
Geographic modeling, using emissions data
and transport models, strives to create the
equivalent of a hypothetical, ideal monitoring
system that would have measured the concen-
tration of pollutants at all locations and times
in the medium and domain under study (Beyea
and Hatch 1999). Such models, which are
becoming increasingly more common in envi-
ronmental epidemiology (Nuckols et al. 2004),
represent a relatively new method for moving
beyond the ecological studies that have domi-
nated past work. Once validated, these models
can reduce exposure misclassification by allow-
ing the assignment of individualized, rather
than average, exposures to study subjects.

We have constructed a geographic model
for airborne polycyclic aromatic hydrocarbons
(PAHs) from traffic that is being used in a
population-based, case–control epidemiologic
study involving about 3,000 women on
Long Island, New York, known as the
Long Island Breast Cancer Study Project
(LIBCSP; Gammon et al. 2002a). The study
area and surrounding traffic network are
shown in Figure 1. The model is also being
used in a similar study in Buffalo, New York
(Nie et al. 2005).

Just as with a real monitoring system, it is
possible to both validate and calibrate a

geographic model. For this purpose we
used samples collected in the LIBCSP from
subsets of subjects: a) soil PAHs at residence,
b) carpet PAH, and c) PAH–DNA adducts
assessed in peripheral blood. Details of the
measurements have been reported previously
(Gammon et al. 2002a; Shantakumar et al.
2005). Additional information is provided in
the accompanying online Supplemental
Material (http://www.ehponline.org/docs/
2006/8659/suppl.pdf). Details of and default
parameters for the geographic model are also
available (Beyea et al. 2005; Beyea J, Hatch
M, Stellman SD, Gammon MD, unpublished
data). We refer to a model before calibration
as a “default” model and a model after cali-
bration as an “optimized” model.

In addition to the samples collected as
part of the LIBCSP, data collected by the
U.S. Environmental Protection Agency
(EPA) on concentrations of carbon monoxide
were used as a test of the basic meteorological
dispersion component of the model. A com-
parison of the historical emissions data used
in the model has been made to sediment
PAH concentrations and air measurements;
the results will be reported elsewhere (Beyea
J, Hatch M, Stellman SD, Gammon MD,
unpublished data).

Materials and Methods
Individual exposure estimates were generated
using a meteorological dispersion model
(Beyea et al. 2005) applied to estimates of
PAHs emitted along hundreds of thousands of
street segments (in units of nanograms per
kilometer). Emission data per street segment
were derived from historical data obtained for
tailpipe emissions and number of vehicles on
roads. Receptor locations localized to the street
level were obtained by geocoding residence
addresses obtained at interview. The model has
two distinct components related to the tem-
perature of the engines of emitting vehicles.
“Warm-engine” emissions occur throughout
the traffic network, whereas “cold-engine”
emissions occur only for a relatively short dis-
tance from the vehicle starting point (default
value, 1 km). Cold-engine emissions differ
from warm-engine emissions in magnitude, in
geographic location, and by time of day. For
both warm- and cold-engine conditions, emis-
sions are restricted in the model to times when
the vehicles are traveling on major roads.

Vehicle emissions of PAHs are known to
vary based on acceleration/deceleration condi-
tions and the engine temperature, although the
magnitude of the intersection contribution has
not been quantified. Intersection emissions
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OBJECTIVES: We previously developed a historical reconstruction model to estimate exposure to
airborne polycyclic aromatic hydrocarbons (PAHs) from traffic back to 1960 for use in case–control
studies of breast cancer risk. Here we report the results of four exercises to validate and calibrate
the model.

METHODS: Model predictions of benzo[a]pyrene (BaP) concentration in soil and carpet dust were
tested against measurements collected at subjects’ homes at interview. In addition, predictions of
air intake of BaP were compared with blood PAH–DNA adducts. These same soil, carpet, and
blood measurements were used for model optimization. In a separate test of the meteorological dis-
persion part of the model, predictions of hourly concentrations of carbon monoxide from traffic
were compared with data collected at a U.S. Environmental Protection Agency monitoring station.

RESULTS: The data for soil, PAH–DNA adducts, and carbon monoxide concentrations were all con-
sistent with model predictions. The carpet dust data were inconsistent, suggesting possible spatial
confounding with PAH-containing contamination tracked in from outdoors or unmodeled cooking
sources. BaP was found proportional to other PAHs in our soil and dust data, making it reasonable
to use BaP historical data as a surrogate for other PAHs. Road intersections contributed 40–80% of
both total emissions and average exposures, suggesting that the repertoire of simple markers of
exposure, such as traffic counts and/or distance to nearest road, needs to be expanded to include
distance to nearest intersection. 
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were taken proportional to warm-engine or
cold-engine emissions on a particular street but
restricted to a parameterized intersection 
distance, initially 100 m. One proportionality
factor was taken for all warm-engine emissions
and one for cold-engine emissions. Emissions
could be graded further within one-half and
one-quarter of the intersection distance.

Total emissions were written as the sum of
five terms: (warm-engine emissions) + 
A × (warm-engine intersection emissions) +
B × (cold-engine emissions) + C × (cold-engine
intersection emissions) + D × background. The
parameters A, B, C, and D, which are defined
relative to the first term in the summation,
were determined from fits to either the soil or
DNA adduct data that minimized chi squared
(Press et al. 1992). This chi-square minimiza-
tion process was carried out while simultane-
ously varying, and thereby optimizing, a range
of other model parameters such as washout
rate, particle deposition rates, photo decay
rates, and intersection distance.

Validation data. PAH soil data. Soil
measurements were chosen as a potential vali-
dation and calibration opportunity for the
geographic model because deposition of PAHs
is proportional to airborne concentrations
above the soil (Odabasi et al. 1999) and
because respirable particles in outdoor air are
known to penetrate indoors efficiently and
have been found to dominate indoor res-
pirable PAH concentrations in a number of
studies (Dubowsky et al. 1999; Sheldon et al.
1992, 1993). Soil measurements are easier to
make than air measurements and retain his-
torical information (Jones 1991).

PAH–DNA adducts. Airborne PAHs can
enter the blood through the respiratory path-
way, where they can be metabolized and form
PAH–DNA adducts. If our model is valid, its
predictions of recent airborne concentrations
should be correlated with PAH–DNA adduct
levels in study subjects, provided the traffic
contribution is large enough to be detected.
Previous studies have demonstrated that DNA
adduct levels in white blood cells reflect short-
term environmental exposure, if exposures are
high enough (Eder 1999). For example, in a
study by Binkova et al. (1995), a scattergram
of exposure accumulated on personal dosime-
ters versus adduct levels showed a clear trend
with only 21 subjects. Although the ambient
concentrations were perhaps 10-fold higher
than current U.S. levels, ranging from 1.6 to
2.9 ng/m3 of benzo[a]pyrene (BaP), we have
the advantage of being able to work with many
more subjects. We measured PAH–DNA
adducts in the peripheral blood of 999 study
subjects, using the competitive ELISA method,
as described by Gammon et al. (2002b).

About 72% of women had detectable levels
of adducts. We analyzed detects and non-
detects separately because descriptive statistics

indicated the existence of a bimodal distribu-
tion for adduct level. The data show a normal
distribution with a large spike at the origin that
is well separated from, and not part of, the nor-
mal distribution. The nondetect spike contains
28% of the women in the sample.

Previous work with this study population
has found that the likelihood of having
detectable adducts is elevated among past and
current smokers, inversely associated with
increased BaP levels (nanograms per gram) in
dust in the home but positively associated with
BaP levels in soil outside of the house, although
confidence intervals were large (Shantakumar
et al. 2005). The study authors did not find any
consistent associations between the odds of hav-
ing detectable PAH–DNA adducts and various
dietary sources of PAH, including smoked and
grilled foods eaten in the most recent decade of 
life and a BaP food index assessed from
responses to a food frequency questionnaire
(Shantakumar et al. 2005). As suggested previ-
ously (Dickey et al. 1997), persons with and
without detectable adduct levels may represent
two different groups of individuals in their
response to PAH exposure. Two distinct popu-
lations responding to PAHs in diet have also
been reported (Kang et al. 1995). The first
group of women, those with detectable adducts,
are the focus of this report. It is easier to model
the number of adducts in detects as a function
of airborne PAH exposure than to predict the
shift from nondetects to detects. The model
reported in this article is not able to predict the
odds ratio of having detectable adducts
(Shantakumar et al. 2005). Regardless of
whether the distribution in adduct levels reflects
a bimodal biologic response or a bimodal

exposure distribution, levels of DNA adducts
reflect DNA damage and therefore serve as a
measure of the effective biologic dose of PAHs
(Binkova et al. 1995; Nesnow et al. 1993).

PAHs in carpet dust. PAHs in carpet
dust come from three sources: ambient out-
door air PAHs that penetrate indoors and
deposit on carpet, indoor-generated PAHs,
and dirt-containing PAHs that are tracked
from the outside. The geographic model
should be able to predict the variation in the
amount of ambient PAH deposition per
square meter for wall-to-wall carpeting. For
rugs and other carpet that do not extend to
the walls, an ambiguity arises about what
denominator to use, for example, carpet area
or floor area because carpet may act as a
“sink” for household dust deposited on the
uncarpeted floor. Nevertheless, unless there is
strong spatial confounding with carpet size,
indoor-generated sources of PAHs (e.g., cook-
ing), and/or dust track-in, we expect that the
ambient signal should be detectable in the
carpet PAH measurements that were collected
as part of the LIBCSP to provide an exposure
marker inclusive of indoor-generated PAHs.

CO air concentrations. Modeling CO air
concentration offers a good test of a PAH dis-
persion and traffic model for a number of rea-
sons. First, traffic is known to dominate CO
emissions, accounting for as much as 95% of
emissions in cities (U.S. EPA 2001). Therefore,
both CO and traffic PAH emissions will
increase and decrease with traffic density.
Second, CO and PAHs are both associated
with incomplete combustion (An and Ross
1996; Bostrom et al. 2002), so relative CO
emissions should rise and fall during the driving
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Figure 1. LIBCSP study area showing the major roads within an 80-km distance of Long Island from which
vehicle emissions were tracked in this study. Study participants were drawn from the shaded area, which
is 150-km in length and extends outward from New York City. The location of the U.S. Environmental
Protection Agency carbon monoxide monitor is also indicated.



cycle in a pattern that is similar to that of PAH.
[As referenced in the Supplemental Material
(http://www.ehponline.org/docs/2006/
8659/suppl.pdf), hourly patterns of PAH and
CO air concentrations have been found in
other studies to be similar indoors and out,
with R 2 coefficients ranging from 0.5 to 0.8.]
Third, to model relative hourly CO air concen-
trations in any single year, all the modeler has
to do is turn off all depletion phenomena,
because deposition, washout, and photo decay
are negligible in the case of CO.

CO data are widely available for locations
around the United States through requests
to the U.S. EPA. In our study area, hourly
CO data have been collected since 1974 at
Eisenhower Park in Nassau County (U.S. EPA
2005). We averaged hourly data for 1975,
1985, and 1995 and regressed the results
against comparable model predictions.

Statistical methods. Multiple (linear)
regression was used to assess and optimize the
relationship between model predictions and
CO data, as well as to compare adduct data
with soil and dust data. In model fitting to soil,
dust, and detectable adduct levels, the variables
and the model predictions were all log-trans-
formed to bring them to normal form. Because
the model parameters to be determined
appeared inside the transforming logarithm,
nonlinear regression was required. When

covariates, such as cooking sources or BaP in
diet, were controlled for, a combination of
nonlinear and multiple regression methods was
used as discussed in the Supplemental Material
(http://www.ehponline.org/docs/2006/8659/
suppl.pdf). Fits to the adduct and dust data
were made with and without current smokers
included.

Significance values for bimodal distribu-
tions of PAH–DNA adducts were handled
using the method of Simes and Hochberg, as
described by Levin (1996). According to this
method, to obtain an overall significance of
95%, a p-value < 0.025 is required for one of
the modes whenever a p-value for the other
mode is > 0.05 (Levin 1996). Because all p-values
for adduct nondetects in this study are greater
than 0.05, we must always look for a p-value
≤ 0.025, for correlations using detectable
adduct values alone.

Results

Model validation and calibration. CO data.
When normalized, hourly CO data in 1975
were virtually identical to the hourly data in
1995, despite a 4-fold drop in absolute levels.
Because model regressions for 1975, 1985,
and 1995 were similar, we discuss only the
1995 results.

With the default model parameter values
chosen before optimization, there is a reason-
able fit to the 1995 hourly CO data for the
Nassau County monitor (r2 = 52%). This
rough agreement is no trivial result because the
r2 for the correlation between hourly CO emis-
sions and concentrations was only 0.033. This
weak correlation arises because CO emissions
are very low in the early morning hours in con-
trast to the measured CO concentrations,
which are relatively high at this time, reaching
half the maximum daytime value. The delay
time involved in distant CO reaching a receptor
explains the result. CO measured at 0200 hr
was actually emitted miles away during the tail
of the evening rush hour.

Although the default model accounts for
delay in CO arrival, the default model over
predicts in the early evening hours. The over
prediction remains despite the type of disper-
sion parameters used (urban or rural), despite a
switch to a different year’s meteorological data,
and despite the method chosen to convert the
actual dispersion values from raw meteorologi-
cal data. However, optimization of the fit to the
CO data, allowing the relative strength of the
intersection emissions and the contribution
from distant sources (background term) to
increase over the default value, eliminated the
overprediction. The model parameters deter-
mined from the CO optimization were qualita-
tively similar to those determined from the soil
data but differed from the parameters deter-
mined with PAH–DNA adduct data. The
results of the fit to the CO data after optimiza-
tion (r2 = 63%) are shown in Figure 2.

The fact that the optimized CO regression
results for 1975 and 1985 were similar to the
1995 results suggests that emissions at inter-
sections have been dominant over the entire
period for which data are available.

Soil data. There was a high degree of 
correlation between BaP data and other 
PAHs [Supplemental Material (http://www.
ehponline.org/docs/2006/8659/suppl.pdf)].
The mean soil level was 2,300 ng/g of BaP,
which is approximately twice that reported
in the only comparable data set we could
find in the Northeast, namely, average values
for Boston, Providence, and Springfield,
Massachusetts, as reported by Bradley et al.
(1994). The difference in mean soil levels may
be attributable to differences in traffic density or
differences in the depth of the samples collected
in the two locations. The depth in the New
England study ranged from 0 to 10 cm rather
than the average 2-cm depth used in our study.

Spatial variation of the soil data.
Aggregated soil levels within geographic zones
were found to decrease with distance along the
axis of Long Island away from urbanization

Validation of PAH exposure model

Environmental Health Perspectives • VOLUME 114 | NUMBER 7 | July 2006 1055

Table 1. Concentrations of PAH–DNA adducts, soil BaP, and BaP in carpet dust by 16-km geographic zones running from the most urbanized to the most rural end
of Long Island.

Adducts Soil BaP Carpet BaP
Zone Numbers Data points Geometric Arithmetic Data points Geometric Data points
numbera (geometric mean)b SE per zonec mean (ng/g)d SE mean (ng/g)d SE per zonec mean (ng/m2)e SE per zonec

1 14.4 1.15 136 860 100 2,100 350 132 570 81 151
2 15.2 1.04 137 790 110 2,500 460 140 870 130 162
3 11.8 1.21 88 830 150 2,800 520 100 1,400 270 98
4 12.7 1.29 68 580 140 2,600 590 77 1,560 350 70
5 14.0 2.40 30 390 120 1,000 280 30 980 420 28
6 10.2 1.79 10 120 70 220 110 7 490 470 9
7 10.9 5.17 8 240 120 430 200 8 1,080 870 6
8 7.6 4.03 6 120 54 160 62 5 310 130 4
9 4.7 5.51 2 100 54f 100 62f 1 NA NA 0

NA, not applicable.
aZones of 16 km measured from the Nassau County border eastward along the Long Island axis. bPer 108 nucleotides; includes only women with detectable adducts and a single resi-
dential address; seasonally adjusted. cData are included only for residences that could be geocoded to the street level. Study subjects selected for environmental sampling (soil and
carpet) were required to have lived at their residence for ≥ 15 years. The number of sample points decreases rapidly with distance, consistent with the density of the population on Long
Island, specifically the population of long-term residents. dTo a 2-cm depth. Values are standardized to date of collection. Mean of all data = 2,300. GM of all data = 700. eThe arithmetic
mean data are quite similar. fTaken equal to the value for zone 8.
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(and hence from pollution sources), as shown
in Table 1 and Figure 3. The 10-fold decline
in geometric mean values is consistent with
other studies (Grass et al. 2000; Wagrowski
and Hites 1997). Although there is consider-
able individual variation between prediction
and soil data, the fit is highly significant [p <
0.0001, as discussed in the Supplemental
Material (http://www.ehponline.org/docs/
2006/8659/suppl.pdf)]. The fit to the soil data
when the model predictions are grouped into
20 quantiles is shown in Figure 4. Further
details about the soil regressions are given in the
Supplemental Material (http://www.ehponline.
org/docs/2006/8659/suppl.pdf) along with val-
ues for the correlation coefficients between
aggregated soil, dust, and adduct data. In addi-
tion to allowing us to calibrate the model, the
usefulness of the results obtained from the soil
fits demonstrates the feasibility of using inter-
viewer-phlebotomists on a tight schedule to
gather environmental samples in the context of
a large-scale case–control study.

The optimized parameter set determined
from the soil data is shown in Table 2.
Intersection emissions contribute 80% of aver-
age emissions and exposures when calculated
with the optimized model.

Adduct data. Aggregated adduct levels
within geographic zones were found to
decrease with distance along the axis of
Long Island away from urbanization (and
hence from pollution sources), as shown in
Table 1 and Figure 5. The number of detects
and nondetects for PAH–DNA adducts varies
with 16-km zone along the length of

Long Island [Supplemental Material, Table S-1
(http://www.ehponline.org/docs/2006/8659/
suppl.pdf)]. The odds ratio of having detectable
adducts does not differ significantly by zone
(p = 0.23).

The results of optimization of the model to
the DNA adduct data are shown in Table 2.
Optimization produced a large coefficient for
the cold-engine component, with the coeffi-
cient for warm emissions negligible. This is the
reverse of the results for the soil-optimized
model. On the other hand, when it came to
the importance of intersection emissions, the
results of fits to the adduct data were consistent
with the fits to the soil data in predicting a
major role for enhanced emissions at inter-
sections. Intersections accounted on average 
for 40% of total cold-engine exposures.
Deposition velocity, rain washout rate, and
photo decay rate were all optimized at zero,
which meant that the optimized adduct model
did not contain any depletion. The parameter
values were not changed significantly upon
removing from the regressions women who
smoked within the last year, nor were they
changed significantly when we controlled for a
BaP food index, assessed from responses to a
food frequency questionnaire, and the number
of smoked and grilled foods eaten in the most
recent decade of life, also obtained from
a questionnaire.

The fit of the adduct-optimized model to
the adduct data is shown in Figure 6.The fit to
the ungrouped data points can be found in the
Supplemental Material (http://www.ehponline.
org/docs/2006/8659/suppl.pdf; p = 0.02 before
optimization). The results are not as good as in
the soil case, with the cold-engine version track-
ing the adduct data less well than the warm-
engine version tracks the soil data. The r2 for
the grouped data is lower, at 58%.

Of interest is the fact that the soil data
were comparable with the geographic model
in predicting PAH–DNA adduct levels in

individual women with detectable adducts (p =
0.004). Although soil data appear to be a sim-
pler indicator of airborne exposure than the
geographic model, soil data are not available for
all women, nor are they available historically.

Dust data. Values for both PAHs per gram
of dust and PAHs per square meter of carpet
vacuumed were available. The Pearson correla-
tion coefficients between BaP and the other
two PAHs measured, dibenz[a,h]anthracene
and benz[a]anthracene, were > 0.95. The trend
in carpet BaP/m2 shows a peak in the center of
Long Island (Table 1), indicating that some
source of PAHs other than outside air is domi-
nating BaP in carpets. Differences by zone
were statistically significant. The same pattern
is seen for BaP/g. In contrast, the total grams
of dust per square meter behaves as expected,
with high values closer to the urbanized por-
tion of Long Island [Supplemental Material,
Tables S-2, S-3  (http://www.ehponline.org/
docs/2006/8659/suppl.pdf)]. Possible candi-
dates for nontraffic PAHs are indoor sources
such as cooking, and track-in of PAHs from
outdoors. This is the one validation exercise
that contradicts the model.

We found no explanation for this un-
expected behavior of carpet dust with distance.
Also anomalous was the correlation between
BaP per square meter and the model’s predic-
tion of deposition of ambient BaP onto carpet.
In fact, the regression slope was negative and
remained so even when potential confounders
were included in the regression. Potential con-
founders considered were years in residence,
work status, age, use of wood in stove/fireplace,
number of children younger than 20 years at
time of data collection, season, number of
adults in the home, number of hours worked
away from home, religion, education, income,
smoking status, and the number of times a
study subject consumed grilled meat or fish in
the previous decade. This latter variable was
the most relevant surrogate we had for cooking
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Table 2. Optimized versus default parameters for exposure model.

Parameter value
Warm-engine version Cold-start version

Parametera Default (soil optimized) (adduct optimized)

Deposition velocity (m/sec) 0.003 0.007b 0b

Washout rate 1c One-half default 0
Airborne photo decay rate 0.01d One-fourth default 0
Intersection contribution to average 15% 80% 40%

exposure (% of total)e
Background (% of average exposure)f 10% Five times default value 65%g

Cold-start lengthh 1 km NA 0.5 km
Intersection distancei 100 m 12.5 m 500 m

NA, not applicable.
aIndividual values of parameters are poorly determined, if taken out of the context of group-optimized values. bOptimized
value for fits to bootstrap samples can range from 0 to 0.03, but see footnote a. cMultiplied by 1.42 × (precipitation rate in
mm/hr)0.75 to give exponential decay rate in units of hr–1; from (Ramsdell et al. 1994), with typo corrected. dMultiplied by
pyranometer reading in Langleys per hour to give exponential decay rate in units of hr–1. ePercentage contributions differ
slightly for average emissions, particularly for the cold-start model. fBackground for the default and soil-optimized models
varies spatially. It is taken proportional to the exposure generated by emissions in counties outside three counties that
include or bound the study area (Nassau, Suffolk, and Queens counties). This spatially varying background model gave a
better fit to the soil data than did a constant term. gConstant background term. hDistance from center of census block that
vehicles emit at the cold-engine rate. iDistance from intersection that vehicles emit at the acceleration/deceleration rate. 
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intensity. Excluding homes of study subjects
who smoked within the last year did not
reverse the negative correlation.

At the individual level, BaP in carpet,
whether measured in units of nanograms per
gram or nanograms per square meter, was not
correlated with the level of measurable PAH–
DNA adducts in study subjects (p > 0.46). As
previously reported, a negative correlation
between nanograms per gram of BaP in carpet
dust was found in this population for the odds
ratio of a woman having detectable adducts
(Shantakumar et al. 2005). Clearly, much
remains to be learned about the origins of
PAHs in carpet dust.

The fact that the model correlated with the
number of PAH–DNA adducts in women
with detectable adducts, whereas the carpet
dust data did not, suggests that the cause of the
discrepancy with dust is unlikely to be con-
nected with indoor sources of PAHs in the res-
pirable range. Nevertheless, regardless of the
size distribution, cooking is a likely source of
PAHs in carpet dust that might be confound-
ing the correlation with the geographic model.
We only have a limited surrogate to use in con-
trolling for cooking PAH.

Another potential contributor is track-in of
PAHs from outdoors, which is a sequential
process progressing from street, driveway, or
attached garage to entryway and then to carpet.
Such a pathway could include contamination
at various points from vehicle oil drips, which
could contribute track-in of PAHs distinct
from blown soil dust.

Track-in can be a significant source of
PAHs in carpet dust (Chuang et al. 1995).
However, we have no explanation of why
track-in patterns would vary spatially with dis-
tance along Long Island according to the pat-
tern we found. It is thus not possible to rule out
the possibility that some source of indoor PAH,
such as cooking, is overwhelming any traffic
contribution in carpets, particularly if the parti-
cle sizes are outside the respirable range.

Background model. Two background
models were tested. Compared with a constant
background term, a better fit to the data was
found in calibrations using the soil data for a
term that was proportional to exposures calcu-
lated from the more distant counties (all but
Nassau, Suffolk, and Queens counties in New
York State). The fit to the DNA adduct data
was best with a constant background term.

Discussion

The optimized model parameters can be com-
pared with default values. For the fits to the
soil data, the optimized parameters are within a
factor of 2 of the default values for those dis-
persion parameters that are widely reported in
the literature, namely, deposition velocity and
washout rate (National Council on Radiation
Protection and Measurement 1993; Ramsdell
et al. 1994). For those parameters for which no
strong guidance as to default values was avail-
able in the literature, for example, photo decay
rates and acceleration/deceleration distances,
the optimized values turned out to differ by
more than a factor of 2 from the values we
chose as defaults.

The most striking result to come out of
the fits to the adduct data is the removal of
depletion phenomena from the optimized
cold-engine version of the model, whether it
be dry deposition, wet deposition, or photo
decay of PAHs. This artificial result is an indi-
cation that to optimize the fit, the model
needs contributions from more distant
sources than would normally be expected.
Perhaps the best explanation is that, unlike
soil receptors, human receptors are mobile.
Or, perhaps indoor sources such as emissions
of cooking PAHs for which we have not con-
trolled, are confounding the results. Despite
the apparent differences in the parameter val-
ues determined for the soil- and adduct-opti-
mized models, the correlation between their
predictions of PAH exposure for women in
the study is quite high (r 2 = 0.79–0.86), pos-
sibly because the difference in optimized para-
meters compensates for differences in spatial
patterns that would otherwise result.

Conclusion

This study indicates that in developing inhala-
tion exposure estimates it is necessary to
account for emissions at intersections to fully
determine the spatial distribution of PAH

exposure. Three of four validation exercises
were consistent with model predictions. The
unexpected geographic pattern of carpet PAHs,
which does not match the falloff with distance
from urbanization predicted by the geographic
model, is the only result we found in our vali-
dation exercises that calls into question the
relevance of our model. In contrast, the model
predictions for soil PAH data and hourly CO
concentrations were very consistent with the
data, favoring a warm-engine emission model.
PAH adduct levels for women with detectable
adducts were also consistent with model pre-
dictions and favored a cold-engine emission
model. Although we found a high degree of
correlation between the predictions of the
warm-engine version of the model and the
cold-engine version, it will be prudent to use
both the warm-engine and cold-engine ver-
sions when evaluating the effects of exposure
on health outcomes.

Whatever model is used, the ability to
make individualized exposure estimates has the
potential to reduce exposure misclassification
that can arise in environmental epidemiology
studies from assigning group level exposure
based on interpolation from sparse environ-
mental monitoring data or from surrogate
measures of exposure based on simple distance
from nearest major road and/or traffic density.
Although geographic models are complex,
comparison of their output with field data
helps to build confidence in them.
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