
Epidemiologic studies often collect quantita-
tive measurement data to improve precision
and reduce bias in exposure assessment and in
the estimation of the effect of exposure on risk
of disease, as measured by odds ratios (Hatch
and Thomas 1993; Sim 2002). Some measure-
ments serve as biomarkers for “dose”—for
example, residual radiation in tooth enamel as
a marker of exposure to ionizing radiation
(Desrosiers and Schauer 2001)—whereas other
measures are more indirect—for example, uri-
nary cotinine level as an indicator of exposure
to environmental tobacco smoke (Woodward
and Al Delaimy 1999). Problems in the analy-
sis of measurement data commonly arise
because measurement procedures often have
detection limits (DLs). A DL may represent a
floor value, a ceiling value, or an interval where
precise quantitative levels cannot be deter-
mined. For example, exposure assessment for
nuclear workers relied on radiation film badges
that record radiation levels only above a fixed
minimum, because of limits in film photo-
sensitivity (Gilbert et al. 1996; Kerr 1994).
Investigators encountered ceiling levels of par-
ticle-bound polycyclic aromatic hydrocarbons
in rural Chinese dwellings when values
exceeded 60,000 ng/m3, the upper limit of the
measurement protocol (Ligman et al. 2004).

Although values below or above a DL are
“missing,” data are not missing at random in
the usual sense, because their absence reflects
levels of exposure. This type of missing data
is called “nonignorable missing,” and the
simple exclusion of such “interval-measured”
data can bias results (Little and Rubin 1987;
Schafer 1997).

Analytic procedures for environmental
measurement data with DLs are often pre-
sented in the context of environmental moni-
toring where the primary goal is estimation of
distributional parameters when numbers of
measurements are limited (Gleit 1985; Haas
and Scheff 1990; Helsel 1990; Persson and
Rootzen 197; Singh and Nocerino 2002;
Travis and Land 1990). In epidemiologic
studies, measurement data are used to charac-
terize exposures of study subjects and are typ-
ically employed in two ways: a) to develop
regression models to examine the relationship
between a measured value (dependent vari-
able) and covariates (independent variables);
and b) as covariates in a risk analysis to esti-
mate the relationship between a binary dis-
ease outcome and exposure measures and
other factors. In this article, we focus on the
first application, namely, the regression of an
exposure measurement on covariate factors.

The use of measurements with DLs in risk
regression will be considered in another article.

Investigators apply various strategies
for measurement data with DLs, including
replacement of measurements below a DL
with a single value, for example, DL, DL/2,
or DL/√2

–
(Helsel 1990; Hornung and Reed

1990). Less frequently, measurements below
a DL are assigned a value of zero. Unless such
measurements indicate a true zero exposure,
this latter strategy clearly distorts results and
is not considered further in this article. If
the distribution of the measurement data is
known—for example, measurements are log-
normally distributed—then an alternative
strategy replaces values below the DL with
expected values of the missing measurements,
conditional on being less than the DL
(Garland et al. 1993; Gleit 1985). For meas-
urement Z and detection limit DL, we denote
this value E[Z |Z < DL]. Calculation of the
conditional expected value requires the inves-
tigator to either know or estimate parameters
of the measurement distribution.

Substitution schemes like those described
above are simple, because one value replaces
all measurements below the DL, and, except
for E[Z |Z < DL], distributional assumptions
are not considered. However, because a single
value represents all measurements below the
DL, parameter estimates and their variances
are likely biased, unless the proportion is
small, which potentially distorts inference.
This limitation led to a single-impute “fill-in”
method (Helsel 1990; Moschandreas et al.
2001a, 2001b). An investigator first char-
acterizes the form of the distribution and
estimates its parameters and then assigns ran-
domly sampled values below the DL from the
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estimated distribution. Fill-in values along
with measured values above the DL are then
used in analyses. With appropriate estimation
techniques, this approach accommodates
multiple DLs.

As described by Helsel (1990) and applied
by Moschandreas et al. (2001b), the fill-in
method did not include complex modeling of
regression factors. In addition, although the
fill-in approach assigned random values from
an appropriate distribution, it did not account
for the variability of the imputation process,
because the inserted values are not real data. In
this article, we illustrate methods for epidemi-
ologic data that account for measurements
with DLs, using data from a case–control
study of non-Hodgkin lymphoma (NHL)
(Colt et al. 2004). The example evaluates the
relationship between concentrations of pesti-
cide analytes in carpet dust and use of pesti-
cide products in and around the home. We
restrict analysis to control subjects, with adjust-
ment for study design factors.

Example Data from a
Case–Control Study of NHL
and Pesticides
The principal exposure of the general popula-
tion to pesticides occurs in the home (Nigg
et al. 1990) as the result of indoor use, track-in
or drift from outdoors, intrusion of vapors from
foundation treatments, or take-home contami-
nation from occupational use (Bradman et al.
1997; Lewis et al. 1999, 2001). Pesticide
residues are retained in carpets, migrating into
the underlying foam pad, and may persist for
months or years.

Data source. We consider data from con-
trols from a multicenter, population-based
case–control study of NHL, conducted in the
United States: the Detroit, Michigan, metropol-
itan area; the state of Iowa; Los Angeles County,
California; and the Seattle, Washington, metro-
politan area (Colt et al. 2004). Controls include
1,057 residents 20–74 years of age, frequency
matched to cases on age, sex, race, and study
area, with an oversampling of African-American
subjects in Los Angeles and Detroit.

Interviewers collected information from
respondents on lifetime residential history and
the frequency and form of pesticides used to
treat various types of pests (e.g., flying insects,
crawling insects, lawn weeds). Interviewers
obtained vacuum cleaner bags from 95% of
subjects who had used their vacuum cleaners
within the past year and had owned at least
half of their carpets or rugs for 5 years or more.
Bags were shipped in insulated boxes by
overnight mail to Southwest Research Institute
and placed in freezers. Samples were collected
and analyzed for 513 control subjects.

Measurement of carpet dust. The protocol
for the collection and measurement of dust
samples has been described previously (Colt

et al. 2004). Briefly, before extraction and
analysis, dust samples were sieved through a
100-mesh sieve to obtain the fine (< 150 µm)
dust. Neutral extractions were carried out for
25 pesticides (18 insecticides, six herbicides,
and ortho-phenylphenol), seven polycyclic
aromatic hydrocarbons, and five polychlori-
nated biphenyl congeners. Acid extractions
were carried out for four herbicides and penta-
chlorophenol. Extracts were analyzed using gas
chromatography/mass spectrometry (GC/MS)
in selected ion monitoring mode. Analyte
amounts were quantified using the internal
standard method. In the full study, GC/MS
analysts were blinded to disease status.

After analyzing about half of the samples,
investigators began monitoring additional ions
for some neutral analytes to clarify identifi-
cation at low levels, resulting in raised DLs for
14 pesticides. DLs were also raised when < 2 g
dust were available. An additional problem
with some dust samples involved the presence
of interfering compounds (i.e., compounds
that coeluted with the target analyte), creating
uncertainty and prohibiting assignment of
specific concentrations.

For three scenarios analysts could provide
concentrations only within an interval, which
we accommodated by defining a lower bound
(LB) and an upper bound (UB) of possible
values. If the analyte was not detected and no
interferences were present (type I), the LB was
set to zero and the UB was set to the specified
DL. If there was an interfering compound but
insufficient evidence for the presence of the
target analyte (type II), the GC/MS analyst
reported the result as a nondetect with a
DL equal to the entire peak of the coeluting
compounds. We set the LB to zero and the
UB to 20% of the raised peak or to the DL,
whichever was larger. If the target analyte and
the interference were both present (type III),
the analyst reported an “elevated detect” with
a concentration equal to the entire peak of the
coeluting compounds. We set the LB bound
to the maximum of 20% of the recorded
peak, or the DL, and the UB to the maxi-
mum of 90% of the reported peak, or the
DL, resulting in an interval bounded away
from zero.

For ease of presentation, we allow the
replacement of measurements below the DL
with DL/2 (which applies to missing data
types I and II) to refer more generally to the
replacement with (LB + UB)/2 (which applies
to missing data types I, II, and III).

Methods and Analysis

Preliminary analysis indicates that measure-
ment data are consistent with a log-normal
distribution. If Z denotes the measured value
of an analyte and is log-normally distributed,
denoted Z ~ LN(µ, σ2), then by definition
log(Z) is a normal random variable with mean

µ and variance σ2, denoted log(Z) ~ N(µ, σ2)
(Singh et al. 1997). Suppose X = (X0, … ,
XK)t is a column vector of covariates, with X0
= 1, and β = (β0, … , βK)t is a column vector
of regression parameters, where t denotes vec-
tor transpose. If data are complete, then a lin-
ear regression equation has the form log(Z) =
βtX + ε, where ε ~ N(0, σ2). For each X, the
model implies that Z is log-normally distri-
buted with mean βtX; that is, Z ~ LN(βtX, σ2).

Regression analysis in control data. We
evaluate the association between analyte con-
centration and pesticide use by fitting a linear
regression model of the logarithm of the ana-
lyte level on subject characteristics. Regression
(independent) covariates include indicator vari-
ables for season of sample collection, presence
of oriental rugs, study center, sex, age (< 45,
45–64, ≥ 65 years), race (African American,
Caucasian, other), type of home (single family,
townhouse/duplex/apartment, other), year of
home construction (< 1940, 1940–1959,
1960–1979, ≥ 1980), and educational level
(< 12, 12–15, ≥ 16 years). As in Colt et al.
(2004), covariates vary slightly with analyte.
Models also include five variables describing the
use of insect treatment products: ever/never used
products to treat for crawling insects, flying
insects, fleas/ticks, termites, and lawn/garden
insects. We use data from current homes only.

Regression analysis is hampered by the
presence of measurements known only within
bounds. We assume that the probability dis-
tributions of measurements below the DL
(more precisely, within the LB and UB interval)
depend only on observed data; that is, the inter-
val-measured concentrations arise from the
same distributions that generate the measured
values. Let F(•) be the cumulative distribution
function and f (•) the probability density func-
tion for a log-normal random variable. Suppose
Xi = (Xi0, … ,XiK)t is the covariate vector for
the ith of i = 1, … , n subjects. LBi and UBi
are recorded for i = 1, … , n0 individuals,
whereas a specific Zi measurement is recorded
for i = n0 + 1, … , n0 + n1 individuals. LB and
UB are subscripted to allow different DLs.
Using a Tobit regression approach (Gilbert
1987; Persson and Rootzen 1977; Tobin
1958), the log-likelihood function has the
form

. [1]

The first summand derives from the n0 interval
measured values and involves the difference of
the cumulative distribution function F evalu-
ated at UB and at LB; that is, the probability
the measurement lies between the LB and UB.
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The second summand derives from the n1
detected values. Maximum likelihood estimates
(MLEs) for β and their covariance matrix are
obtained by maximizing Equation 1 and com-
puting the inverse information matrix using
standard methods.

Imputation of missing concentrations. If
the goal is to evaluate pesticide use and analyte
levels in carpet dust, represented by the β para-
meters, then the Tobit regression of Equation
1 is sufficient and no imputation is required.
For further analysis or for graphical display, it
is useful to generate values for measurements
below DLs. We consider several different
approaches, including inserting DL/2, insert-
ing E[Z|Z < DL], or using a single or multiple
imputation (Little and Rubin 1987).

A multiple imputation procedure is
carried out as follows. Using all data (meas-
ured concentrations, missing data types I–III,
and covariates), we create the log-likelihood
function 1, solve for the MLEs of β and σ2

(denoted β̂ and σ̂2), and impute a value by
randomly sampling from a log-normal dis-
tribution with the estimated parameters.
However, in selecting fill-in values we cannot
ignore that β̂ and σ̂2 are themselves estimates
with uncertainties. We therefore do not use β̂
and σ̂2 for the imputation, but rather β̃ and
σ̃2, which are estimated from a bootstrap sam-
ple of the data (Efron 1979). Bootstrap data
are generated as described below by sampling
with replacement, and represent a sample
from the same universe as the original data.
We repeat the process to create multiple data
sets, which are then independently analyzed
and combined in a way that accounts for the
imputation. Differences in regression results
in the multiple data sets reflect variability due
to the imputation process.

This procedure, however, omits a source
of variability. We have tacitly assumed that the
LB and UB are fixed and known in advance.
When there are no interfering compounds
(missing type I), the assumption is justified
because the DL is determined before the
GC/MS dust analysis. When there are inter-
fering compounds (missing types II and III),
the assumption cannot be fully justified
because the bounds depend on the amount of
interference and therefore are random. In the
NHL data, we assume this uncertainty is small
relative to other uncertainties. The imputation
proceeds as follows:

Step 1: Create a bootstrap sample and
obtain estimates β̃ and σ̃2 based on Equation 2.
Bootstrap data are generated by sampling
with replacement n times from the n subjects.
Sampling “with replacement” selects one
record at random and then “puts it back” and
selects a second record. After n repetitions,
some subjects are selected multiple times,
whereas other subjects are not selected at all.
If wi is the number of times the ith subject is

sampled, then the log-likelihood function for
the bootstrap data is

[2]

Step 2: Impute analyte values based on
sampling from LN (β̃tX, σ̃2). For the ith sub-
ject, assign the value

[3]

This quantity consists of various elements.
F(LBi; β̃t X, σ̃2) and F(UBi; β̃t X, σ̃2) are the
cumulative probabilities at ULi and UBi,
respectively, based on parameters β̃, σ̃2. Both
values lie between zero and one. Select ran-
domly from a uniform distribution on the
interval [a, b], denoted Unif[a, b], in particu-
lar the interval [F(LBi; β̃tXi, σ̃2), F(UBi; β̃tXi,
σ̃2)]. The inverse cumulative distribution
function, F–1(•), is the required imputed value
in original units between LBi and UBi. Repeat
using the same β̃, σ̃2 for each missing value.
Detected values are not altered.

Step 3: Repeat steps 1 and 2 to create M
plausible (or “fill-in”) data sets. Remarkably,
M need not be large, and a recommended
value is between 3 and 5, with larger values if
greater proportions of data are missing (Little
and Rubin 1987; Rubin 1987). We select
M = 10 to fully account for the variance from
the imputation.

Step 4: Fit a regression model to each of
the M data sets and obtain M sets of parameter
estimates and covariance matrices. Combine
the M sets of estimates to account for the
imputation (Little and Rubin 1987; Schafer
1997). The imputation procedure results in
confidence intervals (CIs) that are wider than
the single-imputation, fill-in approach.

Simulation study. We conducted a simula-
tion study, using a simple regression model
with zero intercept and no covariates, to evalu-
ate the imputation approaches, the effects of

the proportion of data below the DL, and sam-
ple size. We generated data sets of size n by
sampling from a log-normal distribution with
parameters (µ, σ2), and defined the DL such
that in expectation p percent of the samples
falls below the DL; that is, DL = F–1(p; µ, σ2).
The simulation involves 5,000 independent
data sets for each set of parameters. We com-
pared five approaches: a) direct estimation
(Tobit regression) of MLEs (µ̂ and σ̂2) using
Equation 1; b) multiple imputation with
allowance for uncertainty in model parameters;
c) single imputation based on a random fill-in
value for each datum below the DL, using
MLEs (µ̂ and σ̂2) from Equation 1; d) insertion
of DL/2 for all data below the DL; and
e) insertion of E[Z|Z < DL] for data below the
DL with the expected value based on the
MLEs (µ̂ and σ̂2) from Equation 1. For
approaches b) through e), estimators are the
mean and variance of the logarithm of the
observed and imputed data, with adjustment
for multiple imputation in b). We compare
results with estimates based on complete data.

For the NHL example, we use SAS (SAS
System for Windows, version 8.2; SAS
Institute Inc., Cary, NC) to generate bootstrap
samples, fit linear regressions (PROC REG),
solve log-likelihood Equations 1 and 2 (PROC
LIFEREG), and combine results from multiple
data sets (PROC MIANALYZE). The simula-
tion was conducted using MATLAB (version
7.0; MathWorks Inc., Natick, MA).

Results

We limited results to four insecticides, which
exhibited various types and proportions of
missing data: propoxur and carbaryl, both
carbamate insecticides; chlorpyrifos, an
organophosphate; and α-chlordane, an
organochlorine.

Regression analysis in control subjects. After
omitting subjects’ missing questionnaire data,
there are 478 control subjects with carpet dust
measurements and all regression variables. The
percentages of measurements below DLs or
known only within bounds vary from 25.7%
for propoxur to 67.0% for carbaryl (Table 1).
The arithmetic mean (AM), geometric mean
(GM), and geometric standard deviation
(GSD), with fill-in imputations for interval-
measured values, indicate that concentrations
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Table 1. Percentage of measurements below DLs or known only within bounds and AMs, GMs, and GSDs
based on fill-in values from a single imputation (data on 478 control subjects).

Measurements known only within bounds
Type I Type II Type III Dust (ng/g)

Insecticide Percent Range Percent Range Percent Range AM GM GSD

Propoxur 21.1 (0–46.0) 2.9 (0–65.0) 1.7 (21.1–75.7) 456.6 65.6 6.0
Carbaryl 37.9 (0–260.0) 11.1 (0–268) 18.0 (20.7–694.8) 1503.0 64.0 14.0
Chlorpyrifos 28.2 (0–77.4) 0.2 (0–20.9) 0.0 — 893.1 105.6 8.3
α-Chlordane 60.9 (0–44.7) 0.0 — 0.4 (20.8–29.1) 90.7 11.6 8.0

Types of missing measurements are as follows: no analyte detected and no interfering compound (I), no analyte detected
but with an interfering compound present (II), and analyte and interfering compounds both present (III). The range for the
DLs reflects the minimum of LBs and the maximum of UBs for the nondetected measurements.



for the individual analytes varied substantially.
For carbaryl and α-chlordane, the GM falls
within the range of missing data. Figure 1A
and B show quantile plots for measurements
of propoxur and carbaryl and reveals good
concordance with a log-normal distribution;
Figure 1A and B show values used for imputa-
tion based on DL/2, denoted by stars, and the
conditional expected value, denoted by trian-
gles. For carbaryl, DL/2 values are nearly twice
the conditional expected values. By construc-
tion, the fill-in values conform to the estimated
distribution.

Table 2 shows proportional effects of the
use of the insecticide products in and around
the home for direct estimation of regression
parameters (Tobit regression), the multiple
imputation approach, the replacement of
missing concentrations by DL/2 and E[Z|LB
< Z < UB], and a single set of fill-in values.
Results differ slightly from those reported
by Colt et al. (2004) due to differences in
regressor variables. For the fill-in approach,
we impute missing values using a model with
regression variables (denoted “yes”) and with-
out regression variables except for an intercept
variable (denoted “no”).

In several instances, estimates for the vari-
ous types of pests treated differ substantially,
particularly for analytes with a high percentage
of missing data. The multiplicative standard
errors for the replacement approaches (i.e.,
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Figure 1. Plots under a log-normal distribution of quantiles of environmental measurements of (A) propoxur
and (B) carbaryl, and of regression residuals of measurements (Z) and predicted values (ZPred) after
accounting for covariates for (C) propoxur and (D) carbaryl. The AMs, GMs, and GSDs are computed from
imputed data. (A) AM = 456.6; GM = 65.6; GSD = 6.0. (B) AM = 1503.0; GM = 64.0; GSD = 14.0. (C) AM = 3.5;
GM = 0.9; GSD = 2.0. (D) AM = 15.1; GM = 0.9; GSD = 2.6.

Table 2. Proportional increase in analyte concentration in carpet dust (ng/g) for selected uses.

Lawn/garden
Insecticide, imputation Crawling insects Flying insects Fleas/ticks Termites insects
approacha method Adjustment exp(β) SE exp(β) SE exp(β) SE exp(β) SE exp(β) SE

Propoxur
DL/2 No 1.426b 1.167 0.987 1.144 1.231 1.153 1.145 1.219 0.756b 1.151
E[Z|LB < Z < UB] No 1.432b 1.170 0.986 1.147 1.231 1.156 1.135 1.223 0.751b 1.154
Fill-in No 1.459b 1.189 0.966 1.163 1.225 1.173 1.072 1.249 0.737c 1.171
Fill-in Yes 1.511b 1.182 1.030 1.157 1.251 1.166 1.209 1.239 0.687b 1.165
Multiple impute Yes 1.487b 1.196 1.016 1.165 1.247 1.170 1.082 1.244 0.704b 1.173
Direct estimate Yes 1.503c 1.276 0.994 1.235 1.245 1.250 1.090 1.363 0.714 1.249

Carbaryl
DL/2 No 0.853 1.201 0.661b 1.173 1.560b 1.185 1.129 1.266 1.660b 1.183
E[Z|LB < Z < UB] No 0.849 1.226 0.629b 1.194 1.703b 1.208 1.199 1.300 1.746b 1.205
Fill-in No 0.830 1.311 0.591b 1.265 1.812b 1.285 1.486 1.417 1.735b 1.282
Fill-in Yes 0.940 1.274 0.432b 1.235 2.337b 1.252 1.538 1.366 1.779b 1.249
Multiple impute Yes 0.826 1.338 0.508b 1.272 2.047b 1.313 1.326 1.490 1.950b 1.351
Direct estimate Yes 0.785 1.499 0.512c 1.413 2.180b 1.452 1.281 1.651 2.115b 1.444

Chlorpyrifos
DL/2 No 1.578b 1.209 0.779 1.181 1.264 1.182 1.581c 1.276 0.759 1.188
E[Z|LB < Z < UB] No 1.620b 1.218 0.771 1.188 1.300 1.190 1.613c 1.288 0.746 1.196
Fill-in No 1.917b 1.243 0.757 1.210 1.389c 1.212 1.669c 1.322 0.713c 1.219
Fill-in Yes 1.745b 1.244 0.740 1.210 1.383c 1.212 1.631c 1.323 0.731 1.219
Multiple impute Yes 1.770b 1.252 0.763 1.223 1.401c 1.223 1.689c 1.336 0.708 1.234
Direct estimate Yes 1.796c 1.378 0.740 1.323 1.392 1.327 1.698 1.492 0.702 1.338

α-Chlordane
DL/2 No 0.966 1.129 0.938 1.112 0.910 1.118 2.626b 1.168 1.091 1.117
E[Z|LB < Z < UB] No 0.954 1.153 0.925 1.132 0.894 1.140 3.031b 1.199 1.110 1.138
Fill-in No 1.060 1.230 0.828 1.198 0.868 1.210 3.110b 1.303 1.079 1.208
Fill-in Yes 0.762 1.206 0.927 1.177 0.908 1.188 3.898b 1.271 1.293 1.186
Multiple impute Yes 0.852 1.363 0.915 1.235 0.804 1.202 3.686b 1.290 1.169 1.270
Direct estimate Yes 0.858 1.379 0.919 1.316 0.803 1.339 3.666b 1.442 1.211 1.334

Entries are exponentials of parameter estimates (β) and their SEs from linear regression models of the logarithm of pesticide analyte on age, sex, race, education, study site, season, and
pesticide use variables. Regression models also included year house was built (propoxur, carbaryl, α-chlordane), type of home (carbaryl), and presence of oriental rugs (α-chlordane).
aSee “Materials and Methods” for a description of methods; adjusted imputation includes regression variables. b95% CI excludes 1. c90% CI excludes 1.



inserting DL/2, E[Z|LB < Z < UB], or a fill-in
value) are smaller than standard errors from the
multiple imputation approach and direct esti-
mation. The smaller standard errors result from
an inadequate account of missing data and
result in CIs that are too narrow and inflated
type I error rates. Table 2 shows several vari-
ables that do not achieve traditional significance
levels when imputation is taken into account.
In some instances, there are marked differences
in estimates. Estimated increases in carpet dust
levels of α-chlordane among subjects treating
for termites are 2.6- and 3.1-fold based on
DL/2 insertion and fill-in methods, respec-
tively, and 3.7-fold based on multiple imputa-
tion and direct estimation approaches.

Comparing the two fill-in approaches,
standard errors are smaller when the covariate
information is included than when covariate
information is omitted. Fill-in values are
obtained from regression models by sampling
from LN(β̂t Xi, σ̂2). Figure 1C and D show
quantile plots of residuals, that is, from
exp[log(Z) – β̂t X]for each subject. Although
GMs of the residuals are close to the expected
value of 1.0 for the error distributions, plots
suggest a slight underprediction at extreme
values for propoxur and carbaryl.

Simulation study. For the simulation study,
we set µ = 0 and σ2 = 1 without loss of general-
ity and present results for n = 50, 100, 200,
and 400 and with DLs such that the expected
proportions of values below the DL are p = 10,
30, 50, and 70%. With 5,000 repetitions,
the standard error for coverage of 95% CIs is
0.003. Table 3 shows that estimates of µ based
on Tobit regression, multiple imputation, and
single impute fill-in approaches are generally
unbiased. Insertion of DL/2 or E[Z|Z < DL]
results in substantial bias unless the proportion
of missing data is small, ≤  10%. Table 3 also
shows coverage of the 95% CI for the estimate
of µ. In comparison with complete data, Tobit
regression and the multiple imputation
approaches are the only methods that achieve
nominal coverage over a broad range of simu-
lation parameters, although the multiple impu-
tation begins to degrade when more than about
50% of the measurements are below DLs. The
single imputation approach results in anom-
alous CIs when about ≥  30% of the data are
below DLs.

Discussion

Results of our analysis of use of pesticide prod-
ucts in and around the home and pesticide

residues in carpet dust and of the simulation
study suggest that the method of imputation of
missing environmental measurement data can
substantially affect estimation of effects and
statistical inference. The practice of inserting a
single value, such as DL/2 or the conditional
expected value E[Z|Z < DL] or by analogy
DL/√2

–
, is ill-advised unless there are relatively

few measurements below DLs. The use of a
single imputation to fill in missing data is
unbiased or minimally biased quite generally
but suffers from inaccurate estimates of vari-
ance and, consequently, CIs that are too nar-
row, particularly when missing data exceed
about 30%. The best protection against biased
inference in the presence of nonignorable miss-
ing data is the use of multiple imputation,
although with a high proportion of values
below the DL, a large number of measure-
ments are needed. It is worth reiterating, how-
ever, that multiple imputation is necessary only
if explicit values are needed for measurements
below DLs. If the purpose is to estimate regres-
sion parameters, then procedures for truncated
data, such as Tobit regression, are nominal
(Little and Rubin 1987).

In environmental monitoring, estimation of
distributional parameters is often problematic
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Table 3. Results of simulation study of imputation approachesa for log-normally distributed data with µ = 0 and σ2 = 1 with a DL (entries are means of 5,000 repetitions).

Complete Tobit Multi-impute Single impute Insert Insert
Sample size (no.) Percent < DL data analysis using (µ̂, σ̂ 2) using (µ̃ , σ̃ 2) DL/2 E[Z|Z < DL]

50
Estimate of µ 10.0 0.002 0.000 –0.003 –0.003 –0.020 0.007

30.0 0.002 –0.003 –0.003 –0.004 –0.017 0.032
50.0 0.002 –0.004 –0.003 –0.003 0.052 0.073
70.0 0.002 –0.006 –0.005 –0.002 0.229 0.143

Coverage of 95% CI 10.0 0.947 0.944 0.943 0.943 0.943 0.942
30.0 0.947 0.949 0.938 0.928 0.942 0.928
50.0 0.947 0.953 0.928 0.876 0.938 0.832
70.0 0.947 0.931 0.895 0.707 0.280 0.520

100
Estimate of µ 10.0 0.003 0.002 0.000 0.000 –0.019 0.009

30.0 0.003 0.001 0.000 0.000 –0.015 0.034
50.0 0.003 0.000 0.000 –0.001 0.055 0.076
70.0 0.003 –0.006 –0.004 –0.002 0.232 0.142

Coverage of 95% CI 10.0 0.944 0.945 0.940 0.940 0.943 0.942
30.0 0.944 0.949 0.938 0.929 0.942 0.914
50.0 0.944 0.948 0.922 0.870 0.910 0.781
70.0 0.944 0.940 0.904 0.721 0.036 0.440

200
Estimate of µ 10.0 –0.001 –0.002 –0.002 –0.002 –0.023 0.006

30.0 –0.001 –0.003 –0.003 –0.003 –0.019 0.031
50.0 –0.001 –0.002 –0.002 –0.002 0.052 0.074
70.0 –0.001 –0.003 –0.001 –0.002 0.229 0.142

Coverage of 95% CI 10.0 0.952 0.950 0.951 0.950 0.941 0.946
30.0 0.952 0.955 0.936 0.926 0.940 0.904
50.0 0.952 0.948 0.925 0.874 0.877 0.708
70.0 0.952 0.947 0.914 0.725 0.000 0.306

400
Estimate of µ 10.0 0.001 0.001 0.001 0.001 –0.021 0.008

30.0 0.001 0.000 0.000 0.000 –0.017 0.034
50.0 0.001 0.001 0.001 0.001 0.053 0.076
70.0 0.001 0.000 0.000 0.000 0.230 0.144

Coverage of 95% CI 10.0 0.954 0.954 0.952 0.951 0.931 0.949
30.0 0.954 0.948 0.938 0.928 0.941 0.874
50.0 0.954 0.954 0.927 0.880 0.776 0.545
70.0 0.954 0.947 0.914 0.723 0.000 0.128

aParameter estimation using observed data with DLs (Tobit analysis), (µ̂, σ̂ 2) multiple imputation with allowance for uncertainty in model parameters using (µ̃ , σ̃ 2), a single imputation
using (µ̂, σ̂ 2), the insertion of DL/2, and insertion of the expected value conditional on being below the DL, E[Z|Z < DL].



because of limited numbers of measurements
and an inability to evaluate distributional forms
precisely. With 5–15 measurements, MLEs can
be biased (Gleit 1985), suggesting the need for
more robust approaches (Helsel 1990). With
epidemiologic data, which usually include hun-
dreds or thousands of measurements, MLEs are
unbiased and fully efficient (Gilliom and Helsel
1986), and more detailed regression analyses are
feasible.

When analyzing environmental data on
pesticides, Moschandreas et al. used a fill-in
imputation approach that applied the “best-
fitting” probability distribution for values
above a DL (Helsel 1990; Moschandreas et al.
2001a, 2001b), although Helsel and Hirsch
(1991) had cautioned that the approach should
be used primarily for estimating summary sta-
tistics. The approach we outline permits multi-
ple DLs, incorporates regression parameters,
and applies multiple imputation to account
correctly for interval-measured data and to
allow unbiased inference. However, our simu-
lation study suggests that the fill-in approach
may be quite adequate when measurements
below the DL account for less than about 30%
of the data.

The Tobit regression and multiple impu-
tation approaches assume that the limits of
detection are fixed and known in advance. In
our example, we are justified in assuming DLs
are fixed for type I missing measurements, but
not for type II and III missing data where
DLs depend on the amount of interfering
compounds and are random variables. If the
DL is not known, an estimate of its value is
the minimum order statistic of the observed
measurements—that is, the smallest measured
value. Simulations suggest that for a random
DL, estimates remain unbiased but variances
are underestimated (Zuehlke 2003). Thus,
CIs in Table 2 may be too narrow. However,
relative to other sources of uncertainty that
arise in the collection and handling of carpet
dust samples, and the accuracy of question-
naire information, additional uncertainty
induced by random DLs for type II and III
missing values is likely small.

Environmental data are frequently well
approximated by a log-normal distribution,
and our data on concentrations of pesticide
analyte in carpet dust are consistent with this
assumption. Equations 1 and 2 remain valid
for more general distributions, although esti-
mation of parameters may be more problem-
atic and necessitate potentially computer-
intensive search algorithms. Validity of para-
meter estimates and their variances depend, of
course, on the correct choice of error distri-
bution. Our simulation study was based on
a correct distributional form; however, mis-
specification of the probability model can lead
to markedly biased results (Paarsch 1984). In

the absence of knowledge about the error dis-
tribution, semiparametric and nonparametric
methods have been proposed (Austin 2002a;
Chay and Powell 2001; DiNardo and Tobias
2001). Bayesian approaches have also been
suggested in the Tobit regression context
(Austin 2002b). A reviewer suggested con-
sidering the set of measurements of a subject
as a vector of multivariate outcomes, so that
the covariance structure among the analytes
could provide information for the imputation
process. In our example, this requires the
assumption that the logarithms of the measure-
ments are multivariate normally distributed.
The suggestion, however, adds complexity as
the number of analytes increases, and addi-
tional work is needed to evaluate its practical
feasibility.

The motivation for this work arose from
the analysis of pesticide analytes in carpet dust
and use of pesticide products in and around
the home. However, data with DLs arise in a
variety of settings, including upper DLs from
health-care–related questionnaire data (Austin
2002a) and psychological profile scores, such
as the Fagerstrom test for nicotine dependence
(Fagerstrom and Schneider 1989; Heatherton
et al. 1991) and lower DLs in radiation film
badge measurements (Gilbert et al. 1996;
Kerr 1994).

In summary, with epidemiologic data,
our analyses indicate that unless there are very
few measurements below DLs (< 5–10%),
inserting DL/2, E[Z|Z < DL], or any single
value to impute missing measurement data is
not advisable. Further, inserting a randomly
selected fill-in value is also inadvisable, unless
the proportion of missing data is less than
about 30%. Multiple imputation of missing
data is the best approach of ensuring unbiased
estimates of effects and nominal CIs.
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