Nelson et al. 1996).
Black et al. (1998) found concentrations of
PCBs in mummichog livers of 35 pg total
PCBs/g dry weight associated with increased
mortality, reduced survival of progeny, and
greater spinal abnormalities.

Monitoring Remediation
of Contaminated Sediment

This raises the question: How do we evaluate
remediation of contaminated sediment? The
U.S. EPA has mandated a long-term monitor-
ing program for NBH and the surrounding
waters that includes the collection and analysis
of sediment chemistry, bioaccumulation tests,
and sediment characterization (acute toxicity
tests, grain size and texture, and benthic com-
munity structure) (Nelson et al. 1996). For
example, using the 75% benthic community
abundance measure, the upper harbor is domi-
nated by the polycheate Streblospio benedicti,
whereas the lower harbor is dominated by the
clam Mulinia lateralis; the outer harbor is
dominated by Ostracoda (Nelson et al. 1996).
A long-term remediation strategy would there-
fore be evaluated based on a reduction in con-
centration of sediment contaminants and a
return to community abundance that reflects a
less-contaminated state. A number of problems
occur, however. Measures of sediment chem-
istry do not reflect the bioavailable portion of
contaminants present, and in fact, a decrease in
contaminant concentration could be accompa-
nied by an increase in bioavailability through

This article is based on a presentation at the conference
“Bioremediation and Biodegradation: Current Advances
in Reducing Toxicity, Exposure and Environmental
Consequences” (http://www-apps.nichs.nih.gov/sbrp/
bioremediation.html) held 9-12 June 2002 in Pacific
Grove, California, and sponsored by the National
Institute of Environmental Health Sciences (NIEHS)
Superfund Basic Research Program. The overall focus of
this conference was on exploring the research interfaces
of toxicity reduction, exposure assessment, and evalua-
tion of environmental consequences in the context of
using state-of-the art approaches to bioremediation and
biodegradation. The Superfund Basic Research Program
has a legacy of supporting research conferences designed
to integrate the broad spectrum of disciplines related to
hazardous substances.

Address correspondence to T. Ford, 109 Lewis Hall,
Department of Microbiology, Montana State Uni-
versity, Bozeman, MT 59717 USA. Telephone: (406)
994-2901. Fax: (406) 994-4926. E-mail: tford@
montana.edu

This publication was made possible by grant 5 P42
ES05947 from the NIEHS, National Institutes of
Health (NTH). Its contents are solely the responsibility
of the authors and do not necessarily represent the offi-
cial views of the NIEHS, NIH.

The authors declare they have no competing
financial interests.

Received 23 December 2003; accepted 26 May 2004.

voLUME 113 | NumBER 2 | February 2005 - Environmental Health Perspectives



Article | Microbial biomarkers

an inappropriate remediation strategy (e.g.,
addition of nutrients to stimulate microbial
activity; oxygenation of sediments through
dredging). Community abundance and diver-
sity is also problematic. For example, Nacci
et al. (1999) have shown that Fundulus hetero-
clitis indigenous to this site actually have an
inherited tolerance that allows them to survive
in large numbers.

Our program focuses on using rapid
ecotoxicological approaches to monitoring the
health of NBH. This includes development of
microbial biomarkers of contaminant expo-
sure and the application of the rapid assess-
ment of marine pollutants (RAMP) technique
developed at the Plymouth Environmental
Research Center in the United Kingdom.

The specific aims of our research program
are to a) develop a suite of microbial molecular
biomarkers that will indicate the bioavailability
of contaminants and the potential for adverse
ecological effects; 4) evaluate the physiological
and biochemical responses in the biota to vali-
date the microbial biomarker approach and at
the same time provide additional tools to char-
acterize the stress of the aquatic ecosystem; and
o in the long term, provide multiple probes for
the analysis of ecosystem health, which can be
used as monitoring or screening tools for envi-
ronmental decision makers who are evaluating
remediation alternatives for contaminated
aquatic sediments.

It should be noted that the information
reported in this article reflects our progress to
date and does not seck to provide answers for
all the specific aims of our research program.

Analysis of gene presence alone in highly
contaminated marine sediments is extremely
complex. The eventual goal of monitoring
gene expression for a suite of microbial bio-
markers requires a long-term and research-
intensive program.

Past and Current Research

Microbial biomarkers. Our initial approach
to developing microbial biomarkers of expo-
sure to bioavailable contaminants focused on
examination of microbial molecular diversity
along pollution gradients. If contaminants are
not bioavailable, then diversity should not be
affected by their presence. We evaluated
species diversity by extracting DNA from
sediment and subjecting it to restriction frag-
ment length polymorphism (RFLP) analysis
of the 16S rRNA genes (Figure 4). We then
applied a cluster analysis to the resulting frag-
ment patterns (known as operational taxo-
nomic units) to compare genetic distances.
Although our results suggested greater diver-
sity at contaminated sites relative to less-
contaminated sites, they also suggested an
increased genetic relatedness. This may be
consistent with a more constrained (stressed)
environment with a wide diversity of organic
carbon sources (Sorci et al. 1999).

As with higher organisms, a contaminated
environment is likely to select for contami-
nant-resistant organisms, and measurements
of diversity may be misleading. This certainly
appears to be the case in NBH, where diver-
sity increases with higher contaminant (and
organic carbon) loads. An alternative approach
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Figure 1. General model of the toxic risks of the remediation products of contaminated sites.
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that reflects ongoing research in our laboratory
is to look for the presence of specific genes
that convey resistance to toxic metals or the
ability to degrade toxic organic compounds.
For NBH, both approaches are possible. If
these genes are present, this provides at least
preliminary evidence that the organisms may
be exposed to bioavailable contaminants. The
eventual goal of the research program is to
quantitatively assess both the presence of
selected genes, on the assumption that copy
number will increase with increasing pollu-
tion, and their expression (see “Research
Directions”).

Evaluation of metal resistance. As a start-
ing point for this research, we exploited the
ability of bacteria to develop metal resistance as
a microbial biomarker. The genes that convey
arsenic (As) resistance were used as a model, as
they have been well characterized in the litera-
ture. The arsenic resistance operon, known as
ars, encodes a detoxification system that
includes reduction of As(V) to As(III) by the
soluble reductase ArsC, followed by extrusion
from the cell by the membrane pump ArsB
alone or in conjunction with ATPase ArsA
(Rosen 1999; Silver 1998; Xu et al. 1998). The
ars operon has been found on gram-negative
and gram-positive bacteria (Diorio et al. 1995;
Silver 1998) on plasmids (Kaur and Rosen
1992), transposons (Summers 1992), and the
chromosome of Escherichia coli (Carlin et al.
1995) and Thiobacillus ferrooxidans (Butcher
et al. 2000). Ars genes have been observed in
Desulfovibrio Ben-RA, isolated from an
Australian reed bed (Macy et al. 2000);
Pseudomonas fluorescens MSP3, isolated from
seawater (Prithivirajsingh et al. 2001); and aer-
obic bacteria from sewage and As-enriched
creek waters (Saltikov and Olson 2002).
However, the prevalence of these genes in
aerobes and anaerobes from a range of environ-
mental systems is unknown.

Shallow water sediment samples (18 pg/g
As, dry weight) were collected from a contami-
nated NBH field site using a sterilized gravity
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coring device (Wildco, Inc., Buffalo, NY) and
placed on ice for transfer to the laboratory. For
aerobic microbiology, bacteria were extracted
from sediment (Engelen et al. 1998), serially
diluted, and plated onto marine agar plates

(Difco Diagnostic Systems, Sparks, MD)
amended with concentrations of As (as sodium
arsenate) ranging from 0.1 to 10 mM. For
anaerobic microbiology, a portion of the core
was transferred to the anaerobic chamber
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Figure 3. Metals in New Bedford Harbor. Figure adapted from Ford et al. (1998).
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Figure 4. Examples of unique RFLP patterns from New Bedford Harbor area sediments. M designates the
marker standard. The 684 base-pair fragment present in all lanes was generated as a result of RSA1 endo-
nuclease digestion of the pCRIl vector and used as an internal reference. Figure modified from Sorci et al.

(1999).
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(5% hydrogen, 15% carbon dioxide, 80%
nitrogen). Triplicate aliquots were diluted in
anaerobic solutions of 0.5 M sodium chloride
and 0.05 M Tris buffer (pH 7.8) and plated
onto basal salt sulfate-reducing media (with
lactate, acetate, pyruvate, and butyrate as car-
bon sources) amended with As (as sodium arse-
nate) ranging from 0.1 to 10 mM. Individual
colonies of As-resistant bacteria were picked
(from plates containing arsenate concentrations
that inhibited growth and diversity of bacteria)
and transferred at least 3 times per isolate
before analysis on plates containing 10 and
1 mM arsenate for aerobes and anaerobes,
respectively.

Marine agar (for aerobic isolates) and
sulfate-reducing agar (for anaerobic isolates)
plates were poured with sodium arsenate con-
centrations of 0, 10, 20, 50, 100, and 150 mM.
Aerobic and anaerobic isolates were allowed to
grow on the plates at room temperature for 7
and 14 days, respectively. Tolerance was deter-
mined as the highest concentration in which
growth occurred on both duplicate plates.

Isolates were genetically grouped using
RFLP. Cells were lysed by heat, sonication, and
alternate rapid freeze/thaw. The 16S rRNA
gene was amplified by polymerase chain reac-
tion (PCR) from the crude DNA, RFLP was
performed using the restriction endonuclease
known as Hhal, and RFLP profiles were
grouped manually, allowing approximately 5%
variation in fragment length within groups. Of
200 bacterial species isolated, RFLP grouping
revealed 14 groups of aerobes and 9 groups of
anaerobes.

Plasmid DNA was extracted using a modi-
fied phenol/chloroform extraction (25:42:1
phenol/chloroform/isoamyl alcohol) (Ausubel
et al. 1995), which denatures and eliminates
chromosomal DNA. Genomic DNA was also
extracted by a phenol/chloroform method
designed to extract total cellular DNA that
would yield primarily chromosomal DNA.
Although the plasmid extraction method
affords virtual certainty that PCR-amplified
genes from such samples are located on plas-
mids, the chromosomal DNA extraction
method is less definitive. Although we expect
plasmid DNA to be greatly reduced in these
extracts, it is possible that large plasmids could
be extracted along with the chromosome.

Nested primer sets were developed for the
amplification of arsA, arsB, and arsC, the
three genes on the ars operon that encode for
ArsA ArsB, and ArsC, respectively (Table 1).
E. coli with the pUM3 plasmid (kindly
provided by B. Rosen) known to contain the
ars operon was used as a positive control for
plasmid extraction and PCR, and E. coli K12
was used as the chromosomal DNA positive
control. Each PCR reaction contained 25 pL
HotStarTaq Master Mix (Qiagen, Valencia,
CA), 0.1 pM of each primer (Great American
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Gene Company, Ramona, CA), 0.2 pg of
template DNA, and distilled water to give a
final volume of 50 pL. Amplification of arsA,
arsB, and arsC were multiplexed in the same
reaction and run in a Geneamp 2400 thermo-
cycler (PerkinElmer, Norwalk, CT) (15 min
at 95°C, 30 cycles of 1 min at 94°C, 1 min at
50°C, 1 min at 72°C, 10 min extension at
72°C, and hold at 4°C).

For 16 aerobic isolates representing
10 RELP groups, and 7 anaerobes representing
4 RFLP groups, plasmid and chromosomal
DNA were screened for the presence of ars4,
arsB, and arsC (Figure 5; Table 2). ars Genes
were observed in chromosomal extracts of all
but three strains tested and 10 plasmid DNA
extracts. As previously described, the chromo-
somal DNA preparation is likely to contain
plasmid DNA. However, in six cases, a5 genes
were detected in plasmid DNA preparations
and not in chromosomal DNA preparations,
strongly suggesting that they are present on
plasmid DNA. Conversely, in 15 cases, ars
genes were detected in chromosomal DNA
extracts but not in plasmid DNA extracts,

Table 1. Nested primer sets for ars genes.?

suggesting that the genes are either present on
chromosomal DNA or on very large plasmids
not extracted in the plasmid DNA methodol-
ogy. This distinction is important both from
an ecological viewpoint and for the use of
genetic markers as indicators of contaminant
stress. Mobile genetic elements may be more
rapidly disseminated within the sediment
microbial communities in response to bioavail-
able contaminants and hence may provide a
better indicator of contaminant exposure than
chromosomal DNA (Ford 2000). Further
hybridization studies are clearly warranted on
these isolates to better distinguish between
chromosomal and plasmid genes.

In 11 cases, all three ars genes were
observed together; however, in a number of
cases only one or two of the genes were
observed. Because the genes are part of the
same operon and are regulated together, the
absence of observed arsB or arsC along with
other ars genes is probably indicative of varia-
tions in the gene that decreased the homology
with our primer set. Because the arsenite
extrusion pump (ArsB) can function alone,

ars Gene Outer primer sequence Amplicon size Inner primer sequence Amplicon size
arsA Fb TATTTC CTG CGC 389 F CTG CTG GTC AGT 300
CAC GGC GAT ACC GAT
R¢ GAA GGC GAA TGG R GAT ATG GTC AAA
TGT GAC CGT CAG
arsB F CCG GTG GTG TGG 409 F GTT GCT GGA TGA 259
AAT ATT GT GTC AGG CT
R ACT CCG TGA ATC R GTATCG GAA ATA
CCAGTT CCG GC
arsC F CTG ATATGA GCA 446 F ATC ATA ACC CAG 341
ACATCACTATIT CCTGC
R ATT TCA GCC GTT R CTG CGC ATC CTG
TTC CTG CTT CA TAG GAT ARC

aPrimer set design was based on ars operon nucleotide sequence of resistance factor R773 (Chen et al. 1986). Primer3
software was used for primer design (version 1.0; Whitehead Institute for Biomedical Research, MIT, Boston, MA; Rozen

and Skaletsky 2000). fForward. “Reverse.

Figure 5. Electrophoresis gels showing PCR-amplified products of arsA, arsB, and arsCin (A) genomic and
(B) plasmid DNA extracts of As-resistant New Bedford Harbor isolates. Numbers refer to specific isolates

listed in Table 2.
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absence of observable arsA could indicate
nonhomology, or an operon without arsA. In
20 of the 22 cases when any of the ars genes
were observed, arsCwas present.

Arsenic tolerance levels were determined
for each isolate (Table 2). Tolerance range is
from 20 to 150 mM, There is no clear rela-
tionship between tolerance level and the
prevalence of the ars genes. All the anaerobes
were able to tolerate at least 50 mM As added
to the medium. Tolerance is likely dependent
on the speciation in the medium, which we
did not measure.

This work shows that the ars genes are
prevalent in NBH sediments among both
aerobic and anaerobic bacteria with a diverse
group of 16S rRNA RFLP patterns. This has
important implications for As cycling, as the
form of As extruded by this detoxification
mechanism [As(III)] is the more mobile and
toxic form. The nested primer method
described here is capable of amplifying these
genes from a contaminated site. These find-
ings may be applied to the use of ars genes as
a biomarker for bioavailable As in the field.

As mentioned previously, NBH is conta-
minated with a wide range of metals and
organics, and there are many potential gene
targets to use as microbial biomarkers. The
As-resistance system is only one example, and
our laboratory is currently investigating the
presence of a number of other genes (see final
section). However, presence alone is likely to
be a poor indicator of exposure to bioavailable

Table 2. Presence of arsA, arsB, and arsC on chro-
mosomes and plasmids from 23 randomly selected
aerobic and anaerobic New Bedford Harbor iso-
lates and their respective As tolerance.

Genomic Plasmid Tolerance
Isolate  arsA arsB arsC arsA arsB arsC (mM As)
Al X X 20
A2 X X X 20
A3 X X X 20
A5 X 20
AB X X 20
A7 X X 20
A9 X 20
A18 X X X X X 100
A21 X X X X X 50
A24 X X X X X 150
A27 X X X X X 50
A36 -
Ad4 X X 100
AB2 50
A73 X X X 50
AB6 X X X 50
N10 50
N11 X X X X 50
N16 X X X X 50
N1 X X X X X X 50
N6 X X ND 150
N4 X X X X X ND
N3¢ X X X X 150

Abbreviations: A, aerobic isolate; N, anaerobic isolate; ND,
not determined.

@0riginally isolated on cadmium but also show arsenate
resistance.
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contaminants, and our current focus is on
optimizing RNA extraction from NBH
sediments for evaluation of gene expression.

Rapid assessment of marine pollution. The
second component of our research program is
to examine more traditional ecotoxicological
indicators in higher organisms using the
RAMP approach (Wells et al. 2001). The
eventual aim is to correlate responses in higher
organisms with the microbial approach. For
example, if a genotoxic response to a specific
pollutant (or mixture) in an invertebrate
species increases along a pollution gradient, we
might expect increased expression of a specific
gene in the microbial population. In these
studies we have focused on the biochemical
and physiological activity of the Atlantic
ribbed mussel, Geukensia demissa, which is
extremely common in NBH and the sur-
rounding coastal areas of Buzzards Bay.
Geukensia lives partially within the surficial
sediments, making it an excellent candidate
for this study, as it is directly exposed to high
levels of sediment contamination (Figure 6).

The RAMP approach was developed at
the Plymouth Environmental Research Center
in the United Kingdom. This approach com-
bines chemical residue analysis with measure-
ment of a range of biological responses to
determine the ecological health of a marine
ecosystem. Approaches include 4) evaluating
the physiological status of the organism by
monitoring its heart rate or condition index;
b) evaluating genotoxicity by observing
micronucleus formation; ¢) evaluating cellular
status by measures of cell viability and lyso-
somal integrity; and ) evaluating immuno-
toxicity through measures of spontaneous
cytotoxicity.

A summary of our findings from the
RAMP survey found that PCBs and polycyclic
aromatic hydrocarbons (PAHs) in the mussel
tissue were greatest at the inner harbor site and
decreased along a pollution gradient out
toward the control site in Buzzards Bay
(Figure 7). Chromosomal damage was greatest

Figure 6. Atlantic ribbed mussels were used as the
bioindicator organism for New Bedford Harbor.
Their heart rate was monitored using an infrared
heart rate monitor attached to the surface of the
mussel’s shell. Photograph courtesy of Ross Sanger,
University of Plymouth.
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at the most highly polluted sites, and immune
function, heart rate, and cell viability all
decreased with increasing pollution (Galloway
et al. 2002). Figure 8, adapted from Galloway
et al. (2002), illustrates this relationship
for heart rate and chromosomal damage.
Significant differences in PCB and PAH tissue
residues were detected among sites using
immunoassay techniques (RaPID assay;
Ohmicron Environmental Diagnostics, Inc.,
Newtown, PA). However, no significant dif-
ferences were observed in metal concentrations
in mussel tissues (copper, cadmium, lead, As,
mercury, and nickel) throughout the area.
Multivariate canonical correlation analysis
indicated that PCB and PAH concentrations
were strongly associated with biomarkers of
genotoxicity (micronucleus formation),
immunotoxicity (spontaneous cytotoxicity),
and physiological impairment (heart rate)
(Galloway et al. 2002).

Research Directions

Our current goal is to target other resistance or
catabolic genes that may be more prevalent
than ars genes to use as microbial biomarkers.

70

60

Dry weight (ug/g)

PCB PAH Hg

We have begun to evaluate sediments for the
presence of biphenyl-degrading genes; the
biphenyl degrading (6ph) gene cluster impli-
cated in the degradation of PCBs to chloro-
benzoates through the 2,3-deoxygenation
pathway (Furukawa and Kimura 1995).
Increased copy number/expression of the ph
genes is expected at the sediment—water inter-
face as a response to both an overall increase in
PCBs and an increase in the more readily
biodegradable fraction (Erb and Wagner-
Débler, 1993). Once we have optimized our
methodologies for detecting bph genes, we pro-
pose to expand the research in the following
directions:
* Real-time PCR to detect changes in copy
number of genes across a pollution gradient
* Extraction of mRNA from sediments to
assess gene expression
* Develop fluorescent iz situ hybridization
(FISH) probes for mRNA to detect genes
in situ
* As a long-term goal, be able to examine a
number of metal-resistance systems and cata-
bolic genes for PCB degradation concur-
rently, using DNA array technologies
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Figure 7. Mussel tissue burdens of PCBs, PAHs, and selected metals (Hg, Cd, Ni, Pb, Cu, As). Figure

adapted from Galloway et al. (2002).
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Figure 8. Examples of RAMP assays applied to Atlantic ribbed mussels from New Bedford Harbor. Figure

adapted from Galloway et al. (2002).
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* Validate all methodologies with more tradi-
tional biomarkers of exposure (RAMP).

Microbial biomarkers as ecotoxicological
tools. Our long-term goal is to develop multi-
ple probes to evaluate ecological health in
marine ecosystems. Our approach will be to
develop multiple FISH probes (or micro-
arrays) to rapidly hybridize genes that are
actively expressed in response to contaminant
stress. These biomarkers should correlate with
stress (biomarker) responses in higher organ-
isms. We expect microbial biomarkers to be a
rapid and sensitive measure of exposure to
bioavailable contaminants, as microbes are
ubiquitous in the environment, have no
migratory behavior, and integrate responses to
multiple stressors.
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