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We investigated estrogen-like properties of five perfluorinated compounds using a combination of
three in vitro assays. By means of an E-screen assay, we detected the proliferation-promoting capac-
ity of the fluorotelomer alcohols 1H,1H,2H,2H-perfluorooctan-1-ol (6:2 FTOH) and
1H,1H,2H,2H-perfluoro-decan-1-ol (8:2 FTOH). The more widely environmentally distributed
compounds perfluoro-1-octane sulfonate, perfluorooctanoic acid, and perfluorononanoic acid did
not seem to possess this hormone-dependent proliferation capacity. We investigated cell cycle
dynamics using flow cytometric analyses of the DNA content of the nuclei of MCF-7 breast cancer
cells. Exposure to both fluorotelomer alcohols stimulated resting MCF-7 cells to reenter the synthesis
phase (S-phase) of the cell cycle. After only 24 hr of treatment, we observed significant increases in
the percentage of cells in the S-phase. In order to further investigate the resemblance of the newly
detected xenoestrogens to the reference compound 17B-estradiol (E;), gene expression of a number
of estrogen-responsive genes was analyzed by real-time polymerase chain reaction. With E,, as well
as 4-nonylphenol and the fluorotelomer alcohols, we observed up-regulation of trefoil factor 1, prog-
esterone receptor, and PDZKI and down-regulation of ERBB2 gene expression. We observed small
but relevant up-regulation of the estrogen receptor as a consequence of exposures to 6:2 FTOH or
8:2 FTOH. The latter finding suggests an alternative mode of action of the fluorotelomer alcohols
compared with that of E,. This study clearly underlines the need for future 7 vivo testing for specific
endocrine-related end points. Key words: cell cycle, E-screen, fluorotelomer alcohols, real-time PCR,
xenoestrogen. Environ Health Perspect 114:100-105 (2006). doi:10.1289/ehp.8149 available via

http://dx.doi.org/ [Online 1 September 2005]

Opver past decades, a whole range of fluori-
nated chemicals have been synthesized and
used as wetting agents, lubricants, corrosion
inhibitors, insecticides, cosmetics, fire retar-
dants, paper coatings, and surfactants (Renner
2001, 2003). The high stability of the carbon—
fluorine bond and the inert characteristics of
most of these compounds are regarded as
attractive properties during the manufacture of
plastics, electronics, textiles, or construction
materials. For a long time, these fluorinated
chemicals were considered metabolically inert
and nontoxic (Sargent and Seffl 1970).
However, environmental monitoring has
shown that degradation to persistent mole-
cules does happen on a large scale, as deduced
from the worldwide distribution of com-
pounds such as perfluorooctane sulfonate
(PFOS), perfluorooctanoic acid (PFOA),
perfluorohexanesulfonate, and perfluoro-
octanesulfonamide (Dimitrov et al. 2004;
Dinglasan et al. 2004; Giesy et al. 2001; Hoff
et al. 2003a, 2003b; Martin et al. 2004).
Martin et al. (2004), for instance, describe
fluorotelomer alcohols as potential sources of
perfluorinated acids in regions as remote as the
Arctic. Although the fluorotelomer alcohols are
known as volatile chemicals that are capable of
long-range atmospheric transport, biologic
transformation seems to be the major degrada-
tion pathway causing deposition of mentioned
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perfluorinated acids. In addition, during past
years many of the perfluorinated compounds
have been found to possess undesirable toxic
characteristics. As reviewed by Lau et al.
(2004), perfluoroalkyl acids and their deriva-
tives can cause developmental toxicity.
Exposures of rats to PFOA may cause signifi-
cant lags of weight gain of the offspring and a
statistically significant increase in mortality in
both male and female pups. PFOS exposure
may provoke weight loss, hepatotoxicity, and
reduction of serum cholesterol and thyroid
hormones. PFOS apparently is also able to
affect the neuroendocrine system (Austin et al.
2003). Female rats injected with PFOS have a
disturbed estrous cyclicity and increased serum
corticosterone levels with decreasing serum
leptin levels. Increased norepinephrine concen-
trations were found in the paraventricular
nucleus of the hypothalamus. The fact that
perfluorinated chemicals may disturb the
endocrine system is worrying and deserves fur-
ther investigation. It is generally known that a
well-functioning endocrine system depends on
a delicate balance of hormones and hormone
receptors that interact to provoke complex cel-
lular signaling. Different environmental pollu-
tants act as hormone mimics, binding to
specific hormone receptors or indirectly inter-
fering with hormone signaling. The conse-
quence may be irreversible damage to the

reproductive system, especially when living
organisms are exposed during the embryonic
stages of life (Degen and Bolt 2000; Rosselli
et al. 2000). Behavioral changes are another
well-known adverse effect of disturbance
caused by endocrine-disruptive chemicals
(Schantz and Widholm 2001). Although dis-
turbance of the thyroid system seems to be
provoked by specific perfluorinated chemicals
such as PFOS, their potential for estrogen-like
properties has not been reported until now. In
the present study, we evaluated the capacity of
perfluorinated compounds to reinduce cell
proliferation of growth-arrested MCEF-7 breast
cancer cells. Using a combination of the
E-screen assay, cell cycle analysis, and gene
expression analysis of estrogen-responsive bio-
marker genes, we demonstrate the estrogen-
like properties of the fluorotelomer alcohols
1H,1H,2H,2H-perfluorooctan-1-ol (6:2
FTOH) and 1H,1H,2H,2H-perfluorodecan-
1-ol (8:2 FTOH) in vitro.

Materials and Methods

Chemicals. PFOS (perfluoro-1-octane sul-
fonate, tetramethylammonium salt; 98%),
17B-estradiol (E,), 4-nonylphenol (4-NP),
and PFOA (pentadecafluorooctanoic acid;
96%) were purchased from Sigma-Aldrich
(Steinheim, Germany), and perfluorononanoic
acid (PFNA; 97%) was provided by Avocado
Research Chemicals (Lancashire, UK). We
purchased 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) from LGC Promochem (Middlesex,
UK) and Dulbecco’s minimal essential
medium (DMEM) and fetal bovine serum
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(FBS) from Gibco BRL Life Technologies
(Paisley, Scotland). 1H,1H,2H,2H-Perfluoro-
octan-1-ol (6:2 FTOH) and 1H,1H,2H,2H-
perfluorodecan-1-ol (8:2 FTOH) were
purchased from Interchim (Montlucon,
France). We assessed the purity of the fluo-
rotelomer alcohol standards by gas chromatog-
raphy coupled to full-scan mass spectrometry
in the electron impact (EI), negative chemical
ionization (NCI), and positive chemical ioniza-
tion (PCI) modes. No impurities could be
detected in either EI or PCI mode. In NCI
mode, several signals were observed. Retention
times and full-scan mass spectra of these signals
revealed that they were very closely related to
the main signal. They were tentatively eluci-
dated as branched isomers of the FTOHs.

Cell culture. MCF-7 human Caucasian
breast adenocarcinoma cells (no. 86012803;
European Collection of Cell Cultures,
Salisbury, UK) were cultured in 25-cm? Nunc
cell culture flasks (Nunc, Roskilde, Denmark)
in standard growth medium (DMEM; Gibco
BRL; supplemented with 2 mM glutamine, 1%
nonessential amino acids, 5% heat-inactivated
FBS, and phenol red as an indicator of pH).
Cells were maintained in a 37°C incubator
under a 5% CO, atmosphere over a maxi-
mum of 30 passages. Cells were grown to
80-90% confluency before splitting them into
one-fifths.

E-screen assay. We tested the proliferation-
inducing capacity of chemicals using the
E-screen assay according to Payne et al. (2000),
with minor modifications to the protocol. In
short, cells were seeded in black 96-well
microtiter plates with clear, flat bottoms
(Nunc) at a density of 2,000 cells/well. Cells
attached overnight, after which standard
growth medium was replaced with phenol red—
free medium containing 5% charcoal/dextran-
stripped FBS (CSEBS). A previous wash step
with phosphate-buffered saline (PBS) assured
removal of all estrogenic compounds. Cells
were then incubated for 72 hr to make them
estrogen responsive. Exposures to estrogenic
compounds or xenoestrogens were started by
adding chemicals to the cells from so-called
chemical plates. In the latter plates, 2-fold dilu-
tion series of the chemicals were prepared, fol-
lowed by transferring 20-180 pL in the wells
of the cell plates. To guarantee minimal inter-
ference with cell physiologic responses, the
concentration of the solvent (DMSQO) did not
exceed 0.1%. Plates were covered with gas-per-
meable sealing tape and incubated at 37°C for
6 days. Proliferation of cells was assessed using
the CyQuant assay (Molecular Probes,
Invitrogen, Merelbeke, Belgium) (Jones et al.
2001).

Cell cycle analysis. We seeded MCE-7 cells
in 25-cm? Nunc cell culture flasks in standard
growth medium at a density of 300,000
cells/flask. Cells attached overnight, after which
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the growth medium was replaced by phenol
red—free DMEM containing CSFBS. After
incubation in estrogen-free medium for 72 hr,
cells were exposed to E; or test compounds at
concentrations corresponding to the highest
observed effect during the E-screen assay. After
24 hr, cells were harvested by trypsinization
and washed twice in PBS. Next, cell nuclei
were isolated and stained with propidium
iodide (PI) for 1 hr as described by Vindelov
et al. (1983). We performed flow cytometric
analysis of cell cycle distribution and apoptosis
with an LSRII flow cytometer with a 488-nm
argon-ion laser (Becton Dickinson, San Jose,
CA, USA). PI fluorescence was collected at
bandpass 575/26 nm(FL2, red fluorescence
channel) in the linear mode. For each measure-
ment, data from 10,000 single cell events were
collected, whereas cell aggregates and doublets
were gated out in the two-parameter histo-
grams of pulse height to pulse width of PI fluo-
rescence. We analyzed cell cycle histograms
using ModFit LT 3.0 software (Variety
Software House, Topsham, ME, USA).

Gene expression analysis by reverse-tran-
scription polymerase chain reaction (PCR).
MCEF-7 cells were seeded and grown in estro-
gen-free medium in a manner analogous to
that described above for flow cytometric
analyses. After 48 hr exposure to E, or test
compounds, total RNA was extracted from the
cell using the RNeasy kit (Qiagen GmbH,
Hilden, Germany) according to manufacturer’s
instructions. RNA quantity and quality were
evaluated using a NanoDrop spectrophotome-
ter (Nanodrop Technologies, Wilmington,
DE, USA). First-strand cDNA was synthesized
using the Fermentas first-strand cDNA synthe-
sis kit (MBI Fermentas Life Sciences, St. Leon-
Rot, Germany). In brief, 1 pg total RNA was
incubated with 0.5 pg oligo(dT),g primer and
incubated at 70°C for 5 min to denature
RNA. Next, 20 U recombinant ribonuclease
inhibitor and 1 mM dNTP mix were added to
the RNA in the following reaction buffer:
50 mM Tris-HCI, pH 8.3; 50 mM KCI;
4 mM MgCly; and 10 mM dichiothreitol.
cDNA synthesis was started by adding 40 U
M-MuLV (Moloney murine leukemia virus)
reverse transcriptase at 37°C for 1 hr. Reaction
was stopped by inactivation of the reverse tran-
scriptase at 70°C for 10 min. The final volume
(20 pL) was adjusted to 100 pL.

We designed highly purified salt-free
OliGold primers (Eurogentec, Seraing,
Belgium) for the internal control gene hypo-
xanthine phosphoribosyltransferase 1 (HPRT1)
and for target genes estrogen receptor-o.
(ESRI), progesterone receptor (PGR), PDZ
domain containing 1 (PDZK1), and erb-b2
erythroblastic leukemia viral oncogene
homolog 2 (ERBB2) using Roche Lightcycler
software (Roche Diagnostics Belgium,
Vilvoorde, Belgium). The sequences of the
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primers were as follows: for HPRT'1 (GenBank
accession no. NM-000194; GenBank 2005),
5’-TGACACTGGCAAAACAATGCA-3" and
5-GGTCCTTTTCACCAGCAAGCT-3";
for ESRI (GenBank accession no. NM-
000125), 5’-CCATGGAATAGCTAGT-3’
and 5'-CAGTGGCCTAAATCAA-3’; for
PGR (GenBank accession no. NM-000926).
5'-TGGTCCTTGGAGGTCG-3" and
5'-GCCTCTCGCCTAGTTG-3"; for
PDZKI (GenBank accession no. AF012281),
5'-AACCATGACTCGCACA-3" and
5’-AGCCGTCTGCAATAGC-3"; for ERBB2
(nuclear receptor ERBB2; GenBank accession
no. AF094517), 5’-GACACCTACGGCA-
GAG-3" and 5'-GTGGCATCCACTG-
GAC-3". The sequences of the primers for
trefoil factor 1 (7FFI; pS2; GenBank accession
no. X00474) as derived from Bieche et al.
(2001) were 5-CATCGACGTCCCTCCA-
GAAGAG-3" and 5'-CTCTGGGACTA-
ATCACCGTGCTG-3".

For the Lightcycler reaction, we prepared a
master mix of the following components to the
indicated end concentration: 9 pL water, 1 pL
forward primer (0.5 pM), 1 pL reverse primer
(0.5 pM), and 4 pL Lightcycler Fast Start
DNA Master SYBR Green I reagent mixture
(Roche). The Lightcycler glass capillaries were
filled with 15 pL master mix, and 5 pL cDNA
(50 ng reverse-transcribed total RNA) was
added as the PCR template. We used the fol-
lowing experimental protocol: denaturation
program (95°C for 5 min), amplification pro-
gram (95°C for 5 sec, 58°C for 5 sec, 72°C for
13 sec, with a single fluorescence measurement
at the end of DNA synthesis), melting curve
program (55-95°C with a heating rate of
0.1°C/sec and a continuous fluorescence mea-
surement), and finally a cooling step to 40°C.
Expression changes of specific target genes
were deduced from shifts of the crossing points
for the target genes in exposed versus non-
exposed cells and normalized by comparison
with the internal control gene HPRT1. The
“crossing point” is the point at which the fluo-
rescence rises appreciably above the back-
ground fluorescence. The relative expression
ratio of the gene under study normalized by
the internal control HPRTI gene was calcu-
lated using REST software (version 2; Pfaffl
et al. 2002). We used the pairwise fixed reallo-
cation randomization test included in the
REST software to test the significance of the
derived results. Each chemical treatment was
performed in triplicate, which provided three
replicate samples for the reverse-transcriptase
(RT)-PCR analyses. To check amplification of
the correct PCR products, we performed
analysis by 1.5% agarose gel electrophoresis.

Results

Stimulation of MCF-7 cell proliferation. For
this study, we adapted the E-screen assay to
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96-well microtiter plate format in order to
test broad concentration ranges of com-
pounds for their proliferation-inducing capac-
ity in growth-arrested breast cancer cells. In
accordance with Payne et al. (2000), we incu-
bated the MCEF-7 cells for 72 hr in estrogen-
free growth medium to induce the estrogen
responsive.

Figure 1 shows the proliferative effect (PE)
as a result of exposure to a concentration range
of the test compounds. PE (expressed as
fold/control) is calculated as the ratio between
the cell yield obtained with the test chemical
and that with the hormone-free control.
Table 1 presents the relative proliferative effect
(RPE), which corresponds to the ratio of the
maximal cell yield achieved by the minimum
dose of xenobiotic relative to the reference
compound (1 nM E,) and multiplied by 100.
Table 1 also shows the relative proliferative
potency (RPP), which corresponds to the ratio
of the dose of E, and that of xenobiotic needed
to achieve a maximal PE. As demonstrated in
Figure 1 and in Table 1, 6:2 FTOH and 8:2
FTOH behave like xenoestrogens in vitro.
These compounds clearly induce cell prolifera-
tion at 10 pM, the concentration at which
many other xenoestrogens are also active (Soto
et al. 1995). Neither exposures to PFOS or
PFOA within the concentration ranges applied
nor the negative control TCDD led to
increased cell proliferation.

Effects of perfluorinated compounds on cell
cycle distribution. We performed further evalua-
tion of the fluorinated compounds by flow cyto-
metric analyses of the cell cycle. Although
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growth-arrested MCE-7 cells are predominantly
in the GO/G1-phase of the cell cycle, addition of
(xeno-)estrogens makes cells proliferate again,
shown by the marked increase in the percentage
of cells in the S-phase after 24 hr of exposure.

In Figure 2, the histograms of DNA con-
tent show increases in S-phase as the result of
exposures to the fluorotelomer alcohols and
4-NP. In Table 2, results are expressed as per-
centages of cells in the different phases of the
cell cycle. The increases of cell numbers in the
S-phase range from 6% (solvent control) to
almost 35% (1 nM E, and 4-NP), approxi-
mately 31% (30 pM, 6:2 FTOH), and
approximately 29% (10 pM, 8:2 FTOH).
PFOS, PFOA, or PFNA, at concentrations
<50 pM, did not affect proliferation. As
shown in Table 3, fluorotelomer alcohols
stimulate MCF-7 cells at concentrations rang-
ing between 10% and 107 M. At 107 M, the
stimulatory effect is lost. These results corrob-
orate the findings from the E-screen assay and
demonstrate the reinduction of cell prolifera-
tion of growth-arrested MCF-7 cells within a
much shorter exposure period.

Expression alterations of estrogen-respon-
sive genes. Reverse-transcription PCR was
performed to analyze the expression of spe-
cific estrogen-responsive biomarker genes
after 48 hr of exposure. As presented in
Figure 3, significantly high up-regulation of
TFFI mRNA was observed with E, (7x),
4-NP (3.8%), 6:2 FTOH (6.2%), and 8:2
FTOH (2.4%). A small up-regulation was also
observed with PFOA (1.4%), and a small but
significant down-regulation was observed

upon exposure to PFOS (1.7x). Exposure to
E, induced very high PGR mRNA levels
(30x), whereas significant up-regulations were
seen with 4-NP (4.5%), 6:2 FTOH (10.4x),
and 8:2 FTOH (2.4%x). ESRI was down-
regulated upon exposures to E, (1.33x) or
4-NP (2.1x). With 6:2 FTOH and 8:2
FTOH, however, small but significant up-
regulations of ESRI were observed (2.2X up
with both compounds). PFOS exposure
resulted in a significant small down-regulation
(3.8%). We studied the expression levels of
two additional estrogen-responsive genes in
order to further reveal the similarity of the
telomeric alcohols to E,. An up-regulation of
PDZK]I expression was observed with E,
(41x), with 4-NP (13.2xX) as well as with both
perfluorinated telomeric alcohols (5.4x with
6:2 FTOH and 2.4x with 8:2 FTOH).
Significant down-regulation of ERBB2 was
observed with E, (4.5%) and 4-NP (4.4x),
whereas less pronounced but nonetheless sig-
nificant down-regulations were also observed
with 6:2 (2.4x) FTOH and 8:2 FTOH
(2.4x). A small down-regulation of ERBB2
was observed with PFOA (1.5%).

Discussion

A range of fluorinated chemicals synthesized
during the past few years are promising for var-
ious industrial applications (Lehmler 2005).
However, because of the persistent nature of
these chemicals, monitoring their environmen-
tal fate and their ecotoxicologic characteristics
is especially warranted (Van de Vijver et al.
2003, 2004). Chemicals that are difficult to
degrade biologically may bioaccumulate and
may affect the health of humans and biota.
Disturbance of the endocrine system is one
example of the toxic effects that need careful
follow-up. Endocrine disruptors may mimic
hormones or interfere indirectly with hor-
monal pathways. Damage caused by these
compounds may, in the long term, lead to
drastic effects such as decreased reproduction,
or perhaps more subtle effects, such as a distur-
bance to the developmental system resulting in
behavioral effects (e.g., learning disorders).
Until now, studies that investigated endocrine-
disrupting capacities of fluorinated compounds
have been difficult to find. In a review describ-
ing developmental toxicity of perfluoroalkyl
acids, Lau et al. (2004) highlighted the distur-
bances of the thyroid gland caused by such
compounds (e.g., PFOS causing hypothyroxi-
nemia). Because thyroid hormones are known

Table 1. Estrogenic effect of perfluorinated com-
pounds according to the E-screen assay.
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Figure 1. Analysis of estrogenicity of E, (A), 4-NP (B), 6:2 FTOH (C), 8:2 FTOH (D), PFQS (E), and PFOA (F) by the
E-screen assay in MCF-7 cells. 0.1% DMSO was the solvent control. Results are expressed as mean + SD of

three replicates for each data point.
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Compound Concentration RPE RPP
E, 1nM 100 1

4-NP 10 UM 100 10
6:2 FTOH 10 M 50 107
8:2 FTOH 10 uM 46 107
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to regulate brain development, these findings
merit further research.

During the present study, the estrogen-like
capacities of the fluorinated compounds
6:2 FTOH, 8:2 FTOH, PFOS, PFOA, and
PFNA were studied 77 vitro. We used a combi-
nation of three different in vitro assays to
demonstrate these findings. First, we used the
E-screen assay, a commonly used high-
throughput test to detect estrogen-like com-
pounds in environmental samples. Using this
assay, we found that 6:2 FTOH and
8:2 FTOH behave like xenoestrogens in vitro.
These compounds clearly induce cell prolifera-
tion at 10 pM, the concentration at which
many other xenoestrogens are also active (Soto
et al. 1995). To complement and corroborate
our E-screen results, we studied cell cycle
dynamics using flow cytometry. Cells in estro-
gen-free growth medium do not enter the
S-phase easily (Villalobos et al. 1995).
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Although > 80% of the MCF-7 cells were in
growth arrest (GO/G1-phase of the cell cycle),
the addition of xenoestrogens stimulated cells
to synthesize new DNA in preparation of cell
division, as revealed by the significant increase
of the number of cells in the S-phase of the cell
cycle. These increases were clearly observable
after 24 hr exposure to the telomeric alcohols.
Upon comparison of the E-screen assay with
flow cytometric analyses, we found similar
effective concentrations of E,, 4-NP, and the
fluorotelomer alcohols. However, the estrogen-
like compounds only induced 2- to 3-fold
increases of cell numbers during the E-screen
assay, whereas during flow cytometric analyses,
we observed up to 5-fold increases of cells in
S-phase. Because the exposure periods of
E-screen (6 days) and flow cytometric analyses
(24 hr) are very different, we also studied cell
cycle dynamics after longer exposure periods.
After 48 hr, we observed a significant drop of
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the percentage of cells in S-phase (results not
shown). Apparently, cells that are boosted to
reenter the cell cycle by a 24-hr xenoestrogen
exposure rapidly return to a more modest pro-
liferation rate after 48 hr. One possible expla-
nation is based on the fact that MCF-7 cells
express the estrogen receptor as well as the
progesterone receptor. Cross-talk exists
between nuclear receptors. For instance, prog-
esterone receptor A may act as a repressor of
transcriptional activities of different other
members of the nuclear receptor family,
among them the estrogen receptor (Kraus et al.
1995, 1997). A variation in parameters, such as
the ratio of progesterone receptor A to proges-
terone receptor B, may be the consequence of
exposures to (xeno-)estrogens, and apparently
this altered ratio may dramatically affect estro-
gen receptor signaling activities. Another
important issue to investigate further is the fact
that nuclear receptor levels differ in different
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Figure 2. Histograms of DNA content showing the effects of perfluorinated compounds on cell cycle distribution. (4) 0.1% DMSO (solvent control). Cells were cultured
in DMEM plus 5% CSFBS for 72 hr before exposing them to estrogenic compounds (B, 1 nM Ey; C, 10 uM 4-NP; D, 30 uM 6:2 FTOH; and £, 10 pM 8:2 FTOH) and non-
estrogenic perfluorinated compounds (£, 50 pM PFQS; G, 50 uM PFNA) for 24 hr. 4-NP (C) was the positive control, and 10 nM TCDD (H) was the negative control.
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breast cancer cell lines and even within differ-
ent clones of a cell line, which may explain
why xenoestrogens provoke different cell pro-
liferation responses with different MCF-7 cell
lines (Coser et al. 2003; Villalobos et al. 1995).

In order to unravel the mode of action of
estrogens and xenoestrogens, gene expression
analysis of selected estrogen-responsive genes
was performed (Frasor et al. 2003; Inoue et al.
2002). The expression changes of a small num-
ber of estradiol-responsive genes such as 7FFI,
PGR, ESRI, PDZK1, and ERBB2 were studied
using reverse-transcription PCR. 7FFI is gen-
erally accepted as one of the most reliable
estrogen-responsive biomarker genes for i vitro
MCEF-7 breast cancer cells (Jorgensen et al.

2000; Olsen et al. 2003; Wang and Lou 2004).
This factor, also known as pS2, belongs to a
family of “trefoil peptides” probably involved in
the regulation of cell proliferation. PDZKI is
another frequently reported estrogen-responsive
gene (Ghosh et al. 2000; Yoshida et al. 2004).
Proteins containing the PDZ domain are
involved in organizing cell membrane proteins
and are also involved in linking transmembrane
proteins to the actin cytoskeleton (Yang et al.
1998). The induction of PDZKI by E, is sug-
gested to play a crucial role in membrane altera-
tions that happen upon estrogen treatment
such as formation of microvilli. ERBB2 is a
transmembrane tyrosine kinase receptor play-
ing a role in mammary oncogenesis. This

Table 2. Results of cell cycle analyses of MCF-7 cells exposed to different perfluorinated compounds given

as the percentage of cells by phase.

Treatment (1/G0-phase S-phase (G2/M-phase
0.1% DMSO 90.43+1.01 6.00+1.00 357+1.64
E, (1 nM) 63.14+ 1.6 34.84+2.48 2.03+0.88
4-NP (10 pM) 63.71+1.86 34.64 +0.47 164+1.41
6:2 FTOH (30 pM) 66.98 + 4.09 30.83+3.23 2.19+0.87
8:2 FTOH (10 pM) 68.53 +1.48 29.36+1.78 2.11+049
PFOS (50 pM) 85.63+0.94 10.49 +0.71 3.87+0.73
PFNA (50 pM) 85.53 + 1.64 9.89+1.53 457 +0.42
PFOA (50 pM) 83.57+1.04 9.17 £0.57 6.83+0.59
TCDD (10 nM) 87.46 £ 0.30 7.96 £0.37 458 +£0.45

Values are mean + SD of three measurements per treatment. During all measurements, coefficient of variation values of

the GO/G1 peak were < 3.6 (n=3).

Table 3. Results of cell cycle analyses of MCF-7 cells exposed to concentrations of fluorotelomer alcohols

given as the percentage of cells by phase.

Treatment (1/G0-phase S-phase G2/M-phase
0.1% DMSO 90.43+1.01 6.00+1.00 357+1.64
6:2 FTOH (30 pM) 66.98 + 4.09 30.83+3.23 2.19+0.87
6:2 FTOH (3 uM) 80.14 +3.04 15.63 +3.07 422 +0.34
6:2 FTOH (0.3 uM) 88.22+0.48 7.89+0.53 3.89+0.38
8:2 FTOH (10 pM) 68.53 +1.48 29.36+1.78 2.11+049
8:2 FTOH (1 uM) 82.70+1.04 12.72+0.84 458+0.35
8:2 FTOH (0.1 pM) 87.04 +0.47 8.41+0.04 456 +0.43

Values are mean + SD of three measurements per treatment. During all measurements, coefficient of variation values of

the GO/G1 peak were < 3.6 (n=3).
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receptor is up-regulated in MCE-7 cells grown
in estradiol-free medium and is down-regulated
again upon addition of E; (Martin et al. 2004;
Venderell et al. 2004). The estrogen-responsive
genes 1FFI, PGR, PDZKI, and ERBB2 were
commonly responsive to E, as well as to the
xenoestrogen 4-NP and the tested fluoro-
telomer alcohols. However, although a com-
mon up- or down-regulation is observed, the
degree of response of the different genes may
differ markedly, probably as a consequence of
structural differences of the xenoestrogens
(Terasaka et al. 2004). These differences may
be responsible for and reflect the modes of
action. Such differences were also found during
the present study. For instance, although 4-NP
appears to be a weaker inducer of 7FFI and
PGR than 6:2 FTOH, it seems to be a stronger
inducer of PDZK]I. To discriminate between
different xenoestrogens with different modes of
action, many more estrogen-responsive genes
should be studied. Microarray analyses are used
to characterize and classify known and newly
detected xenoestrogens according to their dif-
ferent modes of action. The MCEF-7 cell line
may be an attractive model for this kind of
study, due to possible cross-talk between the
different hormone receptors of this cell line
(Lange et al. 2005). Although we observed a
down-regulation of ESRI expression by E; and
4-NP, the fluorotelomer alcohols used in the
present study caused a significant, approxi-
mately 2-fold up-regulation of this receptor.
This finding suggests an alternative mode of
action, different from that of the reference com-
pound E,. Up-regulation of the estrogen recep-
tor by presumed xenoestrogens is not unusual,
as previously demonstrated for endosulfan,
toxaphene, and dieldrin (Soto et al. 1995).
These results warrant further work toward
in vivo testing for specific endocrine-disruptive
end points. Our results have been generated
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Figure 3. Effect of perfluorinated chemicals on mRNA expression of estrogen-responsive genes in MCF-7 cells were treated with 0.1% DMSO, 1 nM E,, 10 yM
4-NP, 30 pM 6:2 FTOH, 10 M 8:2 FTOH, 50 pM PFQOS, 50 pM PFNA, 50 pM PFOA, or 10 nM TCDD. After exposure to the test compounds for 48 hr, mRNA levels of
TFF1(A), PGR (B), ESR1(C), PDZK1 (D), and ERBBZ (E) were measured by real-time PCR and normalized using HPRTT1 as an internal control. Results are means

from three replicate measurements and are expressed as fold relative to 0.1% DMSO; error bars indicate SD.

*p<0.05. **p <0.001.
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with an iz vitro system using a single cell line,
confirming the estrogen-like properties at dif-
ferent molecular levels. However, at present, it
is not at all clear whether fluorotelomer alco-
hols are causing endocrine disruption under
realistic environmental exposure conditions.
Information concerning in vivo studies is just
becoming available. A one-generation repro-
ductive toxicity study with rats suggests no
harmful effect on reproduction (Mylchreest
et al. 2005). These authors did not observe any
test-substance—related effects on estrous cycle
parameters or sperm morphology, motility, or
epididymal sperm counts in the first parental
generation. Mylchreest et al. (2005) detected
no clear estrogen-like properties in this rat
in vivo study. In another long-term rat expo-
sure study (90 days) using a mixture of fluoro-
telomer alcohols (at doses > 100 mg/kg/day),
Ladics et al. (2005) found a persistent elevation
of liver weights and thyroid follicular hypertro-
phy. One possible explanation for the observed
discrepancy between our 7 vitro results and
the few in vivo data might be related to differ-
ences in fluorotelomer metabolism between the
breast cancer cell line and the in vivo exposure
condition. These compounds may be con-
verted in rats to other fluorinated molecules,
such as PFOA, and hence, fluorotelomer alco-
hol exposures result in PFOA-like in vivo
effects (Berger U, personal communication;
Lehmler 2004). Clearly, these possible contra-
dictions between in vitro screening assays and
in vivo data merit further study. At present, it
is questionable whether the fluorotelomer
alcohols used in the present study might act as
endocrine-disrupting xenoestrogens on various
organisms that might have different metabo-
lizing capacities. Organisms or individuals
with a low fluorotelomer-metabolizing activity
might be at risk.

Regarding environmental exposure condi-
tions, few data are available at present.
Although fluorotelomer alcohols have been
detected in the atmosphere at concentrations
up to 135 pg/m® (Martin et al. 2004), there
are presently no records of these compounds
in surface water, sediment, or wildlife.

In conclusion, we characterized fluoro-
telomer alcohols as xenoestrogens 77 vitro. The
structural similarities of these compounds and
4-NP, the reference xenoestrogen, offer a pos-
sible explanation why these new compounds
may act as ligands for the estrogen receptor
(Katzenellenbogen 1995). para-Alkylphenols
have been shown to bind fully to the estrogen
receptors in a dose-dependent manner, and
the interaction of alkylphenols with the recep-
tor became stronger with an increase in the
number of alkyl carbons (Tabira et al. 1999).
In the present study, 6:2 FTOH was charac-
terized as a stronger xenoestrogen than 8:2
FTOH. It is very likely that the chain length
of the alkyl group is the responsible factor.

The characterization of fluorotelomer alcohols
as in vitro xenoestrogens demonstrates the
need to carefully monitor their environmental
distribution and to further investigate the
effects of perfluorinated compounds on biota.
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