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T he data points in an integrated toxicoge-

nomics experiment with microarray,

proteomics, and metabolomics data are virtually

innumerable. With thousands—or tens of thou-

sands—of data points for each sample in each

type of analysis, the complexity and the sheer

amount of data multiply fast. As teams of statis-

ticians, bioinformaticists, and biologists work to

interpret this complexity, they must also ensure

that each data point is valid and can be integrat-

ed with other data from the same or different

types of experiments. Underlying this detailed

exercise are two expansive goals. One is to iden-

tify markers of toxic exposures or disease. The

other is to understand the biological processes

underlying disease. The latter is called biological

inference—the highly iterative process of infer-

ring cause-and-effect relationships from toxi-

cogenomics data, using computation efforts

linked to mathematics.

Efforts to identify markers of exposure are con-

cerned primarily with discerning patterns in output

from microarray, proteomics, and metabolomicsD
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technology. These patterns can be character-
ized as molecular fingerprints and can be
extremely useful in diagnosing levels of
exposure, even though researchers may not
understand exactly why particular patterns
appear. In contrast, biological inference is
concerned with an understanding of how
patterns in genomics data actually translate
into the details of gene transcription, pro-
tein creation, and metabolism. 

By studying associations among the
expression of genes, proteins, and metabolites,

researchers try to identify genes of influence,
many of which act as hubs of metabolic net-
works, affecting many other genes. Transient
hubs, those that act briefly as a cell changes
state, can be especially difficult to find and
analyze. A goal of special importance to tox-
icogenomics is to distinguish endogenous
pathways—those involved in the cell’s nor-
mal chores of metabolism and reproduc-
tion—from exogenous pathways triggered by
exposures to drugs or toxicants. The ultimate
goal is to follow a pathway from the expres-
sion of genes through the creation and mod-
ification of proteins and metabolites, as well
as all the associated gene–gene, protein–pro-
tein, and metabolite–metabolite interactions
in between. 

Anchor Management
Inferring biological pathways requires
research teams to mine and interpret vast
quantities of genomics data. Interpretation
strategies include grouping or clustering
data to find patterns as well as use of statis-
tical methods to filter data on genes with the
strongest signals or those expressed in con-
cert. One key technique in biological infer-
ence is phenotypic anchoring, using known
biological information to interpret signals,
or uncharacterized data, from genomics

experiments. These signals indicate the pres-
ence of molecules (such as mRNA or pro-
teins in a given range of molecular weights)
and can take various forms, depending on
the type of technology used. For example, in
microarray experiments signals take the
form of fluorescence generated by the bond-
ing of strands of mRNA to the microarray
slide. In some studies, these genomics data
are compared to data from traditional toxi-
cology tests performed on the same samples.
In others, the team integrates what is already

known or suspected about biological path-
ways based on past studies. 

Examples of research using phenotypic
anchoring can be found in acetaminophen
studies sponsored by the NIEHS National
Center for Toxicogenomics (NCT). In this
research, microarray data were compared to
those from traditional toxicology tests,
which both aided in interpretation of the
microarray data and led to the development
of new knowledge and understanding about
the toxicity of this commonly used drug. 

For example, in one study published in
the July 2004 issue of Toxicological Sciences,
data from microarrays and traditional toxic-
ity tests confirmed previous results from
other labs showing that toxic doses of aceta-
minophen deplete adenosine triphosphate
(ATP; molecules that store cellular energy)
and damage mitochondria, the organelles
that produce ATP. In addition, microarray
data revealed other exposure effects that tra-
ditional tests had missed. For example, liver
cells begin to express genes consistent with
cellular energy loss at doses too low to cause
the kind of cell damage that can be detected
by histopathology and other traditional
methods. 

The microarray data also provided
information on a possible new signature of

acetaminophen toxicity involving the metal-
lothionein gene and several others, which
may be involved in the liver’s antioxidant
defense system. “We didn’t previously know
that those genes were involved in acetamin-
ophen toxicity, but it fits into the biological
story of cell defense mechanisms,” says
Alexandra Heinloth, a research scientist with
the NCT and lead author of the 2004 paper. 

A different type of phenotypic anchoring
was used in a study of pathways linked to
inflammation. Microarray experiments with

mouse strains that exhibited both high and
low levels of response to inhaled lipopolysac-
charide compounds (which trigger immune
responses) identified about 500 genes that
were responsive in at least one of the strains.
Researchers from Duke University, The
Institute for Genomic Research, and George
Washington University, including John
Quackenbush, now a professor in biostatis-
tics and computational biology at the Dana-
Farber Cancer Institute and the Harvard
School of Public Health, used two independ-
ent methods to filter the results of these
microarray experiments, to prioritize genes
for future study. 

In the first method, the team identified
30 genes whose expression levels best distin-
guished the low- and high-responding mice.
In the second method, they used quantitative
trait locus (QTL) analysis to find regions
genetically linked to the strength of the lipo-
polysaccharide-induced response. When the
researchers compared their 500-gene list to
the QTL regions, they found a set of 28 that
were both differentially expressed and genet-
ically linked to the observed phenotypes.
There was no overlap among the genes iden-
tified by these two methods. 

In a report of the study published in the
June 2004 issue of Genomics, the researchers
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coregulation. If you look across hundreds of arrays and find that

expression of two genes [moves] up and down together, that’s highly

suggestive of interactive behavior. It’s not so much biological modeling

as it is finding associations that are suggestive of biological interactions.

–Terry Speed
University of California, Berkeley
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acknowledge that they may miss genes with
important roles with these filtering methods.
They argue, however, that their approaches
provided an objective way to obtain a small
number of high-priority genes for future
functional studies. 

Beyond Microarrays
Although researchers aim to eventually link
pathways from expression to metabolism,
genomics research thus far has focused on
microarrays because this technology is more
standardized and far more widely available
than methods for analyzing proteins (prima-
rily mass spectrometry) and metabolites
(mass spectrometry and nuclear magnetic
resonance). Although array-like assays for
proteins have been developed, some using
antibodies as tags, these technologies are still
relatively exploratory and limited in scope,
says Terry Speed, a professor in the
Department of Statistics at the University of
California, Berkeley. 

But microarray data have serious limita-
tions when it comes to biological inference.
Although they can show associations, such
data can rarely indicate cause and effect.
“What people can find across many arrays
are patterns suggesting coregulation,” says
Speed. “If you look across hundreds of arrays
and find that expression of two genes
[moves] up and down together, that’s highly
suggestive of interactive behavior. It’s not so
much biological modeling as it is finding
associations that are suggestive of biological
interactions.” One of the greatest limitations
of microarray data reflects the underlying
biology: the expression of mRNAs doesn’t

always translate into proteins because silenc-
ing RNAs and other mechanisms can block
the translation process. 

One way to bridge the gap between gene
expression and protein creation is to assess
the proteins in a cell through proteomics
analysis. Another is to gain a better under-
standing of the “transcriptome” (also called

the “RNAome”)—the expression of all regu-
latory elements operating to regulate the
expression, stability, and translation of tran-
scripts (strands of RNA) in the cell. “To
make genotype–phenotype correlations, you
need to have a complete catalogue of tran-
scripts that are expressed at each locus where
such genotype–phenotype correlations are
to be made,” says Thomas Gingeras, vice
president of biological science at Affymetrix.

Gingeras and other researchers at Affy-
metrix and the National Cancer Institute
have studied the RNAome with microarrays
containing probes for the entire nonrepeti-
tive sequences, not just the coding regions,
of 10 human chromosomes. Data from
these arrays have demonstrated that RNA
activity is extraordinarily varied and com-
plex. Although researchers have been able to
identify the roles of many sequences, such as
ribosomal and protein-coding RNAs, they
have had to classify a substantial number of
the newly discovered transcripts as TUFs
(transcripts of unknown function). 

Sequences for TUFs are equally compli-
cated. “Curiously enough, many of these
transcripts are sitting in the middle of genes,
overlapped on both the sense and antisense
strands of coding sequences,” says Gingeras.
The sense, or template, strand of DNA is the
one that is copied or transcripted. The
authors speculate that the RNAs correlating
to antisense strands may be cRNA copies,
created in somewhat the same way as the
cDNA copies of RNA used in microarrays.

Another challenge in all types of
genomics experiments is detecting signals
from molecules expressed at low levels.

Quantities of mRNAs and proteins in a sam-
ple can vary by a ratio of 1 million to 1. Some
of these low-expression molecules could be
critical triggers to biological cascades, but
may be lost in the signal-to-noise ratio. 

Proteomics technologies are making
progress in detecting low-expression mole-
cules through more sophisticated sorting

technologies such as SELDI-TOF (a
method that selects only a subset of proteins
from a given sample for analysis). To detect
low-expression transcripts and quantify the
number of mRNAs in a given sample,
researchers studying gene expression turn to
methods such as RT-PCR (which can
involve the use of controls and fluorescent
markers to quantify the amount of a mole-
cule produced during polymerase chain
reaction) and SAGE (which involves mark-
ing each transcript with a unique tag and
then linking and sequencing the combined
transcripts to count the number of times
each tag occurs).

Analysis Issues
As great as the challenges are in developing
technology to detect and identify tran-
scripts, proteins, and metabolites, the diffi-
culties in analyzing the resulting data may be
even greater. As research teams plan their
experiments, they must chose from a bewil-
dering and ever-changing assortment of sta-
tistical methods for data analysis. Speed says
no one protocol will work for all experi-
ments: “Usually there will be one method
that will be preferred and often several that
will be acceptable. All of them have their
strengths and weaknesses.” 

Part of the difficulty relates to the cur-
rent nature of genomics experiments.
Whereas traditional statistics methods are
based on the assumption that a study will
have far more samples than data points per
sample, genomics experiments usually
involve the inverse situation: a few dozen
samples, with tens of thousands of data

points per sample. New statistical methods
are being developed to deal with the peculi-
arities of genomics data. Simultaneously,
other teams are working to ensure that the
data to be analyzed are valid by addressing
issues such as differences in experimental
technologies and laboratory procedures, and
revisiting the effects of sample size.
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Sample sizes in most of the current systems biology experiments are

not adequate to infer the kinds of complex networks that are the

goal of such studies.

– Gary Churchill
Jackson Laboratory



Recent studies have shown that
increased standardization of microarray plat-
forms has greatly reduced the influence of
platform type on results. In a study pub-
lished in the May 2005 issue of Nature
Methods, Quackenbush and colleagues
found that differences in microarray plat-
forms (oligonucleotide versus spotted
cDNA) did indeed affect results. However,
these differences were eclipsed by a very high
correlation between the platforms in expres-
sion changes caused by varying exposures to
angiotensin II, a potent peptide that causes
blood vessels to constrict. “The question we
asked was, does the biology or the platform
dominate?” says Quackenbush. “For more
than ninety percent of genes for which we
could make a reasonable comparison, we
found that biology dominated platform.” 

The bad news is that variations in proto-
cols (for RNA labeling, hybridization, and
microarray processing), statistical methods for
data acquisition and normalization, and other
“lab effects” can still significantly impact
microarray data. This was the finding of two
other studies also published in the May 2005
issue of Nature Methods, one led by Rafael
Irizarry, an associate professor in the Depart-
ment of Biostatistics at The Johns Hopkins
University, and another by researchers with
the NIEHS Toxicogenomics Research Con-

sortium (TRC). Both studies compared the
results of microarray analysis of identical sam-
ples performed at multiple laboratories, and
both found that, with care, results can be
comparable across labs. However, “you have to
pay close attention to how you do things. You
have to standardize your protocols from lab to
lab,” says Katherine Kerr, a coauthor of the
TRC study and the director of the Bio-
informatics and Biostatistics Facility Core at
the University of Washington–NIEHS Center
for Ecogenetics and Environmental Health. 

The design for most microarray experi-
ments calls for three to five samples per
treatment condition. However, some statisti-

cians say that sample size must be increased
to generate the statistical power necessary to
infer biological pathways. “Sample sizes in
most of the current systems biology experi-
ments are not adequate to infer the kinds of
complex networks that are the goal of such
studies,” says Gary Churchill, a staff scientist
at the nonprofit Jackson Laboratory in Bar
Harbor, Maine. 

Churchill is a cofounder of the Collabo-
rative Cross, a project to develop a panel of
1,000 new and genetically diverse mouse
strains. The mice are descendants of just eight
parent strains, minimizing the need for geno-
typing, and are being bred for maximum
genetic variation, allowing for a plethora of
diverse yet controlled strains. Not all studies
will require 1,000 mice, Churchill says,
although some will. The resource is being
generated to cover a wide range of needs.

Interpretation Is Key
Before teams can begin analyzing data, they
must be confident that they are interpreting
the raw signals accurately. For microarray
data, this involves summarizing the fluores-
cence data for each spot—which are generat-
ed by the individual mRNAs linked to the
probes—into a single value for each gene.
“The hardest challenge is removing the com-
ponent of intensity that is due to background

noise,” says Irizarry. Some background
noise—extraneous signals that can be con-
fused with the signals being observed—can
be caused by mismatches in the attachment
of mRNA to the chip. 

Another potential issue, says Irizarry, is
that some of the 25–base pair probes used
on oligonucleotide chips can be “stickier”
than others—that is, more likely to attract
mRNA. “If one gene is represented by a
sequence that’s sticky, it will collect more
than a probe that is less sticky,” he says. As a
result, results from such a probe may reflect
the chemistry of cDNA–mRNA bonding
more than the biology of the sample.

Once values have been established for
each gene in an array, the signals need to be
normalized across the array. Equalizing fluo-
rescence signals in two-color arrays is the
most basic type of normalization. If equal
amounts of two samples were hybridized to
an array, then the total fluorescent signal
from each sample should also be equivalent.
If one is uniformly higher, a statistician can
adjust the fluorescence values to better rep-
resent the relationship between the samples.
Several more-involved processes may also be
used to normalize data. 

According to the TRC study, normal-
ization procedures seem to increase the
accuracy of microarray data. But there still
remain lots of unanswered questions about
normalization formulas, as well as the
algorithms used to analyze genomics data,
says Kerr. “The data look better when
we’re done with [normalization],” she says.
“But we don’t know if we’ve really made a
correction.”

After normalization, researchers can take
a basic count of changes in gene expression.
Churchill calls this “making lists.” He ex-
plains: “You measure microarray data from
normal tissue and from diseased tissue and
. . . generate lists of genes that are up or down.
The problem now is how we take those lists
and turn them into biological sense.”

Turning Data into Sense
The next step for many teams is to shorten
the list. They may focus on genes with the
strongest or most closely correlated changes
in expression. Often this process is
informed by preexisting information about
gene function. But care must be taken.
Setting filters that are too tight can cause an
analysis to ignore genes of importance,
while setting parameters too broadly can
cause false positives. 

That is why different groups can have
difficulty replicating results on microarray
experiments, says Greg Carr, a research fel-
low working in product safety at Procter and

A 392 VOLUME 113 | NUMBER 6 | June 2005 • Environmental Health Perspectives

Focus | From Point B to Point A

Statistics isn’t about the formulas, how to crunch numbers. It’s about

the concepts. It’s about how to quantify uncertainty, about how to

take data and turn it into knowledge.
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Gamble. If the statistical power—or proba-
bility of detecting genes of significance—is
set relatively low, say 10%, one lab may pick
up on some of the low-power genes and a
second lab may pick up on others, but no
one lab is likely to detect them all, he says. 

Another approach sometimes used with
or instead of data filtering is to cluster, or
group, data according to similarities in
expression patterns. Methods include hierar-
chical or “Eisen” clustering, which produces

a tree-like structure; κ-means clustering,
which produces line graphs; and principal
components analysis, which produces a
three-dimensional array that can be rotated.
Clustering methods are usually exploratory
and, Speed says, don’t provide an answer to
a well-defined question; they can only show
associations among genes. However, they
can provide effective ways to organize data.
Scientists then have to infer cause and effect.

Various types of modeling algorithms
can aid in this inference process. One of the
simplest models, Boolean networks, can
capture multivariate gene relationships that
can be inferred from measurement data. Ilya
Shmulevich, an associate professor at the
Institute for Systems Biology in Seattle, has
worked to increase the flexibility of Boolean
network modeling through the development
of probabilistic Boolean networks. These
networks allow for multiple functional pos-
sibilities for each gene, mimicking underly-
ing biological and measurement uncertainty,
says Shmulevich. He and his colleagues have
applied probabilistic Boolean network
analysis to gene expression data from studies
of melanomas and gliomas. 

When using most modeling methods,
“you have to put in a rather limited set of
genes and then learn something about that
set,” says Speed. The art of assigning genes
to modeling programs and deciding how to
filter the results of other genomics data
draws heavily on preexisting knowledge
about the systems in general. Researchers

comb through the scientific literature or
databases of genetics, proteomics, and
metabolomics data. However, database min-
ing can only take researchers so far. Only
60–65% of human genes have been ade-
quately annotated as to function, says
Raymond Tennant, director of the NCT.
This makes it difficult to infer the function
of genes that haven’t yet been annotated.

The Chemical Effects in Biological Sys-
tems Knowledgebase, set to become publicly

available in late 2005, will provide access to
microarray data for about 140 reference
compounds, and comprehensive data sets on
about 10 hepatotoxicants, including aceta-
minophen. “The database will also include
reference information on the biological
effects of chemicals and other agents, and
pathways related to their mechanism of
action,” says Michael Waters, NCT assistant
director for database development.

Speaking the Language of Inference
Beyond having data in hand, biological infer-
ence requires a wide range of skills and
expertise. “There’s a need for transdisciplinary
efforts—notice I said transdisciplinary rather
than interdisciplinary,” says Kenneth Ramos,
chair of the Department of Biochemistry and
Molecular Biology at the University of
Louisville and EHP ’s toxicogenomics editor.
“We need people who speak more than one
language, a new type of scientist. We’ve
become so specialized that it is difficult to
cross disciplines with fluidity. I think that
research in biological inference will demand
that ability. Classically trained biologists will
need to reengage their appreciation and
understanding of mathematics in order to
begin to tackle some of these questions.” 

Biologists may also need to have a better
understanding of, and possibly training in,
statistics. “Taking Stats 101 isn’t necessarily
going to imbue the concepts you need,” says
Churchill. “Statistics isn’t about the formu-
las, how to crunch numbers. It’s about the

concepts. It’s about how to quantify uncer-
tainty, about how to take data and turn it
into knowledge.”

“It would be beautiful if you had that
[statistical] training when you start in the
field,” says Heinloth. “But if you include
enough statisticians and bioinformaticists
on your team as equal members, you can
have that covered.” In Heinloth’s research
group, statisticians are involved in experi-
ments from the beginning. “There’s hardly

any decision in a study that’s made by only
one person,” she says. However, she notes
that this collaborative process is not “science
by committee.” As experiments are designed
and implemented, team members weigh in
only in their areas of expertise.

As researchers delve into this enormous
quantity of data, they are confronted with
the limits of human cognitive ability. It is
not possible for a single individual to fully
comprehend the astonishing complexity of
metabolism in even a single cell type. So as
researchers develop new technologies and
new statistical tools for genomics research,
and for inferring the ramifications of the
data they uncover, they also need to find
new ways to approach the limits of their
own understanding. 

“We need to simplify to understand
complexity, to start off with the exploration
and understanding of simple systems. If you
try to look at the complexity first off, you’ll
never really unravel it,” says Ramos. There’s a
lot of potential for error in starting with sim-
ple systems, he adds. But it’s a way to start, to
gradually build up to more complex models.

“As we accumulate more data, we’re
understanding how limited our understand-
ing is and how much more there is to dis-
cover,” says Churchill. “That can be dis-
couraging from a diagnostic sense, but it’s
wonderful to have a new universe opening
up in front of you.”

Kris Freeman
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