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Research

In the last decade, genomic technologies have
become gradually integrated into several phases
of drug development. In the field of toxicol-
ogy, drug safety laboratories have begun to use
these technologies to assist research to conduct
toxicity evaluations on as many potential lead
compounds as feasible and to gain a better
understanding of the mechanisms of toxicities.
For investigators to be successful in the selec-
tion of compounds most likely to succeed dur-
ing preclinical development, the methods they
use should have a medium throughput, a short
turnaround time, a good predictivity, and be
reproducible.

In vitro systems are being used in toxicol-
ogy studies to determine several kinds of toxi-
cities. Mouse lymphoma cells, primary rat
hepatocytes, and human lymphocytes are
among the mammalian cell systems used to
determine mutagenicity (Kilbey et al. 1984).
Primary rat or human hepatocytes are used to
determine cytotoxicity as well as metabolism
of compounds or their ability to induce
cytochrome P450 genes (Gómez-Lechón et al.
1988; Paillard et al. 1999). However, only a
few laboratories have investigated whether
in vitro systems can be used in the toxicoge-
nomics evaluation of development com-
pounds. Harries et al. (2001) used the human
liver HepG2 cell line to investigate gene
expression changes of two hepatotoxins. The
results strongly suggested that different mech-
anisms of hepatotoxicity may be associated

with specific markers of gene expression.
Waring et al. (2001) showed that gene expres-
sion profiles for compounds with similar
mechanisms of toxicity tested in vitro on
primary rat hepatocytes formed clusters, sug-
gesting a similar effect on transcription.
Conversely, Boess et al. (2003) characterized
several hepatic in vitro systems on the basis of
gene expression profiling and concluded that
the results were poorly comparable with the
in vivo outcome, depending on the cell culture
system used. It is therefore essential to obtain
more knowledge on the in vitro system used
to achieve better understanding and interpre-
tation of genomics data.

As genomics technologies have been intro-
duced more and more in toxicology, the
International Life Sciences Institute Health
and Environmental Sciences Institute (ILSI/
HESI) has formed a consortium with more
than 30 pharmaceutical companies to address
the issues of reliability and reproducibility of
these assays (Robinson et al. 2003). Within
the ILSI/HESI consortium, the hepatotoxicity
working group evaluated the two hepatotoxi-
cants methapyrilene (MP) and clofibrate by
gene expression analysis of rat livers (Baker
et al. 2004; Chu et al. 2004; Hamadeh et al.
2002; Pennie et al. 2004; Ulrich et al. 2004;
Waring et al. 2004). The results of these stud-
ies showed that the transferability of micro-
array technologies between laboratories posed
serious protocol-related issues that could be

solved only with appropriate and sophisticated
statistical tools (Waring et al. 2004).

In the present study, a toxicogenomics
experiment using primary rat hepatocytes was
performed in the laboratories of four pharma-
ceutical companies: Bayer HealthCare AG
(BA), Boehringer Ingelheim Pharma GmbH &
Co. KG (BI), F. Hoffmann-La Roche Ltd.
(RO), and Schering AG (SAG). The cell cul-
tures were exposed to two concentrations of
MP, an H1 histamine receptor antagonist
(Noguchi et al. 1992) that is known to cause
periportal cell necrosis (Steinmetz et al. 1988)
and liver tumors in rats (Liijnski et al. 1980;
Mirsalis 1987). The study was designed to assess
the biologic and experimental variability of the
in vitro systems of the laboratories, to compare
their statistical analysis strategies, and to deter-
mine whether an in vitro toxicogenomics experi-
ment, performed in different laboratories from
cell culture to data analysis, would identify a
toxic compound with the same reliability.

To reduce the experimental variability, a
cell culture protocol with a standardization of
the main parameters such as culture medium
was used. However, many steps, including
perfusion and RNA isolation, followed the
individual in-house protocols. Each laboratory
performed Affymetrix gene expression analysis
on the RG-U34A chip and analyzed the data
according to its own methods/software.

Materials and Methods

Test article and formulation. Methapyrilene
hydrochloride (CAS no. 135-23-9, lot no.
037F0929) was obtained from Sigma Chemical
Corp. (St. Louis, MO, USA). MP was formu-
lated in dimethyl sulfoxide (DMSO).

Primary rat hepatocytes. Primary rat hepa-
tocytes were isolated from 10- to 12-week-old
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male Han:WIST rats (200–300 g body weight;
SAG: Tierzucht Schoenwalde GmbH, Schoen-
walde, Germany; BA: Harlan Winkelmann,
Borchen, Germany; BI: Charles River Deutsch-
land GmbH, Sulzfeld, Germany; RO: RCC
Ltd., Itingen, Schweiz) by a two-step collagenase
liver perfusion method (Seglen 1972). After per-
fusion the liver was excised and the cells were
resuspended in William’s E medium (WME)
without phenol red and filtered. Dead cells were
removed by a Percoll (Sigma) centrifugation
step (Percoll density, 1.06 g/mL, 50 g, 10 min;
only at RO and SAG). Primary hepatocyte via-
bility was assessed by trypan blue exclusion and
ranged between 72 and 92% (Table 1).

Cells were cultured in six-well plates coated
with collagen (Menal GmbH, Herbolzheim,
Germany) at a density of 106 cells/well in 2 mL
WME supplemented with 10% fetal calf serum
(Invitrogen Technologies, Paisley, UK), gluta-
mine (2 mM), hydrocortisone (54 ng/mL),
glucagon (7 ng/mL), insulin (5 µg/mL), peni-
cillin (100 U/mL), streptomycin (100 mg/mL),
and gentamicin (10 µg/mL) at 37°C in an
atmosphere of 5% CO2/95% air. After an
attachment period of 3 hr, the medium was
replaced by 2 mL serum-free WME, with the
same supplements.

Treatment conditions. To determine the
concentration of MP that causes a toxic
response in hepatocytes, each laboratory per-
formed two-dose finding studies. After an
overnight preculture period of 16–18 hr, the
cells were treated with MP, 0–300 µM (BA and
RO), and 0–1,000 µM (BI and SAG) in 0.2%
DMSO (final concentration) or vehicle (0.2%
DMSO, final concentration). The same proce-
dure was performed for the main study, using
the two selected concentrations.

Biochemistry. Cytotoxicity was determined
as lactate dehydrogenase (LDH) release into
the cell culture medium. LDH activity was
determined spectrophotometrically with com-
mercially available test kits (Table 1). Enzyme
activity in the medium was determined and
expressed as percentage of LDH activty present
in the medium of vehicle-treated cells.

RNA isolation. Cells were harvested at
24 hr after treatment either in Qiagen lysis
buffer (RNeasy mini kits; Qiagen, Hilden,
Germany) without (BA and SAG) or with pro-
teinase K (BI) or in RNAzol/Bio101 (RO)
(RNAzol: Tel-Test, Inc., Friendswood, TX,
USA; Bio101: Buena Vista, CA, USA). Total
RNA was isolated using Qiagen RNeasy

columns. The quality of the RNA was deter-
mined using the Agilent Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). Amounts
of RNA were determined with RiboGreen
(Molecular Probes, Leiden, the Netherlands) or
by OD260/OD280 determination.

DNA microarray analysis. Processing of
RNA and microarray experiments were carried
out basically as recommended by Affymetrix
(Affymetrix, Inc., High Wycombe, UK)
(Lockhart et al. 1996), with some user-specific
variations (Table 1). Labeled in vitro transcripts
(10–20 µg) for each RNA sample were
hybridized on the RG-U34A array. A starting
amount of 5–20 µg total RNA was used for the
synthesis of double-stranded cDNA with a com-
mercially available kit (Superscript Choice
System; Invitrogen Life Technologies) in 
the presence of a T7-(dT)24 DNA oligo-
nucleotide primer. The cDNA was purified by
phenol/chloroform/isoamyl alcohol extraction
and ethanol precipitation or using the Affy-
metrix cleanup columns. The purified cDNA
was then transcribed in vitro (Enzo Diagnostics,
Inc., Farmingdale, NY, USA; Ambion, Inc.,
Austin, TX, USA) in the presence of biotiny-
lated ribonucleotides to form biotin-labeled
cRNA. The labeled cRNA was purified on an
affinity resin (RNeasy, Qiagen, or Affymetrix
cleanup), quantified, and fragmented. Labeled
cRNA (10–20 µg) was hybridized for approxi-
mately 16 hr at 45°C onto the RG-U34A array.
The arrays were washed and stained with strep-
tavidin-R-phycoerythrin (SAPE, Molecular
Probes, CA, USA), and the signal was amplified
using a biotinylated goat anti-streptavidin anti-
body (Vector Laboratories, Burlingame, CA,
USA) followed by a final staining with SAPE.
Arrays were stained using the GeneChip
Fluidics Workstation 400 (Affymetrix). The
arrays were then scanned using a confocal laser
scanner (GeneArray Scanner 2500; Hewlett
Packard, Palo Alto, CA, USA, or Agilent
Technologies) resulting in an image file (*.DAT
file). Using the Affymetrix software, *.CEL files
were calculated from the image files.

Data analysis. The *.DAT and *.CEL files
were distributed among the participants. The
data were condensed and normalized (Table 1).
The individual analysis strategy of the raw data
is described below.

Investigators at BA identified the genes that
are regulated to a statistically significant extent
by performing a t-test (Welch’s modification;
Welch 1938) between the control group and

each of the treatment groups using Expressionist
software (GeneData, Basel, Switzerland). A
p-value of 0.01 was chosen in conjunction with
a 1.5-fold change cutoff.

Investigators at BI, in addition to the values
derived from Microarray Analysis Software
(MAS, version 5.0; Affymetrix), performed
analysis calculations using the Statistical Analysis
System (SAS) software (version 6.12; SAS
Institute, Cary, NC, USA). To extract differen-
tial expressed genes, the following cutoff criteria
were defined. The extracted genes must have a
p-value of 0.05 (one-sided) according to the
Mann-Whitney U-test. In addition, each probe
set (gene) with a fold change value of at least 1.2
was selected. This approach was used as a first
filter (and not considered statistically signifi-
cant). The generated data can then be analyzed
by using in-house marker genes [selected in ear-
lier studies of a licensed database (DB)] or
in-depth analysis of single selected genes.

Investigators at RO compared treated and
control groups and statistical analyses were per-
formed with in-house developed software. Gene
expression changes are measured by the
Affymetrix software as fluorescence intensities
with a given signal (numerical value) and a qual-
ifier or call (present, absent, marginal). If probe
sets are detected as expressed, the call is set to 1;
if the probe set is absent, this value is set to 0,
and if marginal to 0.5. To allow comparability
between microarrays, the signal is scaled using
the mean intensity of all probe sets on a chip.
The numerical values for several replicates are
condensed by using the mean and the SD.
Differences in expression levels are expressed as
change factors (CHGF), which report the
change in expression (signal) between two
experimental conditions (baseline = control and
treated). If an increase is seen, CHGF is cal-
culated as [(signal treated/signal control) – 1];
for a decrease it is [– (signal control/signal
treated) + 1]. Thus, the data are symmetrically
distributed around 0; a 2-fold increase gives a
CHGF of 1, whereas a 50% reduction gives a
CHGF of –1. Statistical analysis was based on
analysis of variance and Student’s t-test. Gene
probes considered “expressed” in 50% of the
samples (call ≥ 0.5) and showing fold
changes > 1.25 or < –1.25 with a significance
value of at least 0.1 (paired t-test) in one of the
individual data sets were selected.

Investigators at SAG, compared treated
and control groups, and statistical analyses
were performed with Expressionist software.

In vitro toxicogenomics: an interlaboratory study
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Table 1. Sample preparation methods and data analysis tools used by the contributing companies.

Analysis Cell Data condensation/ Data analysis
site Viability (%)a purification LDH assay RNA extraction IVT normalization tools/software
BA 85, 90, 89 None Hitachi 717/Roche RNeasy Enzo-Affymetrix MAS 5.0 Expressionist
BI 81, 74, 73 None Hitachi 917/Roche RNeasy (+ Prot. K) Enzo-Affymetrix MAS 5.0 SAS
RO 87, 92, 90 Percoll ADVIA 1650/LDH P-L Bayer RNAzol/Bio 101 Ambion MAS 5.0 In-house software
SAG 84, 84, 72 Percoll Hitachi/SYS1 Roche RNeasy Enzo-Affymetrix In-house software Expressionist
Abbreviations: Enzo-Affymetrix, Enzo Diagnostics Inc. and Affymetrix, Inc.; IVT, in vitro transcription; Prot. K, proteinase K.
aCell viability of the hepatocyte preparations in the main study (n = 3).



To extract differentially expressed genes, a
t-test was used. Genes with a p-value < 0.01
and a fold change > 1.5 were extracted from
every participant’s experiment set of three.

Comparison with an in vitro toxico-
genomics database. The data sets processed by
RO were compared with the Roche proprietary
in vitro toxicogenomics DB consisting of
17 compounds that had been tested previously
in at least two concentrations. These com-
pounds were tested following Roche-specific
cell culture protocols, which were similar but
not identical to the protocol described here.
Among them was a previous experiment with
MP on rat primary hepatocytes at two concen-
trations (MP_DB; 100 and 300 µM). The
comparisons are based on the individual gene
expression ratios (fold changes).

Results

Biochemistry. In a pilot study the four different
laboratories performed a cell culture experiment

by incubating primary rat hepatocytes with
several concentrations of MP (0–1,000 µM)
and analyzing liver enzyme (LDH) release into
the medium 24 hr after treatment. Of the four
companies, three showed a slight but signifi-
cant increase of LDH release into the medium
at a concentration of 100 µM MP, whereas at
a lower dose (20 µM) there was no enhanced
LDH leakage compared with untreated cul-
tures (Figure 1A). On the basis of this result,
investigators chose a high dose of 100 µM and
a low dose of 20 µM for the toxicogenomics
experiments.

As anticipated from the results of the pilot
experiments, a tendency toward increased LDH
release was seen after 24-hr treatment with
100 µM MP during the toxicogenomics experi-
ment (Figure 1B). However, in agreement with
the pilot experiment (Figure 1A), this was not
seen in all companies. It is important to note
that the absolute values of LDH release in the
vehicle controls varied considerably between the

individual repeats within as well as between the
companies, depending on the respective batch
of freshly isolated hepatocytes and the different
methodologies used to measure the LDH.
Therefore, the results were expressed as percent-
age of LDH release in vehicle-treated cells.

Gene expression—comparisons across
users. In the toxicogenomics experiment rat
primary hepatocytes were incubated with 0,
20, or 100 µM of MP for 24 hr and analyzed
for gene expression responses using Affymetrix
GeneChips. The raw data (*.CEL and *.DAT
files) were exchanged among the participants
of this study for individual analysis.

Analysis of all data sets with one method.
All data sets were analyzed following the analy-
sis strategy from SAG. First, to obtain a general
overview of similarities among experimental
data sets, a one-dimensional hierarchical clus-
tering (Figure 2) was performed on all data
sets. This analysis shows that the data sets clus-
ter together according to their origin. The dif-
ferences in the gene expression responses are
greater between different laboratories than
between treated and control hepatocytes.

In the next round of analyses, SAG identi-
fied differentially regulated probe sets for each
of the participating laboratories (t-test with
p < 0.01 plus fold change > 1.5). This approach
eliminates the variability caused by different
analysis strategies and reveals the variability due
to hepatocyte culture and chip processing pro-
tocols. In all studies a substantial increase in
regulated probe sets is seen when the MP dose
is increased (data not shown). The data set gen-
erated from the BI study appeared to have sig-
nificantly more differentially regulated probe
sets at the low dose compared with the other
laboratories, whereas the data set of SAG
showed the fewest changed probe sets at the
high dose. The union of all differentially
expressed probe sets results in a number of 744.
The overlapping number of probe sets detected
as regulated in the experiments of all four users
was only five and in at least three of four experi-
ments was 46 (data not shown). The highest
concordance between two companies, defined
as percentage of “own” genes shared with
another company, was 34% (data not shown).
When using all 744 probe sets detected as regu-
lated in a principal component analysis (PCA),
a distinct separation can be achieved between
the untreated samples and those treated with
the high-dose MP (Figure 3A). This is in good
agreement with the biochemistry data, which
showed that slight cytotoxicity was observed at
the highest dose of MP, at least by most of the
companies. The low-dose samples do not sepa-
rate well from the untreated for all laboratories.
This low dose was chosen as a dose that would
not show toxicity based on LDH release. The
data show that PC1 (accounting for 15.4% of
the variance) drives the treatment-related differ-
ences as indicated by the arrows, whereas PC2

Beekman et al.
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Figure 1. LDH release in the culture medium. (A) Pilot study. (B) Main study (n = 3). Inset in A shows the
increase in LDH release at 100 µm MP.
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Figure 2. One-dimensional hierarchical clustering of all experiments using all genes of the RG-U34A
GeneChip. Distance metric used: positive correlation.
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(accounting for 8.9% of the variance) shows a
separation of the individual laboratories.

The same group of probe sets was used in
an unsupervised clustering method, hierarchi-
cal clustering. The dendrogram (Figure 3B)
shows a clustering of the low-dose samples
with their untreated counterparts as well as a
clustering of the high-dose samples. The only
exception is one of the low-dose samples of BI
that clusters together with the high-dose
sample of the same experiment.

Analysis of one data set with different
methods. The four laboratories used very differ-
ent analysis approaches with different main
objectives (described in “Materials and
Methods” and Table 2). To evaluate the differ-
ences of the resulting gene lists generated by the
analysis method, the four participating labora-
tories analyzed one data set (*.DAT or *.CEL
files provided by BI) according to their own
standard methods. The methods used basically
selected genes according to p-values from a
given statistical test and fold changes (Table 2).
RO and BI used a relatively low stringency to
select a high number of differentially regulated
genes, which then can be compared with their
gene expression DB to search for similarities
with known toxic compounds. BA and SAG
used methods with a higher stringency to
obtain gene lists with a low number of false
positives. The resulting genes are then anno-
tated and assigned to pathways to determine
their biologic significance with respect to the
mechanism of toxicity of the investigated com-
pound. Table 2 lists the number of genes found
with each method, and Figure 4 displays a
Venn diagram depicting the number of genes
shared between the different analysis methods.
As expected, the different analysis strategies
have an immense impact on the number of
genes that are defined as differentially regulated.
A total of 111 genes were detected with all four

methods, whereas three of four methods
detected an additional 194 genes (i.e., at least
three of four methods detected 305 genes).

Analysis of each data set with individual
methods. Each laboratory analyzed its own data
set using the specific methods as described in
“Materials and Methods.” The resulting lists of
differentially expressed genes are given in
Table 3. Again, as expected, more stringent cri-
teria used by BA and SAG detected only 126
and 185 probe sets as changed, respectively;
whereas BI and RO obtained 2,486 and
1,085 probe sets, respectively. Comparison of
the gene lists resulting from these analyses shows
that BA and SAG share 45% or more of their
changed probe sets with BI and RO but only
9–16% with each other. The Venn diagram in
Figure 5 shows the relation between the differ-
ent gene lists. Fourteen genes were detected as
regulated by all companies, and an additional
103 genes by three of four companies. The
identity of the regulated genes as well as the
affected cellular pathways and their biologic sig-
nificance were determined (Table 4). The probe
sets consistently detected by all involved users
are associated with detoxification, mitochondrial
function, energy production, cell stress, and
many general housekeeping processes.

Comparison with a gene expression data-
base. The gene expression profiles of the high-
and low-dose MP from the experiments

performed in the individual companies
(*.DAT files) and analyzed with the strategy of
RO were compared with the Roche in vitro
toxicogenomics DB. At the time of analysis,
this proprietary DB contained 47 data sets
from 17 different hepatotoxic compounds.
The comparison revealed that the high-dose
data of each company, except those of SAG,
fitted best to the Roche MP data, which were
generated in a previous, independent experi-
ment (Table 5). The high dose of SAG and the
low doses of all companies were more difficult
to predict. When the data sets of this study
were incorporated in the DB, the MP data
from each company always fitt best to the data
from this experiment of the other companies.
In most cases, this was also true for the low-
dose experiments (Table 5).

Discussion

The aim of this multisite experiment was to
obtain an estimate of lab-to-lab variability for
in vitro gene expression analysis and to deter-
mine whether an in vitro toxicogenomics experi-
ment performed in different laboratories from
cell culture to data analysis would identify a
toxic compound with the same reliability. The
toxicogenomics in vitro approach shows the
known advantages of other in vitro test systems,
namely, the reduction of the number of animals
used for biologic assays as well as the time

In vitro toxicogenomics: an interlaboratory study
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Table 2. Number of genes regulated by MP of the BI experiments calculated by the four different laboratories
according to their applied method.

Treatment BA BI RO SAG

Low-dose 75 1,296 687 84
High-dose 211 1,914 1,011 289
Union 256 2,486 1,286 332
Method MAS 5.0 MAS 5.0 MAS 5.0 In-house software

Welch’s t-test Mann-Whitney U-test Paired t-test, t-test
p < 0.01 p < 0.05 p < 0.1 p < 0.01

Cutoff > 1.5-fold change > 1.2-fold change > 1.25-fold change > 1.5-fold change

Figure 3. (A) PCA of all experiments using the union of genes regulated by MP according to the method of SAG (744 probe sets). Distance metric used: covariance
matrix. (B) One-dimensional hierarchical clustering of all experiments using the union of genes regulated by MP according to the method of SAG (744 probe sets).
Distance metric used: positive correlation.
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involved and the cost of the assays. For this
investigation, we selected the well-known
nongenotoxic hepatocarcinogen MP, which had
earlier been chosen as a model hepatotoxin
within the ILSI/HESI consortium. To comply
with minimal statistical requirements (Lee et al.
2000), each experiment was performed in tripli-
cate using three different batches of primary rat
hepatocytes. The number of replicates required
to achieve the necessary statistical power was not
addressed in this work. Although the main cell
culture conditions were standardized, slight dif-
ferences were already observed when comparing
the cytotoxicity of various concentrations of MP
during the pilot studies performed to define
suitable concentrations. Although increased
LDH release was observed with concentrations
of 100 µM MP and above in three of the four
companies, no increased LDH leakage was
observed by BA with concentrations up to
300 µM in a pilot experiment (Figure 1A). The
reason for this was not investigated further, and
concentrations that caused only marginal or no
LDH release were chosen for the main experi-
ment (20 and 100 µM).

Analysis of the gene expression data with
one-dimensional hierarchical clustering using
the whole set of genes available on the
RG-U34A GeneChip revealed that the differ-
ences between laboratories were greater than
the differences between treatment groups. This
was not surprising, as it has already been
observed in an interlaboratory analysis reported
by Waring et al. (2004). However, when focus-
ing on the statistically significant gene expres-
sion changes from the data sets of all
laboratories (genes were obtained by using the
statistical methods of laboratory SAG: t-test,

p < 0.01, fold change > 1.5), the clustering
results reflected the experimental design, allow-
ing the high-concentration samples to be sepa-
rated from the controls and low-dose samples
(Figure 3B). In addition the hepatocyte cultures
of BA and BI appeared to be more sensitive to
MP treatment than those of RO and SAG
because PCA showed the separation of the low
dose from the untreated for BA and BI. This
might be because RO and SAG perform a
Percoll gradient to separate the live hepatocytes
from dead cells. This also removes other cell
types from the preparation and might affect the
sensitivity of the test system. Thus, using a suit-
able statistical method, the effect of the treat-
ment supersedes the experimental variability.
Differences on the experimental systems such as
cell preparation (Percoll purification step) were
also detected. In addition to the statistical
methods applied by SAG, RO used its own
analysis method and cutoff values from all data
sets to compare each of them with a reference
in vitro toxicogenomics DB. This proprietary
DB contained 17 known toxic compounds
tested on rat hepatocytes, including an in-
dependent exposure to MP under slightly dif-
ferent experimental conditions. For three of the
data sets (BA, BI, RO), the gene expression
profiles allowed the correct identification of MP
as the best match in the DB, independently of
the site where the experiment was performed.

Next, we investigated the influence of the
use of different data analysis strategies to iden-
tify altered genes on the same data set. The
individual analysis methods are described in
Table 2, including differences in the definition
of cutoff values for parameters such as fold
change or p-value. The arbitrary choice of these

cutoff values is not trivial and greatly influences
the outcome of the analysis. On the one hand,
stringent cutoff values lead to a smaller false-
positive rate and a high false-negative rate (or
low power). This approach can be recom-
mended if each single gene will be interpreted
and discussed regarding safety assessment.
However, important signals might be missed
because relatively small changes in expression
may be of high biologic and toxicologic rele-
vance. On the other hand, less stringent filter-
ing criteria cause a high number of false
positives but ensure that no relevant genes will
remain undetected. In our case, BA and SAG
used stringent statistical approaches (t-test with
p-value < 0.01, fold change > 1.5 fold), whereas
BI and RO used smaller fold changes as cutoff
criteria (1.2-fold or 1.25-fold, respectively). As
expected, BA and SAG detected fewer regulated
genes than did BI and RO (Figure 4, Table 2).
For BI the obtained gene list was used as a first-
pass filter for the comparison with in-house
defined marker genes or for hypothesis genera-
tion with a subsequent in-depth analysis of
selected genes. When all companies analyzed
their own data with their own methods, only
14 probe sets were considered deregulated by all
the users in all experiments, and an additional
103 were detected by three of the four laborato-
ries (Figure 5). This demonstrates that an addi-
tional layer of complexity and a source of
differing interpretation originate from different
statistical analysis methods.

The gene changes observed after 24 hr of
incubation with the test compound might not
be ideal to elucidate the primary events (cause)
that trigger the hepatotoxicity of MP. However,
the elucidation of downstream gene expression
changes, indicative of general cellular dysfunc-
tion as a consequence of MP toxicity is valuable
as a possible predictor for hepatotoxicity. The
identity of the genes that were found changed
in at least three of four laboratories (117 genes)
represent biologically relevant processes that are
obviously affected by MP. Several genes
involved in amino acid and nucleotide metabo-
lism were down-regulated. Also, the expression
of genes that play a role in the cell cycle and/or
apoptosis was changed by MP. Among them,
the mitogen-activated protein kinase 6 and
ornithine decarboxylase antizyme inhibitor
were up-regulated, whereas ectonucleotide
pyrophosphatase/phosphodiesterase 2 and
insulin growth factor–binding protein were
down-regulated. These signals appear contra-
dictory because those genes promoting cell pro-
liferation are not regulated in the same
direction. However, the detected changes were
generally consistent across users, increasing the
confidence in the findings. Another affected
pathway involved genes related to the glu-
tathione homeostasis. Ratra et al. (2000)
showed that the levels of reduced glutathione
are increased to 140% of the control after
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Table 3. Intersections between the genes regulated by MP per laboratory calculated by its own methods
(values in brackets are percentage of that company’s genes shared with the respective other companies).

Company BA (%) BI (%) RO (%) SAG (%)

BA 185 138 (6) 84 (8) 16 (13)
BI 138 (75) 2,486 579 (53) 82 (65)
RO 84 (45) 579 (23) 1,085 74 (59)
SAG 16 (9) 82 (3) 74 (7) 126

Figure 4. Venn diagram depicting the differentially
expressed genes of the BI experiments determined
by the four different analysis strategies.
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Figure 5. Venn diagram depicting the differentially
expressed genes of each company’s experiments
determined by its own analysis strategy.
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Table 4. Genes regulated by a low or high dose of MP detected by at least three of the four laboratories.

Direction
Affymetrix BA BI RO SAG of
probe set IDa Gene descriptiona 20 µM 100 µM 20 µM 100 µM 20 µM 100 µM 20 µM 100 µM change

Amino acid metabolism
AB003400_at D-amino acid oxidase –1.29 –2.13b –1.96b –3.35b –1.22 –1.89b –1.06 –1.52 Down
AF038870_at betaine-homocysteine methyltransferase –2.28b –5.02b –4.41b –7.21b –1.23 –2.04b 1.20 –1.62 Down
D17370_at CTL target antigen –1.27 –2.32b –1.50b –2.58b 1.17 –1.43b 1.04 –1.57 Down
D87839_g_at 4-aminobutyrate aminotransferase –2.22b –4.81b –2.34b –8.16b –1.54b –5.00b –1.09 –2.64b Down
J02827_g_at branched chain alpha-ketoacid dehydrogenase –1.54 –1.45 –1.46b –1.59b –1.18 –1.35b 1.03 –1.80b Down

subunit E1 alpha
M88347_s_at cystathionine beta synthase –1.50 –2.44b –1.60b –2.81b –1.23 –2.44b –1.29 –1.29 Down
U68168_at kynureninase (L-kynurenine hydrolase) –2.12b –5.46b –2.36b –6.22b –1.28b –4.17b –1.08 –2.30b Down

Cell-cycle/apoptosis
AB002086_at p47 protein 1.21 1.35 1.37b 1.56b 1.26b 1.60b 1.23 1.66b Up
AF020618_g_at myeloid differentiation primary response gene 116 2.05b 4.71b 1.82b 5.25b 1.21 3.88b –1.06 2.55b Up
D28560_at ectonucleotide pyrophosphatase/phosphodiesterase 2 –1.22 –2.01b –1.65b –3.24b –1.22 –2.04b –1.15 –2.28 Down
D28560_g_at ectonucleotide pyrophosphatase/phosphodiesterase 2 –1.67b –2.43b –3.11b –9.83b –1.28b –2.27b –1.24 –2.11 Down
rc_AI043631_s_at ornithine decarboxylase antizyme inhibitor 1.67b 2.75b 2.72b 4.25b 1.29 2.90b –1.04 2.26 Up
S46785_at insulin-like growth factor binding protein complex 1.03 –1.10 –1.41b –1.69b –1.20 –1.79b 1.67b 1.00 Down

acid-labile subunit
Detoxification

D14564cds_s_at L-gulono-gamma-lactone oxidase (BLAST) –1.32 –1.49 –2.05b –2.50b –1.20 –2.17b –1.04 –1.78b Down
J03914cds_s_at glutathione S-transferase Yb subunit gene –1.39 –1.92b –1.43b –1.93b –1.14 –1.41b –1.01 –1.66b Down
L19998_at sulfotransferase family 1A, phenol-preferring, –1.93 –4.14 –5.86b –9.35b –1.59b –8.33b –1.21 –6.39b Down

member 1
L19998_g_at sulfotransferase family 1A, phenol-preferring, –1.71 –3.36 –5.97b –6.94b –1.59b –6.25b –1.17 –5.14b Down

member 1
M23601_at monoamine oxidase B –1.45 –2.40b –2.07b –4.65b –1.06 –2.44b –1.04 –2.08b Down
rc_AA892234_at ESTs, highly similar to microsomal GST 3 –1.46 –2.26b –1.55b –3.54b –1.33b –2.33b –1.02 –2.18 Down
U70825_at 5-oxoprolinase (ATP-hydrolyzing) –1.47 –2.30b –1.95b –5.46b –1.23 –3.33b –1.14 –2.05 Down

Glycolysis and gluconeogenesis
AF062740_at pyruvate dehydrogenase phosphatase isoenzyme 1 1.30 1. 69b –1.42b 1.37b –1.04 1.31b 1.32 1.39 Up
J05446_at glycogen synthase 2 (liver) –2.00b –3.33b –2.35b –5.92b –1.19 –2.86b 1.05 –2.11 Down
M12919mRNA#2_at aldolase A 1.25 1.55 1.30b 1.84b –1.01 1.76b 1.11 1.72b Up
M83298_at protein phosphatase 2, regulatory subunit B, α isoform 1.37 1.78b 1.61b 2.18b 1.09 1.46b –1.07 1.32 Up
M86240_at fructose-1,6-bisphosphatase 1 –2.03b –2.55b –2.14b –3.15b –1.24 –2.70b –1.02 –2.32b Down
rc_AA892395_s_at aldolase B –2.12 –3.59 –1.73b –4.84b –1.09 –2.78b 1.01 –2.37b Down
rc_AA945442_at glucokinase regulatory protein –1.67b –2.06b –1.38b –2.02b –1.30 –1.61b –1.18 –1.88b Down
S79213_at phosphatase inhibitor-2 1.57b 2.11b 2.00b 2.48b 1.20 1.39b –1.09 1.30 Up
U32314_g_at pyruvate carboxylase –1.55b –1.62b –2.28b –4.61b –1.06 –1.52b –1.08 –1.30 Down
X02291exon_s_at aldolase B (BLAST) –1.58 –2.24 –1.39b –3.00b –1.08 –2.17b –1.06 –2.03b Down
X53428cds_s_at glycogen synthase kinase 3 beta 1.52b 1.82b 2.12b 2.78b 1.08 2.41b 1.01 2.60 Up
X73653_at glycogen synthase kinase 3 beta 1.32 1.67b 1.99 2.42 1.03 1.87b 1.09 2.72b Up

Immune response
AF029240_g_at BM1k MHC class Ib antigen, strain SHR –1.61 –1.54 –1.63b –2.42b –1.20 –1.82b –1.18 –2.09b Down
L12025_at tumor-associated glycoprotein pE4 2.15b 3.43b 2.59b 5.30b 1.19 3.03b –1.02 1.81 Up
U47031_at purinergic receptor P2X, ligand-gated ion channel –1.14 –1.13 –1.21b –1.36b –1.14 –1.56b –1.09 –1.62b Down

Mitochondrial function
AF062740_at pyruvate dehydrogenase phosphatase isoenzyme 1 1.30 1.69b –1.42 1.37b –1.04 1.31b 1.32 1.39 Up
D00569_g_at 2,4-dienoyl CoA reductase 1, mitochondrial –1.39 –1.63b –1.11 –2.07b –1.18 –1.64b –1.05 –1.42 Down
D30740_at 14-3-3 protein mRNA for mitochondrial import 1.32 1.51b 1.56b 1.78b 1.17 1.29b 1.08 1.30 Up

stimulation factor (MSF) S1 subunit
J05029_s_at acyl coenzyme A dehydrogenase, long chain –1.02 –1.25 –1.43b –1.98b –1.09 –1.79b –1.08 –1.54b Down
J05030_at acyl coenzyme A dehydrogenase, short chain –1.27 –1.54b –1.62b –1.63b –1.10 –1.82b 1.01 –1.58 Down
M23601_at monoamine oxidase B –1.45 –2.40b –2.07b –4.65b –1.06 –2.44b 1.04 –2.08b Down
M33648_at mitochondrial 3-hydroxy-3-methylglutaryl-CoA –4.16b –11.38b –2.92b –13.51b –1.30 –6.25b –1.06 –2.93b Down

synthase
M33648_g_at mitochondrial 3-hydroxy-3-methylglutaryl-CoA –2.40b –7.85b –2.46b –10.44b –1.25b –4.55b 1.00 –2.02 Down

synthase
rc_AA817846_at ESTs, highly similar to BDH_RAT –1.95 –3.25 –3.32b –8.04b –1.41 –5.00b –1.07 –2.58b Down

D-beta-hydroxybutyrate dehydrogenase
rc_AI176422_at ESTs, highly similar to S41115 probable –1.22 –1.53 –1.61b –2.36b –1.19 –1.30b –1.03 –1.79b Down

flavoprotein-ubiquinone oxidoreductase
U32314_g_at pyruvate carboxylase –1.55 –1.62 –2.28b –4.61b –1.06 –1.52b –1.09 –1.30 Down
Y12635_at ATPase, H+ transporting, lysosomal, isoform 2 1.40 2.43b 1.51b 2.74b 1.15 2.18b 1.04 1.81 Up

Nucleotide metabolism
D28560_at ectonucleotide pyrophosphatase/phosphodiesterase 2 –1.22 –2.01b –1.65b –3.24b –1.22 –2.04b –1.15 –2.28 Down
D28560_g_at ectonucleotide pyrophosphatase/phosphodiesterase 2 –1.67b –2.43b –3.11b –9.83b –1.28b –2.27b –1.24 –2.11 Down
M97662_at ureidopropionase, beta –1.93 –3.08 –2.99b –4.56b –1.43b –3.13b –1.10 –4.08b Down
rc_AA799402_at ESTs, weakly similar to S18140 hypoxanthine –1.10 –1.93 –1.79b –1.67b –1.27 –1.27b –1.11 –1.59b Down

phosphoribosyl-transferase

Continued, next page



administration of MP to male Han:Wistar rats.
In agreement with this, our experiments show
that MP had a substantial effect on genes
involved in glutathione metabolism (5-oxopro-
linase) and glutathione conjugation (glu-
tathione S-transferase 3 and Yb). Also, other
genes involved in detoxification, such as
L-gulono-gamma-lactone oxidase and sulfotran-
ferase family 1A were down-regulated. MP also
seems to have an effect on the energy balance of
the liver. Many genes in the glycolysis pathway

and several genes involved in mitochondrial
function were down-regulated by the treat-
ment. This finding is also in agreement with
previous results obtained in vivo and in vitro. It
has been described that MP leads to a signifi-
cant increase in mitochondria of periportal
hepatocytes in rats (Reznik-Schuller and
Lijinski 1981). Also, MP caused mitochondrial
dysfunction, as detected by mitochondrial
swelling, significant losses of ATP, and loss of
mitochondrial calcium homeostasis in cultured

hepatocytes (Ratra et al. 1998). In addition to
the metabolic and energy impairment responses,
MP elicits a stress response in the hepatocytes.
Reactive oxygen producing systems are
repressed, and stress-response genes are up-reg-
ulated. This is indicative of the oxidative stress
produced by MP (Ratra et al. 1998) and was
also described using gene expression profiles of
livers of rats treated with MP (Waring et al.
2004). We observed the up-regulation of the
ribosome associated membrane protein 4,
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Table 4. Continued

Direction
Affymetrix BA BI RO SAG of
probe set IDa Gene descriptiona 20 µM 100 µM 20 µM 100 µM 20 µM 100 µM 20 µM 100 µM change
Protein metabolism

AF100470_g_at ribosome associated membrane protein 4 1.11 1.30 1.29b 1.41b 1.18 1.61b 1.07 1.57b Up
L38482_g_at serine protease gene 1.11 1.29 1.20b 1.09 1.11 1.40b 1.09 1.78b Up
M96633_at mitochondrial intermediate peptidase –1.48 –2.45b –1.74b –3.47b –1.23 –2.22b 1.08 –1.77 Down 
rc_AA892831_s_at ESTs, highly similar to JC6524 26S proteasome 1.12 1.28 1.44b 1.32b 1.09 1.50b 1.05 1.84b Up

regulatory complex chain p44.5
X70900_at hepsin –1.59b –2.45b –1.69b –2.56b –1.23 –1.96b 1.02 –2.56b Down

Signal transduction
AF036537_g_at homocysteine respondent protein HCYP2 1.56 1.67 1.83b 1.85b 1.38b 2.18b –1.16 1.95b Up
AF076619_at growth factor receptor bound protein 14 –1.11 –1.67b –1.09 –2.23b –1.08 –1.79b –1.03 –1.35 Down 
L14323_at phospholipase C-beta1 –1.27 –2.03b –1.55b –3.34b 1.06 1.67b –1.05 –1.33 Down
M64301_g_at mitogen-activated protein kinase 6 1.26 2.17b 1.06 2.51b –1.06 1.62b –1.04 1.27 Up
M83298_at protein phosphatase 2 (formerly 2A), regulatory 1.37 1.78b 1.61b 2.18b 1.09 1.46b –1.07 1.32 Up

subunitB (PR 52), alpha isoform
rc_AA891580_at ESTs, highly similar to cylindromatosis (turban tumor 1.27 1.61b 1.90b 2.02b 1.27b 1.32 1.00 1.30 Up

syndrome); cylindromatosis 1
rc_AI070721_s_at glial cell line derived neurotrophic factor family –2.49 –2.68 –1.19 –2.15b –1.32 –2.77b –1.07 –1.95b Down

receptor α1
rc_AI171630_s_at p38 mitogen activated protein kinase –1.21 –1.70b –1.75b –2.37b –1.23 –1.64b –1.10 –1.29 Down

Stress response
M23601_at monoamine oxidase B –1.45 –2.40b –2.07b –4.65b –1.06 –2.44b –1.04 –2.08b Down
M86389cds_s_at heat shock 27 kDa protein 1.65 2.15 3.11b 2.24b 1.16 2.22b 1.25 2.87b Up
rc_AA891286_at thioredoxin reductase 1 1.45 1.78b 1.77b 1.85b 1.22 1.66b 1.12 1.40 Up
rc_AI171630_s_at p38 mitogen activated protein kinase –1.21 –1.70b –1.75b –2.37b –1.23 –1.64b –1.10 –1.29 Down
rc_AI179610_at heme oxygenase 1.34 3.37b 1.87 3.45 1.18 2.99b 1.12 2.74b Up

Transcription
AB012230_at NF1-B1 –1.20 –1.86b –1.03 –2.11b –1.32b –1.32 1.00 1.00 Down
AF003926_at nuclear receptor subfamily 2, group F, member 6 –1.24 –1.69b –1.03 –1.58b –1.10 –1.41b –1.04 –1.41 Down
AF016387_g_at retinoid X receptor gamma –1.31 –2.15b –1.39b –2.56b –1.10 –1.69b 1.00 1.00 Down

Transport
AB015433_s_at solute carrier family 3, member 2 1.36 1.89b 1.96b 3.30b 1.18 1.77b 1.07 1.89 Up
U72741_g_at lectin, galactose binding, soluble 9 (galectin-9) –1.37 –1.46 –2.28b –3.44b –1.23 –1.49b –1.06 –1.98b Down
Z36944cds_at putative chloride channel (similar to Mm Clcn4-2) –1.88b –2.50b –1.57b –1.93b –1.12 –2.13b –1.09 –1.37 Down

aFrom Affymetrix, Inc. (http://www.affymetrix.com). bSignificant fold changes.

Table 5. Comparisons with the Roche in vitro toxicogenomics database.
Similarity index

BA BI RO SAG
Data set Dose (µM) Mechanism High Low High Low High Low High Low
MP_BA_high 100 Direct reaction N/A 28.55a 28.44a 24.23a 24.06a 4.72 17.78 0.31
MP_BA_low 20 Direct reaction 28.55a N/A 12.66 18.46 11.78 4.95 15.00 0.35
MP_BI_high 100 Direct reaction 28.24a 12.66 N/A 33.44a 26.02a 3.12 13.97 0.00
MP_BI_low 20 Direct reaction 24.23 18.46a 33.44a N/A 21.67 5.51 21.14a 0.84
MP_RO_high 100 Direct reaction 24.06 11.78 26.02 21.67 N/A 4.95 20.29a 1.10
MP_RO_low 20 Direct reaction 4.72 4.95 3.12 5.51 6.69 N/A 6.69 1.06
MP_SAG_high 100 Direct reaction 17.78 15.00 13.97 21.14 20.29 6.69a N/A 3.77a

MP_SAG_low 20 Direct reaction 0.31 0.35 0.00 0.84 1.10 1.06 3.77 N/A
MP_DB_100 100 Direct reaction 22.16b 12.81b 20.95b 19.50b 21.82b 6.69a,b 15.71b 0.94
MP_DB_300 300 Direct reaction 20.08b 8.47 23.21b 12.25 17.51b 3.08 7.60 0.41
Other_cmp N/A Direct reaction 2.82 3.74 2.80 4.88 2.57 4.16 4.25 2.83a,b

Other_cmp N/A Direct reaction 11.98 8.45 12.65 13.39 11.87 4.35b 11.21 1.76b

Other_cmp N/A Direct reaction 17.93 11.84b 16.3 14.35b 14.33 3.84 10.92 1.14
Other_cmp N/A Perox. prolif. < 0 < 0 < 0 < 0 < 0 < 0 0.85 0.00
Other_cmp N/A Perox. prolif. < 0 < 0 < 0 < 0 < 0 0.27 0.72 < 0

Abbreviations: N/A, not applicable; Other_cmp: other compound in DB; Perox. prolif., peroxisome proliferators. aTop two of comparison including data sets of this study. bTop two of
comparison without data sets of this study. 
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which belongs to a family consisting of several
ribosome associated membrane protein
sequences that are known to stabilize mem-
brane proteins in response to stress (Yamaguchi
et al. 1999). Also, the myeloid differentiation
primary response gene 116 (Gadd34), whose
overexpression promotes apoptosis (Hollander
et al. 2003), was detected as induced. The
Gadd family is known to be up-regulated upon
cellular stress and was strongly up-regulated by
MP after in vivo exposure (Waring et al. 2004).
Because we analyzed the toxicity of MP in isola-
tion, we cannot determine which of these gene
changes are specific to MP or might be regu-
lated by other compounds. Also, most of the
gene-by-gene changes described occurred at the
high concentration, concomitant with slight
cytotoxicity. However, some of the differen-
tially expressed genes were also detected at the
low dose by some laboratories. It was clear from
the clustering data that both RO and SAG
could not separate the low dose from the
untreated samples. Gene expression data from
BA and BI, however, showed that > 25% of the
genes were already detectable at the low con-
centration (Table 4). These two laboratories did
not perform a Percoll purification step during
the hepatocyte isolation procedure. This inter-
esting finding led us to the hypothesis that in
the presence of additional cell types not elimi-
nated by a Percoll purification step (e.g.,
Kupffer cells or damaged hepatocytes), gene
expression changes occur already at concentra-
tions that do not show an effect on the viability
of the cells. Further experiments with con-
trolled cell compositions should be performed
to clarify this point and define the best-suited
in vitro system in terms of sensitivity.

Our results show that several factors from
experimental conditions to statistical data
analysis contribute to the interlaboratory vari-
ability observed for gene expression results. Our
data and other published results (Harries et al.
2001; Waring et al. 2001) show that in vitro
assays coupled with microarray analysis are use-
ful for detection of hepatotoxicity and mecha-
nistic elucidation of cellular events related to it.
This applies best when the experimental and
analytical variability is reduced to a minimum,
which cannot always be ensured. However, we
were able to show that using suitable statistical
analysis tools, we could, despite the experimen-
tal variability, uncover the commonalities
among the experiments. We demonstrated that
using a subset of deregulated genes for the
analysis, the effects of a high concentration of
MP on the cells supersede the interlaboratory
variability and that this variability does not
mask clear treatment-dependent effects. This
finding agrees with a similar analysis performed
in vivo (Waring et al. 2004) and also held true

when we compared the data obtained at several
sites with one in vitro toxicogenomics DB. The
encouraging outcome of the comparison with
an independent DB is pivotal and indicates that
gene expression profiles have the potential to be
used as a diagnostic tool for toxicology.
However, it is also clear from the presented
results that the differences between laboratories
make the gene-by-gene comparison of gene
expression data from different sources very diffi-
cult. This task can be undertaken only with
sound statistical tools that allow a relevant sub-
set of genes to be selected.

From a mechanistic point of view, it is
important to note that there was good concor-
dance among all users regarding the affected
biologic processes, as shown in Table 4. Most
of the consistently regulated genes play a role
in detoxification/metabolism, processes of
growth and death control, immune response,
stress, and transport. This indicates that the
interpretation of the data from different
sources leads to similar conclusions in terms of
toxicity and underlying mechanisms despite
the differences in number and identity of genes
and in the intensity of the regulation.

In summary, our data show that both
experimental and statistical variability are
important sources of different outcomes
between laboratories. To minimize the experi-
mental variation, it is advisable to perform the
cell culture and microarray experiments when-
ever possible at the same experimental site.
This is not always possible because often
experimental protocols need to be transferable.
In these cases, suitable and robust statistical
analyses help overcome the differences. Also,
we showed that cellular mechanisms involved
in MP toxicity can be consistently detected, as
illustrated by the gene expression changes
listed in Table 4. In addition the positive out-
come of the comparison with an in vitro DB
underlines that microarray analyses of in vitro
systems are robust and can be predictive of
toxicity. Whether the involved cellular path-
ways are specific for MP and are causal to the
toxicity in vitro and/or in vivo requires further
investigations.
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