Swift Observation of GRB 071031

M.C. Stroh (PSU), A. A. Breeveld (MSSL/UCL), M. Stamatikos (GSFC/ORAU), A. Falcone (PSU), S. T. Holland (CRESST/USRA/GSFC), J. L. Racusin (PSU), S.D. Barthelmy (GSFC), D.N. Burrows (PSU), P. Roming (PSU) & N. Gehrels (GSFC), for the Swift Team

1 Introduction

BAT triggered on GRB 071031 at 01:06:36 UT (Trigger 295670) (Stroh, et al., GCN Circ. 7020). This was a long burst with $T_{90}(15-350\ keV)=180\pm10\ sec$ (estimated error including systematics). Swift slewed immediately to the burst with XRT and UVOT beginning follow-up observations at $T+103\ s$ and $T+112\ s$ respectively.

Our best position is the UVOT position: $RA(J2000) = 6.4053deg \ (00h25m37.27s), \ Dec(J2000) = -58.05956deg \ (-58d03'34.2")$ with an uncertainty of 0.5 arcsec.

2 BAT Observation and Analysis

Using the data set from T-119 to T+297 sec from recent telemetry downlinks, we report further analysis of BAT GRB 071031 (Trigger 295670) (Stroh, et al., GCN Circ. 7020). The BAT ground-calculated position is RA(J2000) = 6.399deg (00h25m35.8s), Dec(J2000) = -58.048deg (-58d2'51") with an uncertainty of 2.1 arcmin, (radius, sys+stat, 90% containment). The partial coding was 75%.

The mask-weighted light curve (Fig.1) shows multiple peaks. The first starts at $\sim T-10~sec$, peaks at $\sim T+5~sec$, and is essentially back to baseline by $\sim T+40~sec$. The next largest peak starts at $\sim T+100~sec$, peaks at $\sim T+105~sec$, and returns to baseline by $\sim T+180~sec$. $T_{90}(15-350~keV)=180\pm10~sec$ (estimated error including systematics).

The time-averaged spectrum from T-4.5 to T+192.5 sec is best fit by a simple power-law model. The power law index of the time-averaged spectrum is 2.42 ± 0.29 . The fluence in the 15-150 keV band is $(9.0 \pm 1.3) \times 10^{-7}$ erg/cm². The 1-sec peak photon flux measured from T+2.92 sec in the 15-150 keV band is 0.5 ± 0.1 ph/cm²/sec. All the quoted errors are at the 90% confidence level.

We note that the fluence ratio in a simple power-law fit between the 25-50~keV band and the 50-100~keV band is 1.34. This fluence ratio is larger than 1.32 which can be achieved in the Band function of $\alpha=-1.0,~\beta=-2.5,$ and $E_{peak}=30~keV$. Thus, preliminary analysis shows that E_{peak} of the burst is very likely around or below 30~keV. Therefore the burst can be classified as an X-ray flash.

3 XRT Observations and Analysis

We have analysed the first 4 orbits of Swift-XRT data obtained for GRB 071031 (Stroh et al. GCN Circ. 7020), totaling 658 s of Windowed Timing (WT) data and 7.8 ks of Photon Counting (PC) data.

Using 246 s of overlapping XRT Photon Counting mode and UVOT V-band data, we find an astrometrically corrected X-ray position (using the XRT-UVOT alignment and matching UVOT field sources to the USNO-B1 catalogue): RA(J2000) = 6.40565deg~(00h25m37.36s), Dec(J2000) = -58.05926deg~(-58d03'33.3") with an uncertainty of 2.0 arcsec~(radius, 90%~confidence). This is 2.9 and 1.1 arcsec~(radius, 90%~confidence). This is 2.9 and 1.1 arcsec~(radius, 90%~confidence).

The light curve begins with a count rate $\sim 150 \ cts/s$ and it is dominated by flaring. Two of the flares reach $\sim 200 \ cts/s$ while in WT mode. By $T+10 \ ks$, the flux decreased down to a count rate

GCN Report 99.1 01-Nov-07

Figure 1: BAT Light curve. The mask-weighted light curve in the 4 individual plus total energy bands. The units are counts/sec/illuminated-detector and T_0 is 01:06:36 UT.

 $\sim 0.01~cts/s$. Due to the amount of flaring in this X-ray light curve, we are unable to determine the slope of the underlying power laws and thus are presently unable to predict the count rate at T+24~hours.

The WT data (109-750 seconds) can be modeled as an absorbed power-law, with photon index of 1.89 ± 0.02 and a total absorbing column of $N_H = (7.0 \pm 0.4) \times 10^2 0 cm^{-2}$ which is greater than the Galactic value of $1.22 \times 10^2 0 cm^{-2}$. The $0.3 - 10 \ keV$ absorbed (unabsorbed) flux during this time is $1.2 \times 10^{-9} \ (1.4 \times 10^{-9}) \ ergs/cm^2/sec$.

4 UVOT Observation and Analysis

The Swift/UVOT observed the burst GRB 071031 (Stroh et al. GCN Circ. 7020) starting with the finding chart exposure in white, 114 s after the BAT trigger. The afterglow is detected at the UVOT position given in Stroh et al. (GCN Circ. 7020) in white, v and b until at least 7000s after the trigger. It is barely detected in u and not at all in the UV filters; this is consistent with the redshift of z = 2.692 found by Ledoux et al. (GCN Circ. 7023). The brightness apparently increases for the first few hundred seconds and then fades with an estimated temporal slope in the v filter of $\alpha = 0.56$.

Figure 2: XRT Lightcurve. Counts/sec in the 0.3-10 keV band: Window Timing mode (blue), Photon Counting mode (red). The approximate conversion is $1count/sec = 6.8 \times 10^{-14} \ ergs/cm^2/sec$.

The initial UVOT magnitudes and upper limits from single exposures or co-added exposures are summarized in Table 1.

The values in the table are not corrected for the expected Galactic extinction corresponding to a reddening of $E_{B-V} = 0.012 \ mag$ in the direction of the burst (Schlegel et al. 1998).

Filter	Tstart(s)	Tstop(s)	Exp(s)	Mag
white	114	213	99.8	19.88 ± 0.14
white	715	724	9.8	19.3 ± 0.3
white	867	966	99.8	19.41 ± 0.1
white	6778	6977	199.8	20.67 ± 0.18
v	220	619	399.8	19.08 ± 0.15
v	973	1219	246.2	18.5 ± 0.13
v	11517	11816	299.8	19.93 ± 0.32
b	700	709	9.8	>18.8 (3 sigma UL)
b	6573	6772	199.8	20.25 ± 0.23
u	675	847	38.9	19.38 ± 0.38
u	4933	6567	393.3	>20.8 (3 sigma UL)
uvw1	651	16990	1317.7	>21.4 (3 sigma UL)
uvm2	626	12782	1089.4	>21.2 (3 sigma UL)
uvw2	730	11206	1118.4	>21.5 (3 sigma UL)

Table 1: Magnitudes and 3 sigma upper limits from UVOT observations