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Spatial epidemiology is the description and
analysis of geographically indexed health data
with respect to demographic, environmental,
behavioral, socioeconomic, genetic, and infec-
tious risk factors. It is part of a long tradition
of geographic analyses dating back to the
1800s when maps of disease rates in different
countries began to emerge to characterize the
spread and possible causes of outbreaks of
infectious diseases such as yellow fever and
cholera (Walter 2000). Over the ensuing
decades, it grew in com.plexity, sophistication,
and utility. Spatial epidemiology extends the
rich tradition of ecologic studies that use
explanations of the distribution of diseases in
different places to better understand the etiol-
ogy of disease (Doll 1980; Keys 1980). In this
article we focus principally on small-area
analyses of chronic, noninfectious diseases,
where there is considerable current interest
within the field of spatial epidemiology.

Recent advances in data availability and
analytic methods have created new opportuni-
ties for investigators to improve on the tradi-
tional reporting of disease at national or
regional scale by studying variations in disease
occurrence rates at a local (small-area) scale
(Walter 2000). Such investigations may
include locally relevant health risk factor data
such as exposures to local sources of environ-
mental pollution and the distribution of
locally varying socioeconomic and behavioral
factors. They also present new challenges

because as the scale of the investigation
becomes narrowed to a particular small area or
group of areas, the reduced size of the popula-
tion at risk leads to small numbers of events
and unstable risk estimates (Olsen et al.
1996). Furthermore, because of the small
population, such studies are more susceptible
to errors or local variations in the quality of
both the health (numerator) and the popula-
tion (denominator) data than studies con-
ducted over larger areas. At the broader scale,
purely local variations in data quality are likely
to largely cancel out, whereas at the small-area
scale, these variations could lead to serious
biases if not detected. Finally, small-area stud-
ies (like other types of epidemiologic inquiry)
are susceptible to confounding, which can
result in spurious exposure–disease associa-
tions. In the small-area case, this is particularly
so with respect to socioeconomic variables.
People and communities tend to cluster in
space in systematic ways that may be highly
predictive of disease risk. For example, people
of high socioeconomic status tend to live near
others with high incomes and in areas with
better housing and schooling than those in
lower-income areas. Individuals with higher
incomes tend to have more favorable risk fac-
tor profiles (e.g., they are more likely to be
nonsmokers, take more leisure-time exercise,
and eat more favorable diets) and as a conse-
quence, have better health (Smith et al.
1996a, 1996b). Such spatially organized

socioeconomic effects can have important
influence on the rates of disease observed in
small areas (Dolk et al. 1995). They may also
be associated with the siting (or absence) of
sources of environmental pollution, as “envi-
ronmental (in)justice” dictates that poorer
people in poorer areas are often more likely to
be exposed to the effects of pollution
(Corburn 2002). 

We note that an in-depth and individual-
based approach might investigate how individ-
uals interact with their environment and how
these interactions affect health. This could
address, for example, why people with higher
incomes take more leisure-time exercise. Is it
because they have a local environment more
enticing, have the financial resources to engage
in specific activities, have jobs that afford them
more leisure time, or pursue more leisure-time
activities for other reasons? Such questions
may have an important spatial component.
However, we see these as second-order issues
beyond the scope of this article.

We now briefly consider the analytic
framework for carrying out spatial analyses and
the types of studies commonly undertaken.
We then focus on a number of challenges that
face the practitioner of spatial epidemiology,
including issues of data availability and quality,
confidentiality, exposure assessment, exposure
mapping, and study design. 
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Spatial epidemiology is the description and analysis of geographic variations in disease with respect to
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appropriately using Bayesian statistics to provide smooth estimates of disease risks, sensitivity to detect
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Analytic Framework
In considering an analytic framework for
spatial epidemiologic analyses (Elliott et al.
2000b), we first distinguish between point and
area data. Each of the population, environ-
mental exposure, and health data may be asso-
ciated with a point, or exact spatial location
such as a street address (occurrence data), or
an area, a defined spatial region such as a com-
munity, of which it is representative (aggregate
summaries, e.g., count data). Data from a vari-
ety of points (e.g., residence, workplace,
hobby locations) may give the closest link to
an assumed biologic model in which the aver-
age disease risk of an individual will reflect
individual characteristics such as age, sex, and
genetic factors (e.g., predisposition, suscepti-
bility, immune or toxicologic response capa-
bility); lifestyle variables, such as smoking and
diet; and exposure to environmental pollu-
tants. The lifestyle and exposure factors may
depend on the ways that the individual inter-
acts with the environment as she/he moves
through both time and space, which itself
depends on the range of daily activities, type
and location of residence, workplace, travel
and migration patterns, habits, behaviors, and
so on. Together with individual susceptibility
factors, these may determine biological dose.
For many environmental exposures, the para-
meter of interest may be cumulative lifetime
dose, the maximum short-term dose, or even
the cumulative dose above some threshold.
For example, in carcinogenesis, the parameter
may be the dose at some critical point in the
multistage pathway underlying cancer forma-
tion (Moolgavkar 1999). For other outcomes,
exposure to a single, high (toxic) dose may
trigger an adverse response, as with chloracne
after exposure to 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD) from the Seveso accident in
northern Italy (Caramaschi et al. 1981). The
effects from ionizing radiation, on the other
hand, are thought to reflect cumulative life-
time exposure, a more problematic metric for
spatial epidemiology, although recent research
suggests that the maximum rate of exposure
mediates the effects (Cardis et al. 2001).

Case–control and cohort studies can give a
relatively close approximation to the biologic
model in investigating environmental health
issues because both individual person charac-
teristics and exposures are studied in the indi-
vidual environment. Case–control studies
provide point data for cases and a set of con-
trols. They are prone to selection and other
biases, are moderately expensive and time-con-
suming to carry out, and are not feasible in all
situations. Cohort studies, although not sub-
ject to selection bias, are prone to other biases,
including losses to follow-up, and are generally
more expensive and time-consuming to carry
out than case–control studies. Exploratory
studies using aggregate data, such as geographic

correlation studies, offer an alternative
approach for generating, prioritizing, and ana-
lyzing data to address specific hypotheses of
disease etiology and causation. Although they
too are prone to biases and misclassification
(Elliott and Wakefield 2000), they are gener-
ally easier, quicker, and less expensive to con-
duct than case–control or cohort studies. One
example of this approach is with use of a dedi-
cated system such as that developed by the
Small Area Health Statistics Unit (SAHSU) in
the United Kingdom (Elliott et al. 1992b);
this has recently been adopted in other
European countries as part of the European
Health and Environment Information System
(EUROHEIS) collaboration (EUROHEIS
2003). If these exploratory and other studies
generate sufficient evidence in support of spe-
cific hypotheses, case–control and/or cohort
studies can then be used to test these hypothe-
ses with use of purpose-collected individual-
level data. 

Types of Spatial Epidemiologic
Inquiry 
Spatial epidemiology at small-area scale can
be divided into three main areas: 
• disease mapping
• geographic correlation studies
• clustering, disease clusters, and surveillance.

We note that the above grouping is
artificial. For example, depending on scale, dis-
ease mapping may provide information on
individual disease clusters and more generally
on disease clustering. A point source of expo-
sure may give rise to a localized excess of cases
that might be detected on a disease map,
whereas geographic correlation studies share
much in common with disease-mapping studies
(with addition of one or more potential
explanatory variables), and the statistical models
used are often similar. Each of the above main
types of inquiry is now considered in turn. 

Disease Mapping
As noted earlier, disease maps have a long
history. A survey in 1991 identified 49 inter-
national, national, and regional disease atlases
(Walter and Birnie 1991). An early example
was the work of Stocks, who described varia-
tions in cancer mortality across counties of
England and Wales (Stocks 1936, 1937,
1939). More recent examples include an atlas
of cancer incidence in England and Wales
(Swerdlow and dos Santos Silva 1993) and an
all-causes mortality atlas (Pickle et al. 1996)
and separate cancer mortality atlas (Devesa
et al. 1999) for the United States. Disease
maps provide a rapid visual summary of com-
plex geographic information and may identify
subtle patterns in the data that are missed in
tabular presentations. They are used variously
for descriptive purposes, to generate hypothe-
ses as to etiology, for surveillance to highlight

areas at apparently high risk, and to aid policy
formation and resource allocation. They are
also useful to help place specific disease clus-
ters and results of point-source studies in
proper context (Wilkinson et al. 1997). 

Disease maps typically show standardized
mortality or morbidity (e.g., incidence) ratios
(SMRs) for geographic areas such as countries,
counties, or districts. The rate in area i is esti-
mated by the standardized mortality (or mor-
bidity) ratio (SMRi), calculated as Oi /Ei,
where Oi is the observed number of deaths or
incident cases of disease in the area (assumed to
follow an independent Poisson distribution).
Ei is the expected number of cases (calculated
by applying age- and sex-specific death or dis-
ease rates to population counts for the area).
The SMR thus defined is based on indirect
standardization. Some authors advocate direct
standardization, as it involves adjustment to a
common standard (Julious et al. 2001). In our
own experience, the two methods nearly always
give near-identical results.

Although disease maps have both visual
and intuitive appeal, caution is required in
interpretation, as apparent patterns can be
created or lost artifactually depending on how
the mapped variable is depicted (e.g., the
number and boundaries of the categories) and
the geographic scale or resolution. The choice
of colors for displaying data can also affect
interpretation (Brewer and Pickle 2002;
Smans and Esteve 1992). Maps of the same
data drawn at different scales of resolution
can result in very different visual patterns
(Monmonier 1997). Figure 1, for example,
from a study of childhood lead poisoning,
shows maps at three different scales (U.S. cen-
sus block group, ZIP codes, and counties) of
the percentage of homes built before 1950
(a major risk factor for childhood lead over-
exposure) in New Jersey based on U.S. census
data reported at the block group level of reso-
lution. When aggregated by geopolitical
boundaries, regional values are overweighted
(geographically) by more compact, more
urban ones that typically have more older
housing, often obscuring important informa-
tion in less-populated rural regions. 

When constructing maps, users must select
both the size of units and the method to aggre-
gate units to highlight the features of interest.
Homogeneity within aggregate groups is
important for meaningful interpretation.
Different scales and different aggregation
strategies can lead to different but equally valid
maps that emphasize different features of the
data. In the geography literature, this is called
the modifiable area unit problem (Openshaw
1984). Although generally the aim is to choose
geographic units that are as small as possible,
the choice is often dictated by the availability
of data, and because of sparse data, there will
often be a tradeoff between homogeneity
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within small geographic units and precision of
risk estimates. 

Variation in rates across the map may
reflect differences in the quality of data, for
example, in the diagnosis, classification, or
reporting of disease (Best and Wakefield
1999), rather than true differences in disease
rates. Furthermore, the digital boundaries
identifying the geographic units, and the geo-
graphic linkages between the various data
within a geographic information system (GIS)
may contain errors, including errors in the
assignment of geocodes (postcodes) (Briggs
and Elliott 1995). Clearly these may lead to
errors in the resultant maps. Data quality for
denominator (population at risk) data,
although often overlooked, can also be a
problem. Inaccurate estimates can change the
appearance of mapped patterns and compli-
cate map comparisons, especially for areas
with small populations. When calculating
SMRs for intercensual years, investigators use
different interpolation algorithms, which can
lead to differences in denominators and rates.
For example, in a study of cancer incidence in
Dalgety Bay, Scotland, risks based on census
data were overestimated because there had
been rapid population growth in the area
since the previous census (Black et al. 1994). 

Recent focus on small-area mapping
studies, where typically the unit of analysis has
a population of 5,000 or less (such as census
tracts in the United States or electoral wards in
the United Kingdom), introduces an extra
source of variability into the map because of
random variation. Typically, sparsely popu-
lated areas with few (or zero) cases can gener-
ate extreme values of the SMR, as the variance
of the SMR is inversely related to Ei and small
populations will have large variability in the
estimated rates. As these sparsely populated
areas are often bigger than densely populated
areas (because the administrative geography
depends on population size), they tend to
dominate the map visually even though they
produce the least-precise risk estimates (Elliott
et al. 1995). Methods based on Bayesian sta-
tistics (Clayton and Kaldor 1987) have been
used to remove part of the random compo-
nent from the map to give smoothed estimates
of relative risk in each area. Such estimates are
a compromise between the local value of the
SMR and either the mean value for the map as
a whole, or some local mean. Smoothing is
greatest for the least-stable estimates (i.e.,
where Ei is small). 

Figure 2 is an example of a small-area map-
ping study of adult leukemia incidence in the
West Midlands region of England, 1974–1986
(Olsen et al. 1996). Each small area on the map
is an electoral ward, which as noted above has a
population of approximately 5,000 on average.
The smallest wards, with the largest populations
and hence the most stable risk estimates, are

located toward the center of the map in and
around the Birmingham conurbation. Figure
2A shows the age- and sex-adjusted SMRs
based on the observed and expected values in
each area, whereas Figure 2B shows the
smoothed SMR, with smoothing to the overall
mean using empirical Bayes methods. The
unsmoothed map has considerable apparent
variability, with more than 3-fold variation
across the map. Many of the extreme values
(both low and high) are found in the periphery
of the map, that is, in the rural areas distant
from the Birmingham conurbation. After
smoothing, the map appears much flatter, and
all the extremes are removed.

Although map smoothing on average
produce a more stable and realistic map, an
important issue is the extent to which disease
excesses in any truly high-risk areas (especially

those more sparsely populated) might be
smoothed away. The degree of smoothing will
determine the tradeoff between high sensitiv-
ity (truly high-risk areas correctly identified)
and high specificity (areas without excess risk
correctly identified). This tradeoff is impor-
tant, as a sensitive but nonspecific measure
will generate many false positive findings,
whereas a specific but nonsensitive measure
will miss areas with high risk. Richardson et al.
(2004) have investigated the properties of
commonly used map-smoothing techniques
using a series of realistic scenarios to simulate
possible patterns in the disease map. They
conclude that unless the relative risk is of the
order of 2 to 3 and expected numbers in the
geographic unit are at least 5 (or for relative
risks of order 2, expected numbers are at least
20), then the map-smoothing methods are
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Block groups ZIP codes Counties

Percentage of
housing units

0–25
25–50
50–75
75–100
No data

Figure 1. Percentage of homes built before 1950 in New Jersey based on U.S. census data reported at the
block group level of resolution. The three maps depict the same data at three different scales: U.S. census
block group, ZIP codes, and counties. 

BA

SMR

< 0.61
0.61–0.94
0.95–1.04
1.05–1.56
> 1.56

Smoothed
SMR

SMR

Figure 2. Adult leukemia by electoral ward in West Midlands Region, England, 1974–1986. (A). SMR; West
Midlands = 1.0. (B) SMR after smoothing using empirical Bayes methods. Figure reproduced from Olsen
et al. (1996), with permission of the BMJ Publishing Group.



likely to perform poorly in terms of their abili-
ties to detect areas with true excess. This is
important in designing appropriately powered
investigations and in managing expectations as
to what can be achieved with sparse data.

Geographic Correlation Studies
In geographic correlation studies, the aim is to
examine geographic variations across popu-
lation groups in exposure to environmental
variables (which may be measured in air, water,
or soil), socioeconomic and demographic mea-
sures (such as race and income), or lifestyle fac-
tors (such as smoking and diet) in relation to
health outcomes measured on a geographic
(ecologic) scale. This approach often takes
advantage of data that are routinely available
and can be used to investigate natural experi-
ments where the exposure has a physical basis
(e.g, soil, water) (Richardson and Monfort
2000). In addition, the effect of exposure mea-
surement error is reduced by averaging across
groups. However, geographic correlation is
affected by the problems of disease-mapping
studies noted above, together with the added
complication of correlation with one or more
explanatory variables. Such studies are often
thought of as hypothesis-generating, as the unit
of observation is the geographic group rather
than the individual and associations observed
at the group level do not necessarily hold at the
individual level—the so-called ecologic fallacy
(Piantadosi et al. 1988). For this reason, obser-
vations at the ecologic scale will usually need
validation and replication at the individual
level, for example, through cohort, case–con-
trol studies or possibly randomized, controlled
prevention or intervention trials (such as lead
chelation studies). Nonetheless, ecologic stud-
ies of this kind have been pivotal in developing
and exploring major hypotheses of public
health importance, for example, the linking of
malignant hepatoma (which has very high inci-
dence in Asian populations) with hepatitis B
infection (Beasley 1988) and the seminal work
of Keys and colleagues in elucidating the role
of saturated fat in the etiology of coronary
heart disease (Keys 1980). 

The development of the first cancer
mortality atlases in the United States in the
mid-1970s (Mason et al. 1975, 1976) showed
distinctive patterns of variation of different
cancers and led to a series of informal correla-
tional studies. Based on the patterns of high
risk that appeared to correspond to specific
activities, behaviors, or environmental expo-
sures, investigators postulated specific
hypotheses (Blot and Fraumeni 1982;
Fraumeni 1988; Hoover et al. 1975; Mason
1976) that were later investigated through
case–control studies. Although not all of these
studies confirmed the geographically generated
hypotheses, investigation of a regional excess
of oral cavity and pharynx cancer among

women revealed the previously unknown risk
of smokeless tobacco use (Blot and Fraumeni
1977; Winn et al. 1981). Investigation of a
regional excess of sinonasal cancer was consis-
tent with studies in other countries showing
risks associated with working in the furniture
industry (Blot and Fraumeni 1977; Brinton et
al. 1976, 1977, 1984, 1985), and study of
local lung cancer excess was associated with
residence near or employment in the arsenic
industry (Blot and Fraumeni 1975, 1994). 

Geographic correlation studies are also car-
ried out at a more local or small-area scale,
where the problem of ecologic bias may be less-
ened as the analysis is closer to the level of the
individual. For example, Staessen et al. (1999)
examined the relationship between environ-
mental exposure to cadmium and bone density
in 10 districts in Belgium (including 6 that
bordered on three zinc smelters). Shaper et al.
(1980) investigated the relationship between
water hardness and cardiovascular disease in
towns in Great Britain, while Maheswaran
et al. (1999) assessed in particular the role of
magnesium in the water supply in relation to
mortality from acute myocardial infarction.
The last of these studies used water zones in
northwest England (each water zone serves up
to 50,000 people) as the unit of analysis. For
some environmental exposures, such as non-
ionizing radiation from overhead power lines,
the potential harmful effects may operate over
a very small distance (up to 50–100 m from
the power line), so only a highly localized or
individual-based study can investigate the issue
(Feychting and Ahlbom 1993; Olsen et al.
1993; Verkasalo et al. 1993). 

One important issue merits brief mention
here. Informal geographic correlation studies
(or evaluations) are often conducted by non-
scientists in their own communities or neigh-
borhoods out of personal concern. When one
suspects a local disease excess, or when one-
self, a family member or friend is stricken
with cancer, one often asks “Why? What did I
or they do wrong? What is it about where I
live or where I work that caused this tragedy?”
This concern may cause one to seek an expla-
nation or to consider local industries or
sources of environmental pollution as the
putative cause. In this process, an informal
geographic correlation is being undertaken,
insofar as the health event and putative envi-
ronmental exposure have been juxtaposed.
Most such evaluations do not provide useful
etiologic clues, as neither the underlying vari-
ability in disease rates nor the post hoc nature
of the association with sources of environ-
mental pollution are properly accounted for. 

Disease Clusters, Clustering, and
Surveillance
Investigation of disease clusters and disease
incidence near a point source usually assumes

that the background risk surface is flat, against
which a peak at the pollution source is being
tested. If this is not the case and the back-
ground surface is bumpy, that is, there are
peaks and troughs in the risk surface, this may
indicate generalized or broad-scale clustering of
the disease. (Clearly in this situation, the obser-
vation of a disease excess at a particular point
may not be unusual.) This tendency for disease
cases to occur in a nonrandom spatial pattern
relative to the pattern of the noncases has a
more robust statistical formulation than the
investigation of disease clusters per se and may
give clues as to etiology (Wakefield et al.
2000). For example, there is evidence of spatial
clustering of Hodgkin disease (Alexander et al.
1989) that, along with other epidemiologic
and laboratory evidence, has suggested a possi-
ble infectious etiology. The study of general-
ized clustering has much in common with
disease mapping, and the same cautionary con-
siderations apply, particularly concerning the
quality of the underlying data.

Putative disease clusters may come to light
because of media reports or be brought to the
attention of the authorities by concerned indi-
viduals; as noted, often the apparent cluster will
become linked with a local source of environ-
mental pollution (Greenberg and Wartenberg
1991; Trumbo 2000). In general, this might be
a point, line, or area source. Point sources
include a chimney stack from an industrial site,
a radio transmitter, mobile phone tower, and so
forth. A line source refers to an extended linear
source such as a road, river, or power line, and
an area source may include industrial com-
plexes, landfill sites, and other geographically
defined areas such as water-supply zones (or
watersheds). In practice, in the absence of
detailed information concerning the extent of
an industrial site or the locations within the site
where emissions occur, area sources are often
modeled as point sources. A recent study of
landfill sites in the United Kingdom would be
one example (Elliott et al. 2001). Although
U.S. case–control studies have used similar
exposure metrics, no extant systems allow
similar, broad-based data assessments.

The term disease cluster is poorly defined
but implies an excess of cases above some back-
ground rate bounded in time and space. These
boundaries may be ill-defined, and so-called
boundary shrinkage may occur, accentuating
the apparent risk by focusing the investigation
tightly on the cases making up the cluster.

The more narrowly the underlying population is
defined, the less will be the number of expected
cases, the greater will be the estimate of the excess
rate, and often the more profound will be the sta-
tistical significance. (Olsen et al. 1996)

Despite the inherent problems, the local
public health department may find itself com-
pelled to respond, if only to allay public anxiety
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(Greenberg and Wartenberg 1991). Usually
the initial assessment of the data will involve
the following: 
• Detailed checking of the cases. This is an

essential step, as the putative cluster may
involve a disparate group of diagnoses, some
double-counting (duplicate records) may
occur, and some cases may be erroneously
reported. One also must verify the location
(or geocode) of each case, which can be
difficult in some locales.

• Definition of the boundaries in time and
space so that a population denominator, by
age and sex, can be constructed (usually from
census records). Although accuracy is impor-
tant, it is hard to validate the population data
outside the census years, particularly as the
areas get smaller.

• Estimation of the expected numbers of cases
based on age- and sex-specific background
rates (e.g., obtained from published regional
or national data). 

• Calculation of the SMR for the area. 
• Assessment of statistical significance (usually

reported at p < 0.05) assuming a Poisson
distribution for the occurrence of cases.

• Communication of results to the public,
providing context, plausibility, and plans for
follow-up, if appropriate.

The process of obtaining the initial data
outlined above can be extremely costly in both
time and resources for local health department
personnel, as data from several disparate
sources must be assembled and brought
together. In addition, for local health depart-
ments not familiar with the detailed methods
and requirements of a major cluster investiga-
tion, inevitably there can be a steep learning
curve. This might include familiarizing oneself
with the specialist statistical methodologies of
cluster investigation (beyond calculation of the
SMR), as such methods are not part of the
routine armory of the public health specialist
(Elliott et al. 1995; Morris and Wakefield
2000; Waller and Lawson 1995). In the
United Kingdom, a rapid inquiry facility (RIF)
has been established within SAHSU to provide
such analyses within a few working days for a
particular area. This greatly facilitates the abil-
ity of a local public health department to
respond quickly to reports of a putative disease
excess in their area based on the available rou-
tine data. Areas can be defined by administra-
tive geography such as electoral enumeration
district (~ 400 individuals) or ward, by post-
code (~ 13 households), or by map reference.
The RIF includes routine national health and
population data held in an Oracle database on
its own dedicated computer system, with geo-
graphic linkages provided by a proprietary GIS
(Aylin et al. 1999). The health records, includ-
ing mortality, cancer incidence, hospital dis-
charges, and congenital anomalies, all include
the postcode, with geographic resolution of

approximately 10–100 m. The RIF assembles
the data and provides an SMR (with and with-
out adjustment for socioeconomic variables)
for the area of interest compared with regional
or national rates. An unsmoothed and
smoothed map (using empirical Bayes meth-
ods) are also produced, together with contex-
tual maps of local landmarks, socioeconomic
data, pollution sources, and so on. A version of
the RIF has been made available to other
European countries as part of the EUROHEIS
consortium (EUROHEIS 2003). Although
many state health departments in the United
States routinely evaluate data in response to
cluster inquiries, none currently has a compa-
rable system dedicated to such activities.

Once a link between a putative disease
cluster and a local source of environmental
pollution has been put forward, it is extremely
difficult to confirm or refute it without
recourse to external data (e.g., from another
area or time period). Because an informal
process of data comparison (akin to multiple
testing) has taken place (by the media, con-
cerned individuals, etc.) in similar-sized locali-
ties elsewhere across the country, statistical
testing in a formal sense is rendered invalid
(Elliott and Wakefield 2000). Only disease
occurrences at the high end of the distribution
are highlighted. Diseases or areas with appar-
ent low risk never come to the attention of the
authorities. This informal process of multiple
testing means that it is impossible to gauge the
true significance (in a statistical sense) of an
apparent disease excess in a particular locality.
Many clusters, even where nominally statisti-
cally significant, will appear purely as a chance
finding, particularly for rare events (such as
most cancers). Conversely, some true disease
excesses may be overlooked because of lack
of systematic evaluation of the small-scale
geographic pattern of disease incidence
(Wartenberg 1995).

Local concerns about a disease cluster in a
particular area must be sympathetically and sen-
sitively handled but will not usually lead to for-
mal study or any new etiologic insight (Drijver
and Woudenberg 1999; Trumbo 2000).
Indeed, against this background, it has been
argued that individual cluster reports should
not be investigated (Rothman 1990) unless
there are sufficient numbers of cases (five or
more) and risks in a particular area are very
high (relative risk ≥ 20) (Neutra 1990).

Occasionally it will be necessary to carry
out more detailed inquiry. Investigations have
adopted either the case–control (e.g.,
Aschengrau et al. 1998; Infante-Rivard and
Amre 2001; Morris and Knorr 1996; Mulder
et al. 1994; Wrensch et al. 1999) or small-area
(ecologic) approach (e.g., Berry and Bove
1997; Goldberg et al. 1995; Kokki et al. 2001;
Lopez-Abente et al. 2001; Wilkinson et al.
1997). Where the routine health statistics

appear to confirm suspicions of disease excess
(notwithstanding the problems of multiple
testing referred to above), then as indicated,
examination of data for a different time period
or area will be required. This allows the data
to be tested within the usual statistical para-
digm, as the initial observation generates a
hypothesis that can then be tested on indepen-
dent data. With a dedicated national system
such as SAHSU in the United Kingdom, this
can be done readily using the national data-
base. Examples include national studies of
cancer incidence near incinerators of waste sol-
vents and oils after observations of excess inci-
dence of cancer of the larynx near one such
incinerator (Elliott et al. 1992a), and risk of
leukemia and incidence of other cancers near
TV and radio transmitters, after reports of a
leukemia cluster near the Sutton Coldfield
transmitter in the West Midlands, England
(Dolk et al. 1997a, 1997b).

When the study is done because of a priori
concerns about a source of environmental pol-
lution rather than in response to a claim of dis-
ease excess in a particular area, the statistical
framework is again more robust, as a hypothe-
sis can be set up and tested in the usual way.
Investigation may involve a number of or all
such sources in the region or country. This
increases statistical power and overcomes the
problem of selection where one site, or a few
sites, are chosen for study, perhaps because of
suspicion of disease excess in the vicinity.
However, it makes the possibly unrealistic
assumption that the sources are similar with
respect to their potential to cause environmen-
tal health problems, and high risk around one
or two sources (which may have high levels of
toxic releases into the environment) may be
masked. In the United Kingdom, national
studies undertaken a priori include cancer inci-
dence near municipal incinerators (Elliott et al.
1996a), risk of hemopoietic cancers near oil
refineries (Wilkinson et al. 1999), angiosar-
coma of the liver near vinyl chloride plants
(Elliott and Kleinschmidt 1997), and risk of
congenital anomalies and various cancers near
landfill sites (Elliott et al. 2001; Järup et al.
2002). In the Scandinavian countries, national
studies of leukemia risk near power lines have
been done that take advantage of the high-
quality health and population registers avail-
able in those countries (Feychting and Ahlbom
1993; Olsen et al. 1993; Verkasalo et al. 1993). 

Although national-scale small-area studies
are unlikely on their own to establish causal
links with the pollution source (unless the risk
is very high), they do give a valuable answer to
the public health question “If I live near pol-
luting source X, am I (on average) at increased
risk of disease?” and may indicate avenues for
further inquiry such as studies of pathways of
environmental exposure, biomarker studies, or
case–control studies. 
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Cluster detection and surveillance.
Surveillance, or the systematic routine
collection and analysis of health outcome data
for disease prevention and control purposes
(Thacker and Berkelman 1992), can be
applied to the problem of disease clusters
through the use of space, time, and space-time
pattern detection methods (Kulldorff et al.
1997; Kulldorff 1997, 2001; Rogerson 1997,
2001; Rushton et al. 1996). This has been
proposed as a more effective approach than ad
hoc cluster studies for identifying local disease
excesses and prioritizing them for follow-up
investigations (Hardy et al. 1990; Wartenberg
1995). In contrast to the passive or reactive
analysis of reported local disease excesses using
systems like the RIF, surveillance offers the
opportunity to provide proactive, early detec-
tion of raised incidence of disease even when
there is no specific etiologic hypothesis. In
addition to increasing the likelihood of identi-
fying etiologic clusters, which may implicate
behavioral, environmental contamination or
other preventable risk factors, this approach
could enable public health officials to identify
potential problems earlier and conduct prelim-
inary evaluations of nonetiologic situations
that may be of concern to the public. In so
doing, the officials would be able to respond
to inquiries in a more thorough, consistent,
scientific, and timely manner. This is in con-
trast to the current situation with disease clus-
ters, already noted, where most potentially
hazardous problems are investigated only after
local residents, physicians, or others have
brought them to the attention of health offi-
cials, often through political pressure or media
publicity. A proactive identification system
could also enable more timely interventions
where warranted, ranging from education to
increased screening to environmental cleanup,
and more rapid assessment and possible reso-
lution of community concerns when there is a
valid, alternative explanation to the perception
of a disease excess. 

Proactive surveillance systems have been
effective for disease prevention and control
when applied to infectious disease outbreaks,
occupational exposures and disease (Dubrow
and Wegman 1983; Whorton et al. 1983;
Williams et al. 1977), and adverse reactions to
pharmaceuticals (Strom 2000) (often termed
postmarket drug surveillance). Similar systems
for the assessment of acute outbreaks have
been developed and implemented in response
to concerns about outbreaks from biological,
chemical, or radiologic terrorism in which
rapid, scientific assessment is essential for pro-
tecting the public health (Das et al. 2003;
Gesteland et al. 2003; Platt et al. 2003). 

Data quality issues are again important, as
detecting apparent local clusters of disease
may merely indicate areas with higher-quality
data registration or perhaps areas of poor data

quality where there are many duplicate regis-
trations. Specificity is also a major issue, as,
given the size of the database, the range of
diseases, different age and sex strata, myriad
definitions of areas of various sizes and config-
uration, and so forth, many false-positive clus-
ters are bound to occur. For a surveillance
program to be efficient and effective,
researchers must provide methods for discrim-
ination of true alarms, false alarms (false posi-
tives), and those situations that are less clear or
equivocal, so that health department officials
would not be obliged to follow up all apparent
aberrations. One possible approach is to sur-
vey potential local sources of risk for the spe-
cific disease in question as is done currently for
many cluster reports and respond only if there
is an independent source of confirmatory or
consistent environmental evidence. For those
disease excesses for which there is a plausible,
nonenvironmental explanation, clear and
thoughtful communication to concerned com-
munities based on solid scientific evidence
could help dispel their urgent concerns. 

For these reasons, in common with most
public health departments, we do not currently
advocate carrying out surveillance for chronic
disease excesses as a matter of public health
practice. We believe that this type of surveil-
lance should not be put into practice until such
time as the underlying data and methodologies
provide a robust framework to support this
activity, as would be the requirement for
screening for other public health concerns.
Nonetheless, we believe that development and
evaluation of surveillance approaches is an
important and priority area for future research
on disease clusters. 

Challenges

Data Availability and Quality

To carry out small-area studies using routine
data sources, the basic data need to be made
available, with high quality, and the inclusion
of a geographically referenced code, such as
the postcode in the United Kingdom or the
census block or block group in the United
States. Data should include (at the least) can-
cer registration as well as mortality, natality,
and population data. Although natality and
mortality data are a statutory requirement
in developed countries, not all countries
(including the United States) have a national
cancer registry, reducing the ability to carry
out studies of environmental health prob-
lems. In the United States, the Centers for
Disease Control and Prevention (CDC) has
established a program in environmental pub-
lic health tracking, one component of which
funds states to develop additional registries of
health outcomes, such as asthma, for assess-
ment of possible environmental etiologies
(http://www.cdc.gov/nceh/tracking). 

In purpose-designed case–control studies,
detailed evaluation of the health data and
assessment of the quality of the diagnostic
information (for example, case note and his-
tology review) are likely. In contrast, for spa-
tial epidemiologic studies that rely on routine
data sources, it is usually not possible to carry
out detailed validation studies of the data-
base. However, some assessment of the basic
quality of the routine data is essential to
inform their use in spatial analyses, and some
limited validation of the cases might be
undertaken (Elliott et al. 2000a). As already
noted, the denominator data may contain
substantial errors, particularly in the inter-
censual years at small-area scale, and for the
health event data there is always the potential
for diagnostic error or misclassification, espe-
cially at older ages where diagnostic tests and
postmortem examinations are carried out less
frequently than at younger ages. Some events
may be captured poorly, if at all, in routine
registers (e.g., early abortions). For others,
such as cancers, case registers may be subject
to double counting and underregistration as
well as diagnostic inaccuracies (Best and
Wakefield 1999). 

One type of relevant data not readily avail-
able in the United States or the United
Kingdom is the history of residential locations.
For longer-latency health outcomes, such as
cancer incidence and many types of mortality,
knowing the residential history of an individual
would be far more useful for reconstructing
exposure histories than his/her location/resi-
dence at time of diagnosis or death. Even for
natality data, it has been shown in small studies
in both the United States and the United
Kingdom that between 20 and 25% of women
change residences between date of conception
and delivery (Khoury et al. 1988; Nelson
2003; Shaw and Malcoe 1991). However, as
many move to nearby addresses (Nelson
2003), residential exposures may not change
too much. 

In contrast, the Scandinavian countries
maintain historical registries of residences, and
these have proved invaluable, as in the exam-
ple already noted of constructing exposure his-
tories to low-frequency electromagnetic fields
from overhead power lines (Feychting and
Ahlbom 1993; Olsen et al. 1993; Verkasalo
et al. 1993). In the future, these types of data
might become available in the United
Kingdom through linkage to the National
Health Service (NHS) number, although there
are confidentiality issues concerning use of
these data. In the United States, census data
provide limited migration data to and from
areal units, but typically data are not available
for individuals. Although knowing when and
where disease occurred is useful, knowing
when and where prior exposures occurred is
crucial for investigating etiology.
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In the future, the increasing use and
availability of computerization in medical care
means that large new databases of morbidity,
linked to individuals, may become available.
Examples include general practitioner consulta-
tions in the United Kingdom, whereas in the
United States there is particular interest in syn-
dromic surveillance (e.g., Hartman et al. 2004).
The quality of such data will need careful evalu-
ation and no doubt will vary across specialties
and medical practice and over time and space.
Nonetheless, they promise exciting new oppor-
tunities for carrying out spatial epidemiologic
inquiries using softer end points than those cur-
rently available, and hence potentially increas-
ing the sensitivity of the methods to detect
environmental health problems. 

Data Protection and Confidentiality
The current climate of legislation in the
United States and the European Union is pro-
viding greater recognition of the rights of indi-
viduals to confidentiality of personal data,
including health data, and the need for consent
for medical investigations. In 2003, the United
States brought into force the Privacy Rule
(Department of Health and Human Services
2002) arising from the Health Insurance
Portability and Accountability Act of 1996
(1996) that further complicates this issue. This
potentially impinges on the secondary use of
routine data for epidemiology (including spa-
tial epidemiologic studies) where the data were
originally collected for other purposes (e.g.,
health care management or delivery), but con-
sent for their use for medical research is
impracticable. In the United Kingdom, recent
legislation has made it possible to use such rou-
tinely collected data without consent if certain
conditions and safeguards are met. It is impera-
tive for the future of epidemiologic research
that such uses of the data are allowed to con-
tinue, provided that appropriate safeguards are
in place. 

In addition, with the recent increase in
availability of fine-scaled, geocoded data, there
is a new concern about the confidentiality of
blocks, neighborhoods, and communities. The
ability to acquire data and map high rates of
adverse outcomes, clusters, or areas with high
levels of pollutants can cause concern and out-
rage and possibly influence property values. Yet,
rules and principles of good practices for ana-
lysts and others are still in the formative stages.
Providing researchers access to these data is nec-
essary for this field of research to progress, but
implementing appropriate controls for confi-
dentiality and protection of data is essential to
maintain the trust and support of the public.

Exposure Assessment, Exposure
Mapping, and Study Design Issues
The quality of the exposure data has been
regarded as the Achilles heel of environmental

epidemiology. This holds true for spatial epi-
demiology, where distance is often used as a
proxy for exposure to environmental pollu-
tants, or some other geographic measure is
used, for example, plume modeling (Nyberg
et al. 2000). Although the availability of GIS
has greatly enhanced the capability for spatial
interpolation of exposure data (Briggs and
Elliott 1995), the quality of the mapping
depends on the accuracy and representativeness
of the available input data, as well as the inher-
ent validity of the interpolation method used. 

Such approaches may provide valid
first-order approximations to group or popula-
tion exposure but may not capture individual
exposure well nor allow for individual varia-
tions in absorption and susceptibility. Poorly
measured exposure data can produce differen-
tial errors leading to systematic bias or result in
random errors or imprecision, which (unless
corrected) typically lead to bias toward no
effect (Bernardinelli et al. 1997). More gener-
ally, such geographic methods of exposure
assessment make a number of key assumptions
that may limit their applicability in given situa-
tions (Elliott and Wakefield 1999). These
include the following: 
• equating environmental exposure (i.e.,

external to the individual) with biologic
(internal) dose

• equating current exposure with past exposure
• equating modeled estimates of exposure

(including distance-based measures) with
true exposure

• equating exposure at a point (e.g., place of
residence) with total personal exposure, that
is, exposure integrated over the course of
daily activities as the individual moves
through the exposure field

• equating group exposure and group
exposure–disease relationships with indi-
vidual exposure and relationships at the
individual level, that is, ecologic fallacy
(Piantadosi et al. 1988).

An important issue in geographic analyses
is the extent that the population of the areal
unit is homogenous, both with respect to the
environmental exposure under investigation
and potential confounders. Within-unit vari-
ability in these factors could lead to bias in risk
estimates (Elliott and Wakefield 2000).
Recently, interest has focused on semiecologic
designs that combine data on the general pop-
ulation with individual-level survey data
(Plummer and Clayton 1996). For example,
the INTERSALT study, a cross-sectional study
of over 10,000 people in 32 countries, assessed
both individual and group effects. There was a
positive cross-population association between
average rise in blood pressure with age and
average levels of salt intake (measured by uri-
nary sodium excretion) across 52 population
samples in 32 countries at the group level,
reflecting broad-scale population differences,

and a positive relationship between urinary
sodium excretion and blood pressure at the
individual level (Elliott et al. 1996b). In a mor-
tality study of cohorts of individuals from six
U.S. cities, a positive association of mortality
with measures of particulate matter pollution
was found across those cities, adjusting for
averaged site (city) effects derived from smok-
ing, socioeconomic factors, and other potential
confounding data measured at individual level
(Dockery et al. 1993). 

In the future, developments in exposure
biomarkers (Hulka et al. 1990) and molecular
epidemiology should lead to improved expo-
sure assessment methods with increased speci-
ficity and accuracy. Although it will not be
feasible to apply these methods to large num-
bers of people, collection of such data on small
subsamples of the population will aid in vali-
dation of the exposure model and provide
information on within-area variability in the
exposure data and potentially on confounders.
This may reduce bias and provide improved
risk estimates, and hence strengthen any causal
inferences (Guthrie and Sheppard 2001). 

One of the opportunities presented by
GIS technology is the adaptation of tradi-
tional study designs to the spatial context. For
example, one of the most vexing problems for
epidemiologists occurs when both the disease
and environmental exposure under investiga-
tion are rare. Both the case–control and the
cohort approach are likely to be costly and/or
difficult because of issues of representativeness
and sample size. As an alternative, hybrid
designs have been used: the nested case–con-
trol (Paddle 1981) or the case–cohort study
(Kupper et al. 1975), or more complex
approaches such as two-stage sampling with
oversampling of both exposed and diseased
individuals (Rothman and Greenland 1998).
This, too, can be cumbersome and costly. 

GIS technology may offer a more efficient
and cost-effective solution, at least for expo-
sures that can be readily characterized geo-
graphically (Wartenberg 1994). With this
approach, a nested case–control or case–cohort
study can be conducted within a large-scale
population-based cohort by specifying a geo-
graphic subset of the cohort with high relative
exposure, on average, for direct study. For
example, epidemiologic studies of the possible
association between exposure to magnetic
fields and the incidence of childhood leukemia
have been limited by the low prevalence of
high exposures because the higher exposures
are relatively rare and widely dispersed: less
than 10% of children with exposures above
even twice the average background, less than
3% above three times, and less than 1% above
four times the average background exposures
(Ahlbom et al. 2000; Greenland et al. 2000;
Zaffanella 1993). Case–control studies have
consequently ended up with few children with
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high exposures and no obvious high-exposure
cohort. The resulting small quantitative differ-
ence between exposed and unexposed individ-
uals in these studies has limited their sensitivity
and ability to yield a consistent and conclusive
result (Wartenberg 2001). 

In a demonstration project, a cohort of
children with a far higher likelihood of being
exposed to high levels of magnetic fields was
identified using a geographically defined popu-
lation living within 0.5 miles of a high-voltage
electric power transmission line (Wartenberg
et al. 1993, 1997). Because of the relatively low
population density in the entire study region
(New York State), results were of limited sensi-
tivity, though modification and improvements
to this design approach look promising.

Conclusions

Advances in GIS and statistical methodology
together with the availability of high-resolu-
tion, geographically referenced health databases
present unprecedented new opportunities to
investigate the environmental, social, and
behavioral factors underlying geographic varia-
tions in disease rates at small-area scale. Such
studies must be guided by good questions,
excellent statistical methodology, and sound
epidemiologic principles, including taking
proper account of problems of data quality and
the potential for bias and confounding. Spatial
epidemiologic studies will become increasingly
common in the future, both because of the
instant visual appeal and wide availability of
the new geographic techniques, and the desire
for cleaner and healthier environments. With
ongoing improvements in the data and
methodologies, these studies will play an
increasingly important role in our understand-
ing of the complex relationships between envi-
ronment and health. 
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