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2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)
is a ubiquitous environmental contaminant
that induces a wide spectrum of toxic responses
(DeVito and Birnbaum 1995). A number of
pharmacokinetic models for TCDD are avail-
able that incorporate various stages of sophisti-
cation, including classical pharmacokinetic
models (Michalek et al. 2002; Pinsky and
Lorber 1998), pseudophysiologic models
(Aylward et al. 2005; Carrier et al. 1995a,
1995b), and more descriptive physiologically
based pharmacokinetic (PBPK) models
(Andersen et al. 1993, 1997; Emond et al.
2004; Kohn et al. 1996; Maruyama et al. 2002;
Wang et al. 1997, 2000). Some epidemiologic
studies use classical pharmacokinetic models to
describe and quantify TCDD exposures
(Crump et al. 2003; Flesch-Janys et al. 1996;
Salvan et al. 2001; Steenland et al. 2001). The
potential use of pharmacokinetic models in
risk assessment to understand the relationship
between exposure and tissue concentrations
underscores the importance of developing bio-
logically accurate models of the pharmaco-
kinetics of TCDD and related chemicals.

The most recent pharmacokinetic models
for TCDD have a number of similarities. All
these models describe the distribution of
TCDD as diffusion limited (Andersen et al.
1993, 1997; Aylward et al. 2005; Carrier et al.
1995a, 1995b; Emond et al. 2004; Kohn et al.
1996; Maruyama et al. 2002; Wang et al.
1997, 2000). In addition, most of these models

include an inducible TCDD-binding protein
in hepatic tissue. Experimental evidence
demonstrates that this protein is cytochrome
P450 1A2 (CYP1A2) (Diliberto et al. 1999;
Staskal et al. 2005), whose expression is regu-
lated by the aryl hydrocarbon receptor (AhR).

One major difference among these models
is the description of the elimination of TCDD.
Empirical models developed from epidemio-
logic data assume a first-order elimination rate
with half-lives (t1/2) varying from 7 to 8.7 years
(Aylward et al. 1996; Crump et al. 2003;
Flesch-Janys et al. 1996; Steenland et al. 2001).
The models of Wang et al. (2000), Maruyama
et al. (2002), and Emond et al. (2004) also
assume a constant hepatic clearance rate for
TCDD. Andersen et al. (1993, 1997), Emond
et al. (2005), and Kohn et al. (1996) assume
that hepatic elimination of TCDD increases
with dose. In the toxicokinetic model of van
der Molen et al. (1998, 2000), the t1/2 of
TCDD varies by body composition but not by
dose. Aylward et al. (2005) extended the model
of Carrier et al. (1995a, 1995b) by incorporat-
ing elimination due to lipid partitioning of
TCDD from the blood into the large intestine
based on published human data (Moser and
McLachlan 2002). Despite these mechanistic
differences, most models provide reasonable fits
to the experimental data.

Dioxins are highly lipophilic and concen-
trate in adipose tissue. Recent studies suggest
that body fat mass influences the elimination of

TCDD (van der Molen et al. 1998, 2000).
Michalek and Tripathi (1999) found that the
TCDD t1/2 increases with body mass index
(BMI) in humans. Increasing BMI alters the
pharmacokinetics of lipophilic chemicals due to
increased distribution into the adipose compart-
ment and by altering xenobiotic metabolizing
enzymes (Anzenbacher and Anzenbacherova
2001; Cheng and Morgan 2001).

TCDD metabolism, CYP1A2 induction,
binding to CYP1A2, and BMI influence the
elimination of TCDD (Olson et al. 1995).
Thus, the objectives of this work were to
characterize the influence of CYP1A2 induc-
tion and adipose tissue mass fraction on the
terminal elimination t1/2 of TCDD using a
rat PBPK model.

Materials and Methods

This work is an extension of the TCDD PBPK
model for Sprague-Dawley rats of Emond et al.
(2004) that consists of four compartments:
liver, fat, placenta (activated during gestation),
and rest of the body (Figure 1). The systemic
circulation interconnects each compartment.
The present analysis focuses on nonpregnant
animals, so the placental compartment was
inactive. The liver compartment includes AhR-
mediated induction of CYP1A2 and binding of
TCDD to both the AhR and CYP1A2. Oral
absorption and urinary and hepatic elimination
were described, and constants were fit to the
experimental data of Santostefano et al. (1998)
as previously described (Emond et al. 2004).
The elimination constant was optimized to
incorporate hepatic metabolism, enterohepatic
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recirculation, and biliary elimination of
TCDD. All physiological, biochemical, and
physicochemical parameters used in this model
are from Emond et al. (2004) (Table 1). The
PBPK model was developed with algebraic and
differential equations using ACSL software
(Advanced Continuous Simulation Language;
Aegis Corp., Huntsville, AL; see Appendix for
equations). The original Emond et al. (2004)
model is designated the fixed elimination
model.

Inducible elimination t1/2. A review of the
experimental estimates of the t1/2 of TCDD in
rats suggests that the longest estimates of t1/2 are
from studies using the lowest exposures
(Table 2). This comparison includes data from
different strains and sex of rats, and the influ-
ence of dose on the elimination of TCDD
must be viewed cautiously. Most of the expo-
sures were well above the median efffective dose
(ED50) for enzyme induction (Santostefano
et al. 1997). Data in mice and humans suggest
that the elimination of TCDD is dose depen-
dent (Abraham et al. 2002; Diliberto et al.
2001; Michalek et al. 2002).

The Emond et al. (2004) model was mod-
ified to include an inducible TCDD elimina-
tion that assumes the elimination increases
proportionately to CYP1A2 induction:

[1]

where KBILE_LI is the inducible elimination
rate (hr–1), CYP1A2induced is the concentration
of CYP1A2 induced (nmol/mL), CYP1A2basal
is the basal concentration of CYP1A2
(nmol/mL), and Kelv is the interspecies con-
stant adjustment for the elimination rate
(hr–1). In the model, CYP1A2induced is always
greater than CYP1A2basal, and the difference
between these two values is always positive.
Kelv was optimized to the data of Santostefano
et al. (1998) using ACSL Optimize (ACSL
Math, version 2.1) using a maximization of the
log-likelihood function (Steiner et al. 1990).

Estimates of terminal elimination t1/2.
The influence of KBILE_LI, BMI, CYP1A2

induction, and TCDD binding to CYP1A2
on the terminal elimination t1/2 of TCDD
was examined using the fixed and inducible
elimination models. The terminal elimination
t1/2 of TCDD in blood was estimated
between 300 and 900 hr from simulations of
single oral exposures in a dose range from

10–3 to 103 µg TCDD/kg using PK Solutions
(version 2.0; Summit Research Solutions,
Ashland, OH).

Influence of CYP1A2 binding and BMI
on the terminal elimination t1/2 of TCDD.
The influence of CYP1A2 binding on the
terminal elimination t1/2 of TCDD was
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Figure 1. Conceptual representation of PBPK model
for rat exposed to TCDD. GI, gastrointestinal.

Table 1. Physiologic parameters used in the PBPK models for rat.a

Parameter description Symbol Value

Body weight (g) BW 250
Cardiac output (mL/hr/kg) QCCAR 311.4 
Tissue volumes (fraction of BW)

Liver WLI0 0.036
Fat WF0 0.069
Rest of the body WRE0 0.729
Blood WB0 0.076

Tissues blood volumes
Liver (fraction of liver) WLIB0 0.266
Fat (fraction of fat) WFB0 0.050
Rest of the body (fraction of rest of the body) WREB0 0.030

Tissue blood flows (fraction of cardiac output)
Liver QLIF 0.183
Fat QFF 0.069
Rest of the body QREF 0.748

Tissue permeability (fraction of tissue blood flow)
Liver PALIF 0.3500
Fat PAFF 0.0910
Rest of the body PAREF 0.0298

Partition coefficient
Liver PLI 6
Fat PF 100
Rest of the body PRE 1.5

Metabolism constants
Urinary clearance elimination (mL/hr) CLURI 0.01
Liver (biliary elimination and metabolism; hr–1) KBILE_LI Inducibleb

Interspecies constant (hr–1) Kelv 0.15c

AhR
Affinity constant in liver (nmol/mL) KDLI 0.0001
Binding capacity in liver (nmol/mL) LIBMAX 0.00035

CYP1A2 induction parameters
Dissociation constant CYP1A2 (nmol/mL) KDLI2 0.04
Degradation process CYP1A2 (nmol/mL) CYP1A2_1OUTZ 1.6
Dissociation constant during induction (nmol/mL) CYP1A2_1EC50 0.3
Basal concentration of CYP1A2 (nmol/mL) CYP1A2_1A2 1.6
First-order rate for degradation (hr–1) CYP1A2_1KOUT 0.1
Time delay before induction process (hr) CYP1A2_1TAU 0.25
Maximal induction of CYP1A2 (unitless) CYP1A2_1EMAX 600

Other constant
Oral absorption constant (hr–1) KABS 0.48
Gastric nonabsorption constant (hr–1) KST 0.36

aFrom Emond et al. (2004), except as specified. bIn the fixed elimination model this value is 2.2 hr–1 as presented by Emond
et al. (2004). In the inducible elimination model this parameter varies with exposure as described in Equation 1. cFormal
optimization followed the visual fitting.

Table 2. Relation between dose and t1/2 calculated in experimental data in rats.a

Strain Sex Dose (µg/kg) t1/2 ± SD (days) Reference

Wistar F 0.3 16.6 ± 5.7 Abraham et al. 1988
Wistar M 0.01 45.2 ± 11.4 Lakshmanan et al. 1986
Wistar M 5.0 21.9 Pohjanvirta et al. 1990
Long Evans M 5.0 20.8 Pohjanvirta et al. 1990
Long Evans M 2 18.2 ± 2.6 Viluksela et al. 1996
Long Evans M 5.6 10.5 ± 2.8 Viluksela et al. 1996
Sprague-Dawley F 10 12 Wang et al. 1997
Sprague-Dawley M 1 31 ± 6 Rose et al. 1976
Sprague-Dawley M 9.25 16.3 ± 3 Weber et al. 1993
Sprague-Dawley M 50 17.4 ± 5.4 Piper et al. 1973
Sprague-Dawley M 50 14.5 ± 0.5 Allen et al. 1975

Abbreviations: F, female, M, male. 
aAll experimental paradigms used a single exposure.



examined by increasing the binding affinity of
TCDD to CYP1A2 (KDLI2) from 0.04 to
106 nmol/mL. An increase in KDLI2 to
106 nmol/mL results in negligible TCDD
binding to CYP1A2 and no hepatic sequestra-
tion while still allowing for the induction
CYP1A2 and increased TCDD elimination.

The influence of BMI on the terminal
elimination t1/2 of TCDD was examined by
varying the size of the adipose tissue compart-
ment from 6.9 to 70%. In order to maintain
mass balance, the size of the rest of the body
compartment decreases, which increases the
size of the adipose compartment. Cardiac
output and body weight (BW) remained con-
stant as the adipose tissue compartment was
increased.

Sensitivity of parameters for a fixed or
an inducible terminal elimination t1/2.
Sensitivity analysis was performed on all para-
meters in the fixed and inducible elimination
models at exposures of 0.001 and 10 µg
TCDD/kg BW for which blood concentra-
tions at 900 hr postexposure were compared.
Exposures of 0.001 µg/kg result in negligible
induction of CYP1A2, whereas 10 µg/kg
exposures result in maximal induction of
CYP1A2 in rats. The variation in the blood
concentrations between optimized parameters
and parameters (±10%) was calculated as
follows:

[2]

where Cblood,op is the blood concentration
obtained with the optimized parameter and
Cblood(±10%) is the blood concentration obtained
with the variation of the parameter.

Results

The influence of CYP1A2 induction and
binding on the terminal elimination t1/2
of TCDD using a rat PBPK model. The
PBPK model for rats predicts that the terminal
elimination t1/2 is constant at exposures of
≤ 0.1 µg/kg and increases to approximately
10 days as dose increases from 0.1 to approxi-
mately 100 µg/kg in the fixed elimination
model. At exposures > 100 µg TCDD/kg BW,
the terminal elimination t1/2 begins to decrease
with exposure. Although the fixed elimination
model provides adequate prediction of several
experimental data sets (Emond et al. 2004;
Wang et al. 1997), the terminal elimination
t1/2 of TCDD is predicted to increase with
dose. When the binding affinity to CYP1A2 is
increased more than 7 orders of magnitude,
hepatic sequestration does not occur and the
model predicts a constant terminal elimina-
tion t1/2 at all exposures, suggesting that the
predicted increases in t1/2 at high doses are due

to hepatic sequestration mediated by CYP1A2
binding (Figure 2A).

The PBPK model was modified to describe
the hepatic elimination rate (Kelv) as a func-
tion of CYP1A2 induction as described in
Equation 1. The model was fit to the data of
Santostefano et al. (1998). After optimization,
Kelv was estimated as 0.15 hr–1. The model
assumes a maximum 40-fold induction of
CYP1A2, resulting in estimates of KBILE_LI
from 0.06 to 2.46 hr–1 at exposures from 10–3

to 103 µg/kg. Terminal elimination t1/2 esti-
mates range from approximately 75 days at
exposures of 10–3 µg/kg to approximately
10 days at the higher exposures. It should be
noted that the experimental data range from
10–2 to 102 µg TCDD/kg and that the model
fits estimates of the t1/2 values relatively well,
given the variability in the data (Figure 2B).
Elimination of hepatic sequestration by
CYP1A2 binding from the model decreases
the terminal elimination t1/2 of TCDD at
higher exposures.

The use of an inducible elimination pro-
vides better fits to the experimental data of
Santostefano et al. (1998) compared with the
fixed elimination model (Figure 3A,B). These
two simulations were performed at exposures
of 10 µg TCDD/kg, which is a maximally
CYP1A2-inducing dose of TCDD. The fixed
elimination rate model was optimized at

% variation (900 hr) (±10%=
−C Cblood op blood, ))

Cblood op,

,× 100

Emond et al.
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Figure 2. The relationship between terminal elimination t1/2 and dose using (A) a fixed elimination rate with and without CYP1A2 sequestration and (B) an inducible
elimination rate with and without CYP1A2 sequestration. Triangles in B represent the TCDD t1/2 values determined experimentally (see Table 2).
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exposures near maximal induction; thus, at
high exposures, the KBILE_LI used in the
fixed model is not very different from the
KBILE_LI derived in the inducible elimina-
tion model.

Differences between the two models also
occur with simulations of the data from
Walker et al. (1999), who exposed female
Sprague-Dawley rats biweekly to 50, 150, 500,
or 1,750 ng TCDD/kg and determined
hepatic TCDD concentrations after 30 weeks
of exposure. The fixed elimination rate model
underestimated hepatic TCDD concentrations
by 2- to 5-fold at the two highest doses and
approximately an order of magnitude at the
two lowest doses (Figure 4A). The inducible
elimination model estimates the TCDD liver
concentrations within the experimental data at
the two lowest doses and underestimates the
tissue concentrations at the two highest doses
by less than a factor of 2 (Figure 4B).

Influence of CYP1A2 sequestration on the
terminal elimination t1/2 of TCDD using an
inducible elimination model. The data from
Santostefano et al. (1998) were used to exam-
ine the influence of CYP1A2 sequestration on
the disposition of TCDD. A single dose of
10 µg TCDD/kg produces a maximal induc-
tion of CYP1A2. The inclusion of CYP1A2
sequestration in the model results in higher
TCDD blood concentrations and provides
good fits to the experimental data (Figure 3B).
Removal of CYP1A2 sequestration from the
model results in decreased TCDD blood con-
centrations and underestimates blood concen-
trations by more than an order of magnitude at
the longer time points (Figure 3C).

Influence of adipose tissue mass fraction on
terminal elimination t1/2. In order to examine
the role of adipose tissue in the terminal elimi-
nation t1/2 of TCDD, the adipose tissue com-
partment was varied from 6.9 to 70% in
model simulations. In the fixed elimination
rate model, there is a linear relationship
between increases in the size of the adipose tis-
sue compartment and the t1/2 of TCDD at
low exposures (Figure 5A). The influence of
the size of the adipose tissue compartment
diminishes as TCDD exposure increases
(Figure 5A). When the hepatic sequestration is
removed from the model, the relationship
between increases in the size of the adipose tis-
sue compartment and t1/2 is linear and inde-
pendent of TCDD exposure (Figure 5B).
Using the inducible elimination rate model,
the terminal elimination t1/2 increases with
dose for models with and without hepatic
sequestration (Figure 5C,D).

Sensitivity of parameters for a fixed or an
inducible elimination t1/2. Sensitivity analysis
was performed on all parameters in the fixed
and inducible elimination models for acute
exposures of 0.001 µg/kg and 10 µg/kg. To
simplify the presentation of the analysis, only

parameters that resulted in a normalized sensi-
tivity coefficient of ±2.0% are discussed. In
the fixed elimination model, 15 parameters
have normalized sensitivity coefficients greater
than ±2% at the low dose, and 11 parameters
at the high dose (Figure 6A,B). In the
inducible elimination model, the sensitivity
analysis indicates that 7 parameters have nor-
malized sensitivity coefficients greater than
± 2% at the low dose, and 12 parameters at
the high dose (Figure 6C,D). Six parameters
were sensitive for both exposures and models.
Two of the common parameters were related
to absorption [gastric nonabsorption constant
(KST) and intestinal absorption rate (KABS)],
and two represent liver and adipose tissue vol-
ume fraction (WLI0 and WF0, respectively).
Both models and exposure levels are sensitive to
the fat partition coefficient (PF) and the degra-
dation rate for CYP1A2 (CYP1A2_1OUTZ).
The low-dose exposure in the fixed elimination
model is uniquely sensitive to parameters
related to the distribution of TCDD such as

cardiac output, BW, blood flow, and partition-
ing to liver and fat. The high-dose exposures in
both models are sensitive to parameters related
to CYP1A2 induction, such as maximal
induction of CYP1A2 (CYP1A2_1EMAX),
dissociation constant during induction
(CYP1A2_1EC50), and AhR binding capacity
in hepatic tissue (LIBMAX). Both low- and
high-dose exposures in the variable elimina-
tion model are uniquely sensitive to the basal
CYP1A2 expression (CYP1A2_1A2).

Discussion

The elimination of TCDD in mammals
depends on diffusion into and out of adipose
tissue, metabolism, hepatic sequestration, and
hepatic elimination rate. The present study
examined the relationship between these fac-
tors using a PBPK model. The Emond et al.
(2004) PBPK model indicates that the t1/2 of
TCDD increases with increasing exposure,
which is inconsistent with some experimental
(Table 2) and human data suggesting that the

Fat and CYP1A2 induction on TCDD pharmacokinetics
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Figure 4. Simulation of hepatic TCDD concentrations (ppb) during a chronic exposure to TCDD at 50, 150,
500, or 1,750 ng TCDD/kg BW (Walker et al. 1999) using the fixed elimination rate model (A) or the inducible
elimination rate model at (B) compared with the experimental data measured at the end of the exposures.
Solid lines represent model simulations.
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t1/2 decreases with exposure. Modification of
the Emond et al. (2004) model to include
inducible hepatic elimination better fits the
experimental data of Santostefano et al. (1998)
and Walker et al. (1999). With an inducible
elimination, the t1/2 of TCDD varies from
approximately 75 days to 10 days after expo-
sures ranging from 10–3 to 103 µg TCDD/kg,
respectively.

The inducible elimination model describes
the elimination rate as a function of CYP1A2
induction. TCDD induces several xenobiotic-
metabolizing enzymes, including CYP1A1,
CYP1A2, and CYP1B1. The role of these
enzymes in the metabolism of TCDD is not
clear because of limited data on in vitro and
in vivo metabolism of TCDD. The role of
CYP1A in the metabolism of TCDD is
inferred from in vitro metabolism of lesser
chlorinated dioxins or 2,3,7,8-tetrachloro-
dibenzofuran (Olson et al. 1995; Shinkyo
et al. 2003; Tai et al. 1993). In vivo studies
examining biliary elimination of radioactivity
in rats treated with [H3]TCDD have not been
able to demonstrate inducible elimination of
TCDD-derived radioactivity (Kedderis et al.
1991). Poiger and Schlatter (1985) observed a
doubling of the biliary elimination of TCDD
in dogs pretreated with TCDD, indicating a
role for CYP1A in the elimination of TCDD. 

One of the problems in quantifying the
role of CYP1A2 in the metabolism and elimi-
nation of TCDD is that CYP1A2 both binds

and metabolizes TCDD. TCDD inhibits rat
and human CYP1A2 activity (Staskal et al.
2005). In CYP1A2 knockout mice, there is no
hepatic sequestration of TCDD, adipose tissue
TCDD concentrations are higher, and the lev-
els of metabolites in urine and feces are lower
compared with wild-type mice (Diliberto et al.
1999; Hakk and Diliberto 2002). These stud-
ies as a whole indicate that CYP1A2 and other
CYPs are involved in the metabolism and
elimination of TCDD.

The inducible elimination model predicts
that the terminal elimination t1/2 of TCDD
increases approximately 10-fold, whereas the
elimination rate from hepatic tissue increases
> 40-fold. One possible explanation for this dis-
crepancy is that diffusion into and out of adi-
pose tissue is the rate-limiting step in the
elimination of TCDD at low exposures and
that metabolic elimination is the rate-limiting
step at high exposures. The model predicts that
estimates of the t1/2 are more sensitive to
changes in BMI at low exposures than at higher
exposures. When significant induction of
CYP1A2 occurs, there is an increase in hepatic
sequestration and elimination, which dampens
the effects of changes in BMI. These observa-
tions are consistent with experimental data in
the CYP1A2 knockout mouse (Diliberto et al.
1999; Hakk and Diliberto 2002).

Pharmacokinetic models for TCDD
describe its elimination in a variety of ways.
The Andersen et al. (1993) model describes

induction as a function of receptor occupancy
multiplied by a species-specific adjustment fac-
tor designated as “fold.” For rats, this parameter
was assigned a value of 1 (Andersen et al.
1993), resulting in a doubling of TCDD
metabolism over the basal rate. Carrier et al.
(1995a, 1995b) used a simple first-order elimi-
nation process that is a function of total hepatic
TCDD concentrations. In the Carrier et al.
model, hepatic concentrations increase with
dose in a nonlinear manner because of hepatic
sequestration. As the fraction of TCDD in the
liver increases from 15 to 70%, there is a 5-fold
maximum induction of the elimination rate in
rats. For humans, the model estimates that the
fraction of TCDD in the liver ranges from 1 to
70%, resulting in an approximately 70-fold
induction of TCDD elimination at high expo-
sures (Carrier et al. 1995a, 1995b). The Kohn
et al. (1996) model uses Hill kinetics to
describe the elimination of TCDD with a Hill
exponent of greater than unity. The Kohn et al.
(1996) model also includes a biliary elimination
of TCDD that is a function of a TCDD-
induced hepatic lytic rate (hepatotoxicity) and a
measure of cumulative exposure. In the Kohn
et al. (1996) model, once the cells die, the
TCDD is eliminated through the bile into the
gut with a linear rate, implying diffusion. The
difference in the description of the elimination
pathways between these models is based on the
lack of known metabolic processes involved in
the elimination of TCDD.
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Figure 6. Sensitivity analysis was performed on the fixed elimination rate model (A and B) and the inducible elimination rate model (C and D). The analysis was per-
formed at 0.001 µg/kg (A and C) and at 10 µg/kg (B and D). Abbreviations: BW_T0, body weight at time zero (other parameter symbols are defined in Table 1); var,
variation. This sensitivity recorded the percentage of variation (≥ 2%) of TCDD concentrations in the blood compartment when parameters were varied by ±10%.
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TCDD metabolism may not be the only
route of elimination of TCDD. Aylward et al.
(2005) extended the Carrier et al. (1995a,
1995b) model to include lipid partitioning of
TCDD from circulation into the large intestine
followed by fecal elimination, based on the work
of Moser and McLachlan (2001). Although this
pathway is not described in the present model,

the elimination of TCDD from the blood into
the intestines is indirectly accounted for in the
optimized elimination rate. Our ability to dis-
criminate between these different modeling
approaches is diminished by our lack of under-
standing of the enzymes metabolizing TCDD
and the role of lipid partitioning and hepato-
toxicity in the pharmacokinetics of TCDD.

The dose-dependent elimination of dioxins
can influence exposure assessments in epi-
demiologic studies assessing the potential
adverse health effects of dioxins. Several of the
epidemiologic studies examine the relationship
between dioxin exposure and adverse health
effects. Some of these analyses use a first-order
elimination rate from present measured body

Body weight growth with age

Cardiac output

A factor of 60 corresponds to the conversion of minutes to hours, and
1,000 is conversion of BW from grams to kilograms.
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Appendix. Equations used in the PBPK model for adult rat.a

Abbreviations and parameter symbols: Ali, amount of chemical in liver cellular matrice subcompartment; Alib, amount of chemical in liver in hepatic tissue blood subcompartment; At, amount of
chemical in tissue cellular matrice subcompartment; Atb, amount of chemical in tissue blood subcompartment; Ca, arterial concentration; Cb, blood systemic venous concentration; Cfb, adipose tis-
sue blood subcompartment concentration; CLI, liver blood subcompartment concentration; Clib, liver tissue blood subcompartment concentration; Clifree, free chemical concentration in liver
compartment; Creb, rest of the body blood subcompartment concentration; Ct, tissue concentration in cellular matrice; Ctb, tissue blood subcompartment concentration; dAli, variation of the
amount of chemical in hepatic compartment with time; dAlib/dt, variation of the amount of chemical in hepatic blood compartment with time; dAtb/dt, variation of the amount of chemical in
blood subcompartment with time; inputoral, rate of oral chemicals intakes; PALI, liver tissue permeability (PALIF × QLI); PAt, tissue permeability (PATF (tissue permeability) × Qt); Pt, partition
coefficient in tissue compartment; Qc, cardiac output; Qf, adipose tissue blood flow (QFF × Qc); Qli, liver tissue blood flow (QLIF × Qc); Qre, rest of the body blood flow (QREF × Qc); Qt, blood
flow in tissue compartment; WLI, volume of liver cellular matrice tissue subcompartment; Wt, volume of cellular matrice tissue subcompartment; Wtb, volume of tissue blood subcompartment.
aFor more information refer to Emond et al. (2004). 
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burdens to back-calculate TCDD body bur-
dens at the initial exposure (Crump et al.
2003; Steenland et al. 2001). Aylward et al.
(2005) and Emond et al. (2005) suggest that
using a pharmacokinetic model with dose-
dependent elimination results in nonlinear
relationships between measured body burdens
and predicted peak body burdens. Applying
PBPK models that include inducible elimina-
tion rates to the epidemiologic data may result
in quantitatively different relationships
between exposure and adverse health effects
observed in these studies.
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